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This paper is devoted to deriving several fractional-order models for multiphase flows in porous media,
focusing on some special cases of the two-phase flow. We derive the mass and momentum conservation
laws of multiphase flow in porous media. The mass conservation-law has been developed based on the
flux variation using Taylor series approximation. The fractional Taylor series’s advantage is that it can
represent the non-linear flux with more accuracy than the first-order linear Taylor series. The divergence
term in the mass conservation equation becomes of a fractional type. The model has been developed for
the general compressible flow, and the incompressible case is highlighted as a particular case. As a ver-
ification, the model can easily collapse to the traditional mass conservation equation once we select the
integer-order. To complete the flow model, we present Darcy’s law (momentum conservation law in por-
ous media) with time/space fractional memory. The modified Darcy’s law with time memory has also
been considered. This version of Darcy’s law assumes that the permeability diminishes with time, which
has a delay effect on the flow; therefore, the flow seems to have a time memory. The fractional Darcy’s
law with space memory based on Caputo’s fractional derivative is also considered to represent the non-
linear momentum flux. Then, we focus on some cases of fractional time memory of two-phase flows with
countercurrent-imbibition mechanisms. Five cases are considered, namely, traditional mass equation and
fractional Darcy’s law with time memory; fractional mass equation with conventional Darcy’s law; frac-
tional mass equation and fractional Darcy’s law with space memory; fractional mass equation and frac-
tional Darcy’s law with time memory; and traditional mass equation and fractional Darcy’s law with
spatial memory.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Background

Multiphase flows and transport in porous media have many
science and engineering applications, such as oil/gas reservoir sim-
ulation, enhanced oil recovery, carbon dioxide sequestration, and
water soil infiltration. Multiphase flows in porous media, including
highly complex physical phenomena that required very compli-
cated nonlinear models to describe. The traditional modeling of
multiphase flows and transport in porous media was built based
on the continuummechanics theory, which mainly utilizes a linear
flux approximation to derive mass/momentum conservation equa-
tions (Chen et al., 2006).

The idea of using fractional derivative instead of integer one
returns to three centuries ago, the era of Newton, Gauss, and Leib-
niz. Researches working on the fractional calculus field are familiar
with the famous correspondence story between Leibniz and
L’Hospital in 1695 about the possibility of having fractional deriva-
tive and the expectation that the fractional derivatives will lead to
practical consequences in the future (Miller and Ross, 1993). The
fractional calculus has been developed by some mathematicians
such as Liouville, Riemann, Wey, Fourier, Abel, Grünwald, and Let-
nikov. Recently, fractional calculus has been involved in many
science and engineering applications such as fluid mechanics and
transport phenomena (Oldham and Spanier, 1974; Podlubny,
1999). The flow in porous media is one obvious example that can
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consider the fractional modeling due to their heterogeneity, such
as solute transport in a groundwater aquifer, which does not follow
Fickian law (Benson et al., 2000).

An application of the fractional advection–dispersion equation
was presented in reference (Benson et al., 2000). Caputo (2000)
has proposed a time-fractional version of Darcy’s law to describe
time memory. Also, a fractional Darcy’s law with space memory
has been introduced by He (1998). Wheatcraft and Meerschaert
(2008) have derived a fractional mass conservation equation of a
single-phase flow in porous media based on the fractional Taylor
series. El-Amin et al. have presented an analytical solution of the
fractional gas-flow equation in porous media using fractional
power-series (El-Amin et al., 2017). Mohammadein et al. (2020)
have provided an approximate similarity solution for the spatial
fractional boundary-layer flow over an infinite vertical plate.
Recently, El-Amin et al. (2020) investigated the fractional deriva-
tive modeling of double-diffusive free convection with von Neu-
mann stability analysis. Further reading about fractional
derivative recent developments can be found in references (Singh
and Srivastava, 2020; Singh, 2020a, 2020b; Singh et al., 2019,
2020). The fractional version of the equation of reaction-advec
tion–diffusion in porous media has been presented and solved
numerically by Pandey et al. (2019). The convergence analysis of
the space–time-fractional advection–diffusion equation has been
investigated by Safdari et al. (2020). Recently, Kumar and
Gómez-Aguilar (2020) have used an operational matrix for the
Caputo-Fabrizio derivative to find numerical solutions for the reac-
tion–diffusion, diffusion-wave, and Cattaneo equations. Pandey
et al. (2020) introduced an approximate analytical solution of the
two-dimensional space-time fractional diffusion equation.
Fig. 1. Sketch of rectangular control volume.
1.2. Research motivation

It is well-known that the mass conservation equation is usually
derived using the first-order Taylor series to approximate the flux
variation linearly, which means that the higher-order terms are
dropped. This approximation is working very well with flows that
can be represented by a linear flux variation. One may expect that
as the number of terms of (higher-order) Taylor series increases, a
nonlinear approximation for the flux will be obtained. This is
desired for complicated flows such as multiphase flow and flow
in heterogeneous media. The multiphase flows and transport in
porous media are nonlinear due to the high heterogeneity in fluid
flows and porous media. Fortunately, the higher-order Taylor ser-
ies can be represented by a fractional Taylor series with only two
terms. Thus, the fractional Taylor series will be used to describe
flux in a general sense being nonlinear or linear. Therefore, it is
worthy of introducing some research attempts to develop multi-
phase flows in porous media (certainly they have nonlinear fluxes)
to be represented by fractional modeling. These types of models
cover various multiphysics that can be described by different tradi-
tional derivatives. Each integer-order derivative can be replaced by
a generalized fractional one. The fractional-order derivative in the
new models treats the limitation of the conventional integer-order
derivative. For example, the fractional mass conservation equation
can represent the nonlinear flux with more accuracy than the first-
order linear Taylor series. Also, including fractional Darcy’s law
with time memory assumes that the permeability diminishes with
time. The fluid pressure effect at the boundary delays, and the flow
occurs as if the medium had a memory. Therefore, the mobilities of
the wetting and the non-wetting phases inherit similar time mem-
ory. And so on, each fractional model has its own deeper physical
meaning and the general sense. A fractional model is general,
including the integer model as a particular case with a more in-
depth physical meaning. Also, it provided several real physics that
2

may be hidden by the traditional models. So, it worth to be
considered.

1.3. Contribution

In this paper, novel models of fraction multiphase flow in por-
ous media have been developed based on the continuum mechan-
ics approach. All sections are mainly developed, including the
general models and particular cases. The mass conservation equa-
tions are derived, and the momentum equation (Darcy’s law) is
accordingly modified. Taylor series approximation has been uti-
lized to derive the fractional mass conservation law of multiphase
flow in porous media. Several versions of fractional Darcy’s law
have been developed to be coupled with the fractional mass con-
servation equation. After the general formalization of the fractional
multiphase flow model, we focus on some practical fractional two-
phase models by considering the countercurrent imbibition mech-
anism as an example. Relative permeabilities, mobilities, and cap-
illary pressure are also extended to their fractional versions.

1.4. Organization

The rest of the paper is arranged as follows: In Section 2, the
fractional mass equation of a multiphase immiscible flow has been
derived. In Section 3, we presented the fractional Darcy’s law with
time memory, while the fractional Darcy’s law with space memory
has been covered in Section 4. Section 5, provides five special cases
listed in subsections (5.1–5.5) and discusses fractional/traditional
alternatives models of mass and momentum conservation laws
of two-phase flow in porous media. In Subsection 5.1, the tradi-
tional mass equation and fractional Darcy’s law with time memory
are provided. Subsection 5.2 gives fractional mass equation with
conventional Darcy’s law while fractional mass equation and frac-
tional Darcy’s law with space memory are covered in Subsection
5.3. The fractional mass equation and fractional Darcy’s law with
time memory are given in Subsection 5.4. Subsection 5.5 focuses
on the traditional mass equation and fractional Darcy’s law with
spatial memory. Finally, the conclusions are presented in Section 6.

2. Fractional mass equation of a multiphase immiscible flow

To derive the mass conservation equation of multiphase immis-
cible flow in porous media, we first derive the mass conservation
equation of a single-phase flow. Consider mass flux across the sur-
faces (inflow and outflow) of the rectangular cube (control volume)
with the volume DV ¼ DxDyDzas shown in Fig. 1. The amount of
mass across the inflow surface is equal with the mass outflows
on another surface. From Fig. 1, it can be seen that the mass inflow
across at the first face of x is,
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FðxÞ ¼ DyDz quxð Þ ð1Þ
and the mass outflow at xþ Dx(the opposite side ofx) is,

Fðxþ DxÞ ¼ DyDz quxð Þ þ DyDz
@ quxð Þ
@x

Dx ð2Þ

The equation of mass conservation for a fluid flow in a porous
medium is traditionally derived using the first-order Taylor series,
which represents the linear flux. Wheatcraft and Meerschaerton
(He, 1998) have used the fractional Taylor series to describe the
nonlinear flux. The fractional flux component inx-direction can
be written using the two-term a-order fractional Taylor series
expanded about x, i.e.,

Fðxþ DxÞ ¼ DyDz quxð Þ þ DyDz
@a quxð Þ
@xa

Dxð Þa
Cðaþ 1Þ ð3Þ

such that the fractional derivative can be defined by Caputo frac-
tional derivative (Miller and Ross, 1993) of order 0 < a < 1, as,

@af ðxÞ
@xa

¼ 1
Cð1� aÞ

Z x

x0

x� nð Þ�a @f ðx; nÞ
@n

dn; ð4Þ

where CðxÞ is the Gamma function.
Here, we assume that the medium is heterogeneous and isotro-

pic, and a has the same value in all directions. The net mass flux
through the x-direction can be obtained by subtracting (3) from
(1), thus,

FðxÞ � Fðxþ DxÞ ¼ �DyDz @
a quxð Þ
@xa

Dxð Þa
Cðaþ 1Þ ð5Þ

Similarly, the net mass flux in the y- and z-direction are given
by,

FðyÞ � Fðyþ DyÞ ¼ �DxDz @
a quy
� �
@ya

Dyð Þa
Cðaþ 1Þ ð6Þ

and

FðzÞ � Fðzþ DzÞ ¼ �DxDy @
a quzð Þ
@za

Dzð Þa
Cðaþ 1Þ ð7Þ

Therefore, the net mass flux through the control volume is
obtained by summing (5)–(7),

DF ¼ � DV
Cðaþ 1Þ Dxð Þa�1 @

a quxð Þ
@xa

þ Dyð Þa�1 @
a quy
� �
@ya

þ Dzð Þa�1 @
a quzð Þ
@za

� �
ð8Þ

Based on the mass conservation concept, the net mass flux, Eq.
(8), should equal the accumulation term, @

@t ðDV/qÞ. Then the mass
conservation of the fluid flow in porous media can be written as,

@

@t
DV/qð Þ ¼ � DV

Cðaþ 1Þ Dxð Þa�1 @
a quxð Þ
@xa

þ Dyð Þa�1 @
a quy
� �
@ya

þ Dzð Þa�1 @
a quzð Þ
@za

� �
þ q

ð9Þ

where / is porosity, q is the source/sink term. In other notations,
assuming ðx; y; zÞ � ðx1; x2; x3Þ and ðux;uy;uzÞ � ðu1;u2; u3Þ, one can
write this equation as,

@

@t
DV/qð Þ þ DV

Cðaþ 1Þ
X3
i¼1

Dxið Þa�1 @
a quið Þ
@xai

¼ q ð10Þ

Eq. (10) is provided for a single-phase flow which can be
extended to a multiphase immiscible flow. Then the mass conser-
vation equation is extended for each fluid phase b such that,

@

@t
SbDV/qb

� �
þ DV
Cðaþ 1Þ

X3
i¼1

Dxið Þa�1
@a qbubi

� �
@xai

¼ qb ð11Þ
3

where Sb is the phase saturation which is the ratio between volume
of pore spaces occupied by fluid phase and the total pore volume. If
we consider more than one phase, the sum of saturation of all
phases must equal one, thus,X
b

Sb ¼ 1 ð12Þ

Now, let us work over the accumulation term (the first term of
the left-hand side of Eq. (11)). We may assume that the control vol-
ume, phase density, and porosity can vary with pressure, which in
turn vary with time, and the phase saturation varies with time too,
thus,

@

@t
SbDV/qb

� �
¼ DV/qb

@Sb
@t

þ Sb/qb

@DV
@P

þ DVSbqb

@/
@P

þ DVSb/
@qb

@P

� 	
@P
@t

ð13Þ
Also, the bulk volume can be broken down into two terms, pore

volume and rock (solid) volume,

DV ¼ DVp þ DVs; ð14Þ
It is clear that,

DVs ¼ ð1� /ÞDV ;DVP ¼ /DV ð15Þ
and,

@DV
@p

¼ @DVP

@p
þ @DVs

@p
ð16Þ

The coefficient of bulk compressibilitycb, solid matrix com-
pressibility cs, and pore compressibility cP with respect to a unit
change in the pressure p are given by,

cb ¼ � 1
DV

@DV
@p

cs ¼ � 1
DVs

@DVs

@p
cP ¼ � 1

DVP

@DVP

@p
ð17Þ

Therefore, the bulk compressibility can be given as,

cb ¼ ð1� /Þcs þ /cP ð18Þ
Also, porosity depends on pressure due to rock compressibility,

which is often assumed to be constant (typically 10�6–10�7 psi�1)
and can be defined as,

cs ¼ � 1
DVs=DVð Þ

@ DVs=DVð Þ
@p

¼ 1
1� /

@/
@p

ð19Þ

Moreover, the fluid phase compressibility cfb in terms of the
fluid volume and density change with pressure at a constant tem-
perature is given by,

cfb ¼ 1
qb

@qb

@p
ð20Þ

Now, let us substituting Eqs. (16)–(20) into the accumulation
term,

@

@t
SbDV/qb

� �
¼ DV/qb

@Sb
@t

þ �Sb/qbcbDV þ DVSbqbcsð1� /Þ þ DVSb/ cfbqb

� � @P
@t

ð21Þ
or,

@
@t SbDV/qb

� �
¼ DV/qb

@Sb
@t þ SbqbDV �/ ð1� /Þcs þ /cP½ � þ csð1� /Þ þ / cfb

� �
@P
@t

¼ DV/qb
@Sb
@t þ SbqbDV ð1� /Þ2cs � /2cP þ / cfb

h i
@P
@t

ð22Þ

Therefore, by substituting Eq. (22) into Eq. (11) one gets,
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/qb

@Sb
@t

þ Sbqb ð1� /Þ2cs � /2cP þ / cfb
h i @P

@t

þ 1
Cðaþ 1Þ

X3
i¼1

Dxið Þa�1
@a qbubi

� �
@xai

¼ qb ð23Þ

Assuming q = 0, the corresponding single-phase conservation of
mass equation,

q ð1� /Þ2cs � /2cP þ / cfb
h i @P

@t

þ 1
Cðaþ 1Þ

X3
i¼1

Dxið Þa�1 @
a quið Þ
@xai

¼ 0 ð24Þ

On the other hand, if one assumes that the fluid is incompress-
ible cfb ¼ 0 and the porous medium compressibility is negligible
cs ¼ cP ¼ 0, the above equation reduced to,

/qb

@Sb
@t

þ 1
Cðaþ 1Þ

X3
i¼1

Dxið Þa�1
@a qbubi

� �
@xai

¼ qb ð25Þ

Eq. (25) is the fractional mass conservation equation for immis-
cible multiphase incompressible flow. If we put a ¼ 1, Eq. (25) is
reduced to the traditional mass conservation equation for immisci-
ble multiphase flow (El-Amin et al., 2016, 2012; Sun et al., 2012);

/
@Sb
@t

þ
X3
i¼1

@ubi

@xi
¼ Qb ð26Þ

where Qb ¼ qb=qb.
Fig. 2. Schematic diagram of the countercurrent imbibition.
3. Fractional Darcy’s law with time memory

The modified Darcy’s law with time memory has been intro-
duced by Caputo (Benson et al., 2000). The version of Darcy’s law
assumes that the permeability diminishes with time. Therefore,
the effect of fluid pressure at the boundary delays and the flow
occurs as if the medium had a memory. The traditional Darcy’s
law may be given as,

q ¼ �q0grP ð27Þ

which states that the fluid mass flow rate q per unit area is propor-
tional to the gradient of the pore pressure p. g ¼ K=l is proportional
coefficient of the Darcy’s law, K is the permeability of the medium
and l is the fluid viscosity. Alternatively, relation (27) may be
rewritten as,

v ¼ �grP ð28Þ

where v ¼ ðux;uy;uzÞ is the fluid velocity vector. Caputo (Benson
et al., 2000) represented the effect of decreasing permeability with
memory formalism. Namely, the proportional coefficient of the clas-
sical Darcy’s law g should be variable with time and Eq. (27) may be
given as,

v ¼ �g tð Þ½ @
a

@ta
rP� ð29Þ

where

@a

@ta
f ðx; tÞf g ¼ 1

Cð1� aÞ
Z t

0
t � sð Þ�a @f ðx; sÞ

@s
ds ð30Þ

In this equation, there is a convergence at t ¼ s for any value of t
since it is assumed 0 6 a 6 1. The model (29) collapses to the tra-
ditional one (28) as g does not depend on time t, and a ¼ 0.
4

4. Fractional Darcy’s law with space memory:

He (Caputo, 2000) proposed a fractional Darcy’s law with space
memory based on the fractional derivative of Riemann-Liouville. In
this study, we are going to use the Caputo fractional derivative as
stated above. In this context, we can rewrite the fractional Darcy’s
law in the form,

v ¼ �graP ð31Þ

where ra ¼ @a

@xa ;
@a

@ya ;
@a

@za

� �
. In this case the Caputo fractional deriva-

tive can be given as,

@a

@xa
f ðxÞf g ¼ 1

Cð1� aÞ
Z x

0
x� nð Þ�a @f ðx; nÞ

@n
dn ð32Þ

Similarly, the fractional-order model (31) collapses to the tradi-
tional integer-order one (28) as a ¼ 1.

5. Selected special cases of two-phase flows:

5.1. Traditional mass equation and fractional Darcy’s law with time
memory

The traditional governing equations that control the process of
two-phase imbibition in porous media (Fig. 2) are provided. The
two-phase immiscible incompressible flow in a homogenous por-
ous medium domain is governed by Darcy’s law and the equations
of mass conservation for each phase as (El-Amin et al., 2020);

vw ¼ �Kkrw
lw

rPw ð33Þ

vnw ¼ �Kkrnw
lnw

rPnw ð34Þ

/
@Sw
@t

þr � vw ¼ 0 ð35Þ

/
@Snw
@t

þr � vnw ¼ 0 ð36Þ

The saturations of the phases are constrained by,

Sw þ Snw ¼ 1 ð37Þ
where the subscripts w and nwdesignate the wetting phase and
non-wetting phase, respectively, P is the pressure, S is the satura-
tion, kr is the relative permeability and is generally function of sat-
uration defined below and l is the viscosity. Eqs. (33) and (34) may
be written as,
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vw ¼ �fwrPw ð38Þ

vnw ¼ �fnwrPnw ð39Þ
where, fw ¼ Kkrw=lw and fnw ¼ Kkrnw=lnw. The simplified 1D case
will be subjected in present work. Therefore, the governing equa-
tions become,

uw ¼ �fw
@Pw

@x
ð40Þ

unw ¼ �fnw
@Pnw

@x
ð41Þ

/
@Sw
@t

þ @uw

@x
¼ 0 ð42Þ

/
@Snw
@t

þ @unw

@x
¼ 0 ð43Þ

Considering the memory formalism explained above, Eqs. (40)
and (41) be rewritten as follows,

uw ¼ �fwðtÞ
@a

@ta
@Pw

@x

� 	
ð44Þ

unw ¼ �fnwðtÞ
@a

@ta
@Pnw

@x

� 	
ð45Þ

The fractional time derivative is defined in Eq. (32). It is clear
that memory formalism implies the use of more one parameter,
namelya.

For the countercurrent imbibition, the sum of the velocities of
the wetting and non-wetting phases vanishes. Thus,

fwðtÞ
@a

@ta
@Pw

@x
þ fnwðtÞ

@a

@ta
@Pnw

@x
¼ 0 ð46Þ

The capillary pressure Pc is defined as a difference between the
non-wetting and wetting phase pressures as,

Pc ¼ Pnw � Pw ð47Þ
Therefore, from Eq. (46) and Eq. (47) we may obtain,

@a

@ta
@Pw

@x
¼ � fnwðtÞ

fwðtÞ þ fnwðtÞ
@a

@ta
@Pc

@x
ð48Þ

One my writes Eq. (44) as,

uw ¼ fwðtÞfnwðtÞ
fwðtÞ þ fnwðtÞ

@a

@ta
@Pc

@x
ð49Þ

Substituting from Eq. (49) into Eq. (42) we get,

/
@Sw
@t

þ @

@x
fwðtÞfnwðtÞ

fwðtÞ þ fnwðtÞ
@a

@ta
@Pc

@x

� �
¼ 0 ð50Þ

The problem under consideration is reduced to be governed
only by the above equation (50), because the capillary pressure is
a function of Sw with the aid of the constrain (37). The capillary
pressure functions are dependent upon the pore geometry, fluid
physical properties and phase saturation. The two-phase capillary
pressure can be expressed by Leverett dimensionless functionJðSÞ
(Singh and Srivastava, 2020) as a function of the normalized satu-
ration S;

Pc ¼ c
/
K

� 	1=2

JðSÞ ð51Þ

and,

S ¼ Sw � Swi

1� Sor � Swi
; 0 6 S 6 1 ð52Þ
5

where Swi is the initial water saturation (typically a connate or irre-
ducible value), and Sor is the residual oil saturation. In order to write
more convenient formula for this model, we follow a similar idea of
Caputo (Benson et al., 2000) that allows the permeability to be a
function of the time t but not under the time-fractional derivative.
Assuming / and c are constants, we have,

@Pc

@x
¼ c/1=2

KðtÞ1=2
dJðSÞ
dS

@S
@x

ð53Þ

Using Eqs. (52) and (53), Eq. (50) can be rewritten as,

@S
@t

þ c
/1=2 1� Sor � Swið Þ

@

@x

� fwðtÞfnwðtÞ
KðtÞ1=2 fwðtÞ þ fnwðtÞð Þ

@a

@ta
dJðSÞ
dS

@S
@x

� 	" #
¼ 0 ð54Þ

Now let us give the definition of fwðtÞand fnwðtÞ which are also
functions of KðtÞas shown above, one may get,

fwðtÞfnwðtÞ
KðtÞ1=2 fwðtÞ þ fnwðtÞð Þ

¼ KðtÞ1=2mwmnw

mw þmnw
ð55Þ

where mw ¼ krw=lw and mo ¼ kro=lo are the mobilities of the wet-
ting and the non-wetting phases, respectively. Given,

mw0 ¼ k0rw=lw and mo0 ¼ k0ro=lo are the endpoint mobilities of wet-
ting and non-wetting phases, respectively. The relationships
between the relative permeabilities and the normalized phase sat-
uration S are given as,

krw ¼ k0rwS
a ð56Þ

kro ¼ k0ro 1� Sð Þb ð57Þ

where a and b are positive numbers, k0rw ¼ krwðS ¼ 1Þ is the endpoint

relative permeability to water, andk0ro ¼ kroðS ¼ 0Þ is the endpoint
relative permeability to oil. Now, it is clear that Eq. (55) may be
written as,

fwðtÞfnwðtÞ
KðtÞ1=2 fwðtÞ þ fnwðtÞð Þ

¼ KðtÞ1=2 mw0mnw0S
að1� SÞb

mw0S
a þmnw0ð1� SÞb

ð58Þ

Therefore, Eq. (58) becomes,

@S
@t

þ c
/1=2 1� Sor � Swið Þ

@

@x

� KðtÞ1=2 mw0mnw0S
að1� SÞb

mw0S
a þmnw0ð1� SÞb

@a

@ta
dJðSÞ
dS

@S
@x

� 	" #
¼ 0 ð59Þ

To consider a certain case of study, we may use a specified
empirical formula of the capillary pressure in terms of normalized
saturation function. The JðSÞ function typically lies between two
limiting curves (drainage and imbibition) which can be obtained
experimentally. The correlation of the imbibition capillary pressure
data depends on the type of application. Since our current research
is concerned with water–oil system (Pooladi-Darvish and
Firoozabadi, 2000). The capillary pressure and the normalized wet-
ting phase saturation are correlated as follows,

Pc ¼ �BlnS ð60Þ
where B is the capillary pressure parameter, equivalent to c /=Kð Þ1=2,
in the general form of the capillary pressure, Eq. (51), thus,

B � �c /=Kð Þ1=2 and JðSÞ � lnS. The corresponding 1D equation is,
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@S
@t

þ c
/1=2 1� Sor � Swið Þ

@

@x

� KðtÞ1=2 mw0mnw0S
að1� SÞb

mw0S
a þmnw0ð1� SÞb

@a

@ta
1
S
@S
@x

� 	" #
¼ 0 ð61Þ

here

@a

@ta
1
S
@S
@x


 �
¼ 1
Cð1� aÞ

Z t

0
t � sð Þ�a @

@s
1
S
@S
@x

� 	
ds ð62Þ

which is a single partial differential equation in x and t.
When a = 0, the above fractional-order equations will be

reduced to the integer-order equations in reference (El-Amin
et al., 2013).

5.2. Fractional mass equation with traditional Darcy’s law

Recall the same model in 5.1 using the fractional mass equation
derived in this work to be combined with the traditional Darcy’s
law. Considering zero source/sink term, Eq. (25), maybe rewritten
as,

/
@Sb
@t

þ 1
Cðaþ 1Þ Dxið Þa�1ra

h i
� vb ¼ 0; b ¼ w;nw ð63Þ

vb ¼ �Kkrb
lb

rPb; b ¼ w;nw ð64Þ

Therefore, the 1D case becomes,

/
@Sw
@t

� Kkrw
lwCðaþ 1Þ Dxð Þa�1 @

aþ1Pw

@xaþ1 ¼ 0 ð65Þ

/
@Snw
@t

� Kkrnw
lnwCðaþ 1Þ Dxð Þa�1 @

aþ1Pnw

@xaþ1 ¼ 0 ð66Þ

In the case of countercurrent imbibition, both the wetting phase
and non-wetting phase flow through one boundary in opposite
directions. So, the sum of the velocities of the wetting and non-
wetting phases is zero, thus,

uw þ unw ¼ 0 ð67Þ
After some mathematical manipulation and using Eqs. (54)–

(56), one can obtain the following equation,

@S
@t

þ c
/1=2K1=2 1� Sor � Swið Þ

ðDxÞaþ1

Cðaþ 1Þ
@aþ1

@xaþ1

nwnnw
nw þ nnw

1
S
@S
@x

� �
¼ 0

ð68Þ

which is a single partial differential equation in x and t, such that

@aþ1

@xaþ1

nwnnw
nw þ nnw

1
S
@S
@x


 �
¼ 1
Cð�aÞ

Z x

x0

x� 1ð Þ�a�1

� @

@1
nwnnw

nw þ nnw

1
S
@S
@x

� 	
d1 ð69Þ

Again, the above fractional model will be equivalent to the inte-
ger model in reference (Safdari et al., 2020) as a = 0.

5.3. Fractional mass equation and fractional Darcy’s law with space
memory

Similar to the above models, one may list the following equa-
tions to represent the fractional mass conservation equation and
fractional momentum conservation equation (Darcy’s law) with
space memory as follows,
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/
@Sb
@t

þ 1
Cða1 þ 1Þ Dxið Þa1�1ra1

h i
� vb ¼ 0; b ¼ w;nw ð70Þ

vb ¼ �fbra2Pb ð71Þ
Therefore,

/
@Sb
@t

� 1
Cða1 þ 1Þ Dxið Þa1�1ra1

h i
� fbra2Pb ¼ 0;

b ¼ w;nw ð72Þ
The corresponding 1D model is given as,

/
@Sw
@t

� 1
Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1

� �
� fw

@a2

@xa2
Pw ¼ 0 ð73Þ

/
@Snw
@t

� 1
Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1

� �
� fnw

@a2

@xa2
Pnw ¼ 0 ð74Þ

By analogy to Eq. (48) we may write,

@a2

@xa2
@Pw

@x
¼ � fnw

fw þ fnw

@a2

@xa2
@Pc

@x
ð75Þ

Substituting (68) into (66),

/
@Sw
@t

þ 1
Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1
� fwfnw

fw þ fnw

@a2

@xa2
@Pc

@x

� 	
¼ 0 ð76Þ

Using Eqs. (51)–(53), Eq. (69) becomes,

@S
@t

þ c
Cða1 þ 1Þð1� Sor � SwiÞ/1=2K1=2 Dxð Þa1�1 @a1

@xa1

� fwfnw
fw þ fnw

@a2

@xa2
dJðSÞ
dS

@S
@x

� �� 	
¼ 0 ð77Þ

Or in the specific case JðsÞ ¼ lnS,

@S
@t

� c
Cða1 þ 1Þð1� Sor � SwiÞ/1=2K1=2 Dxð Þa1�1 @a1

@xa1

� fwfnw
fw þ fnw

@a2

@xa2
1
S
@S
@x

� �� 	
¼ 0 ð78Þ

which is 1D partial differential equation in x and t.
The fractional equations will collapse to the integer equations if

a1 ¼ a2 ¼ 1 (El-Amin et al., 2013).

5.4. Fractional mass equation and fractional Darcy’s law with time
memory

In a similar fashion, the fractional mass equation and fractional
Darcy’s law with time memory may be given as,

/
@Sb
@t

þ 1
Cða1 þ 1Þ Dxið Þa1�1ra1

h i
� vb ¼ 0; b ¼ w;nw ð79Þ

vb ¼ �fbðtÞ
@a2

@ta2
rPb

� �
; b ¼ w;nw ð80Þ

Combining the above two equations, we get,

/
@Sb
@t

� 1
Cða1 þ 1Þ Dxið Þa1�1ra1

h i
� fbðtÞ

@a2

@ta2
rPb

� � ¼ 0; b ¼ w;nw

ð81Þ
Eq. (74) can be reduced to 1D case as follows,

/
@Sw
@t

� 1
Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1

� �
� fwðtÞ

@a2

@ta2
@Pw

@x

� 	
¼ 0 ð82Þ

/
@Snw
@t

� 1
Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1

� �
� fnwðtÞ

@a2

@ta2
@Pnw

@x

� 	
¼ 0 ð83Þ
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Using Eq. (48) with Eq. (75),

/
@Sw
@t

� 1
Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1
� fwðtÞfnwðtÞ

fwðtÞ þ fnwðtÞ
@a2

@ta2
@Pc

@x

� 	
¼ 0

ð84Þ
Again, using Eqs. (51)–(53), and (55) one may write the previ-

ous equation as,

@Sw
@t

� c
ð1� Sor � SwiÞ/1=2Cða1 þ 1Þ Dxð Þa1�1 @a1

@xa1

� KðtÞ1=2mwmnw

mw þmnw

@a2

@ta2
dJðSÞ
dS

@S
@x

� 	 !
¼ 0 ð85Þ

This is again a partial differential equation in x and t.
The fractional equations will collapse to the integer equations if

a1 ¼ 1;a2 ¼ 0 (El-Amin et al., 2013).

5.5. Traditional mass equation and fractional Darcy’s law with space
memory

In this section, we provide the fractional momentum conserva-
tion (Darcy’s law) with space memory. Starting with the traditional
mass conservation and as,

/
@Sb
@t

þr � vb ¼ 0; b ¼ w; nw ð86Þ

vb ¼ �fbra2Pb ð87Þ
Combining the above two equations, one obtains,

/
@Sb
@t

�r � fbra2Pb ¼ 0; b ¼ w;nw ð88Þ

The 1D two equations become,

/
@Sw
@t

� @

@x
fw

@a2Pw

@xa2

� 	
¼ 0 ð89Þ

/
@Snw
@t

� @

@x
fnw

@a2Pnw

@xa2

� 	
¼ 0 ð90Þ

Substituting (68) into (82), we get,

/
@Sw
@t

þ @

@x
fwfnw

fw þ fnw

@a2þ1Pc

@xa2þ1

 !
¼ 0 ð91Þ

Using Eqs. (51)–(53), Eq. (92) becomes,

@S
@t

þ c
ð1� Sor � SwiÞ/1=2K1=2

@

@x
fwfnw

fw þ fnw

@aþ1

@xaþ1

dJðSÞ
dS

@S
@x

� � !
¼ 0

ð92Þ
The fractional equation collapses to the integer one as a ¼ 0 (El-

Amin et al., 2013).
The fractional derivative is given in a form of partial differential

equation in x and t,

@aþ1

@xaþ1

dJðSÞ
dS

@S
@x


 �
¼ 1
Cð�aÞ

Z x

x0

x� 1ð Þ�a�1 @

@1
dJðSÞ
dS

@S
@x

� 	
d1 ð93Þ
6. Conclusions

In this work, we developed a fractional model to govern the
multiphase flow in porous media by updating the mass conserva-
tion law and momentum conservation (Darcy’s) law. The fractional
Taylor series has been used to formulate the nonlinear flux in the
control volume. Therefore, the fractional version of the mass con-
servation law of multiphase flow in porous media has been
7

derived. To complete the governing model, we updated Darcy’s
law to be combined with the fractional mass conservation equation
(saturation equation). We presented several cases for the modified
Dacry’s law, namely, with time memory and with spatial memory.
After that, we focused on some special two-phase cases with more
details such that the two equations are treated to give one frac-
tional saturation equation. Moreover, relative permeabilities and
flow mobilities are also updated. In future work, we need to put
effort into solving the developed spatial fractional system/equa-
tion, which is considered one of the difficult problems to solve.
The future research directions may include computational aspects
to solve the fractional models developed in the current paper. Also,
providing relevant theoretical analyses for the developed fractional
models could be an important research direction. Moreover, creat-
ing the fractional versions of similar problems in flow and trans-
port in porous media could be another future research direction.
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