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illustrative purposes.

We have studied the problem of estimation of unknown parameters of a Weibull-Exponential distribu-
tion (WED) under Type-I hybrid censored data in this paper. The maximum likelihood estimates
(MLE's) are derived. Using asymptotic distributions property of MLE's, we constructed asymptotic inter-
val estimates. We derived Bayes estimates based on the squared error loss function using the Lindley
method and Metropolis-Hastings (M-H) algorithm. Highest posterior density (HPD) credible intervals
are also obtained. In each case, to compare the proposed estimates using simulations and illustrative
example is also presented a numerical study is performed. Two data analysis has been performed for
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1. Introduction

In life testing experiments we can not studied the complete
data. The most common censoring schemes are Type-I and Type-
Il censoring in the literature of life testing experiment. Lawless
(1982) discussed about these two censoring schemes in detail.
Hybrid censoring is the combination of Type-I and Type-II censor-
ing schemes which first introduced by Epstein (1954). In Type-I
hybrid censored data, the test is continued until a pre specified
number of units, say r, have failed or a predetermined time T has
been reached. Or we can sat that in Type-I hybrid censoring
scheme a life test is terminated at a random time T; with
T: = min(Xn,T) where r,(1<r<n) and T(>0) are prefixed
before the test starts. Hybrid censoring is very beneficial in survival
analysis, the limited attention has been paying in analyzing hybrid
censored data. A huge literature exists for different lifetime distri-
butions by considering hybrid censored data. One may refer to the
review article by Balakrishnan and Kundu (2013). In this review
article, the authors described in detail about hybrid censoring
and on some of its generalizations. The reference which are cited
in this review article are used to study in detail on hybrid censor-
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ing scheme. Some recent works on hybrid censoring scheme are
Rastogi and Tripathi (2013a, 2013b).

This paper consider, estimation the unknown parameters of a
WED based on Type-I hybrid censored data from both classical
and Bayesian sight. For a random variable denoted by X, the densi-
ties of a three-parameter WED are given by:

Fux) =opoe’* (e — 1Y/ e 1" x50, (1.1)
Fx(x) =1 —e "' x>0, (1.2)

where « > 0,5 >0 and 0 > 0. fy(x) and Fx(x) are the probability
density and the cumulative distribution functions respectively. For
notation purpose, one can say; X ~ WE(a, 8, 0).

In literature the three parameter WED was introduced by
Oguntunde et al. (2015). It has unimodal and decreasing shapes,
various mathematical and structural properties of the distribution
has be established and MLE’s of model parameters are obtained.
The authors discussed two real data set to illustrate its flexibility
and potentiality over the exponential distribution. Rastogi (2017)
investigated properties of MLE's and Bayesian estimates of
unknown parameter and reliability characteristic of a WED using
progressive Type-II censoring scheme.

The problem of classical and Bayesian estimation of WED has
yet not been studied by any author under hybrid Type-I censored
information till now. This paper is written and outlined in the fol-
lowing manner: In the starting, we discussed about WED and
hybrid censoring scheme in detail. In Section 2, The maximum like-
lihood estimates of unknown parameters are obtained. In Section 3,
The Bayesian estimates for the unknown parameters are derived
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under squared error loss function. The M-H algorithm and Lindley
approximation method are applied for this purpose. The HPD inter-
vals are constructed for the unknown parameters. Provided in Sec-
tion 4 is a numerical study conducted between the proposed
estimates. Two real life applications are provided in Section 5 fol-
lowed by a concluding remark.

2. The Maximum Likelihood Estimation

Let X1..,X2a,...,Xnn be an ordered sample of n independent
units obtained from a WED as defined in (1.1). We observe that
hybrid censored observations may occur in one of the following types:
{ I: {XlznaXZ:n; cee «,Xr:n}y ifXpn < T,

I {Xin,Xom, -, X}, fm<r Xpon>T.

In case Il m failures have recorded up to time T while (m + 1)th

failure obtain after T. The likelihood of Type-I hybrid censored
sample can be written in this form

L(a, p,0) x Hf(xi:n)[] _ F(xr:n)](nir),
i=1

I': L(at, B, 0) o lm_[f(xi;n)[l — F(T))™™,
i=1

The likelihood of « /5 and 6 for the model (1.1) can be described as,

L, p.0) o flote T e e e T (e — 1

i=1

(2.1)
with d and c defined as
de { r, for case I, _ {xr:n, for case I,
" \m, forcasell, ~ | T, forcasell.
and corresponding log likelihood function is
L(x) dloga+dlogﬁ+dlog9+02x, —ocz e — 1y
i=1 i=1
o(n—d)e” - (2.2)

= 1)2 log(e®™ — 1
i=1

where X;, = X; and X = (x1,X2,...,X4). The corresponding likelihood

equations are calculated as

method procedure using any programming software like Matlab
or R.

The asymptotic variance-covariance matrix of § can be calcu-
lated by [Ix(9)]"". The corresponding 100(1 —&)%,0 < &< 1,
asymptotic confidence intervals can be constructed using normal-
ity property of MLEs.

2.1. Asymptotic confidence interval

In this subsection, the asymptotic distribution of the MLE of
= (o, §,0) are obtained as ((§ — 7)) — N(0,I"'(y)), where I"!(y)
is the variance-covariance matrix and given below

& logl & logl & logl
T o2 T owdp T 0wdo
-1 _ | _Plogl _ 2logl _ #*logl
0o - Apoa. op? apo0
_d*logl _ Plogl _ #*logl
9002 2008 a2/ (aph)
var(d) cov(d, p) cov(d,0)
= | cov(p,&) war(p) cov(B,0)
cov(B,&) cov(d,p)  wvar(0)

The pivotal quantity is approximately distributed as standard

normal. The symmetric 100(1 — 7)% approximate CI for the param-
eter y is calculated as ) +Z;,+/Var(y) where Z;,, is the (t/2)™"
denotes the upper 5th percentile of the standard normal
distribution.

3. Bayesian estimation

In this section, we obtain the Bayes estimates of the
unknown parameters using squared error loss function (quadra-
tic loss), which is symmetrical, and associates equal importance
to the losses due to overestimation and underestimation of
equal magnitude. # is the estimator to estimate parameter #.

The square error loss function is given as L(y,#) = (ij — #)*. The
Bayes estimator under square error loss function is the posterior
mean 7 of 7.

Suppose all the unknown parameters are stochastically inde-
pendent. Assume that the prior densities for the parameter o, is
taken to be a Gamma (ay, b), the parameter f, the prior distribution
is taken to be a Gamma (ay,b,) and the parameter 0, the prior dis-
tribution is taken to be a Gamma (as, b;). Hence, the joint prior dis-
tribution for o,  and 0 is

g(%ﬂ, 9) x OCal—ll[gaz—lga3—1 e—ocbl e—ﬁbz e—()b;7

<O0,0<0<OO,G1,b],az,b2,a3,b3 >0,

O<a<oo,0<p

The joint posterior distribution is written as,

d

0 erx,‘ (5 IZIog 1) —o b1+Z(e""i71)/f+(n—d)(e“‘—1)ﬁ)

ologl d & " .
=y @ =1 —(n=d)e" 1) =0 (23)
i=1
dlogl d <
ag Z( Ox,i >10g( l)x,i )
- ("—d)( e —1)" log(e" —1)=0
(2.4)
c’)logL d & d i o
_5 Z ﬂzxie(,xi(e()xf—l) —OC/?C(n—d)e”C(e”C—l)
i=1 i=1
x: et
+(/3—1)Zeo;|71:0, 2.5)
s
d
7'1;(5(7 [;7(-)|)7() x ad+ﬂ1—1ﬁd+az—10d+a371e,b2 B T e .

After solving the above likelihood Egs. (2.3), (2.4) and (2.5) numer-
ically, we derived the corresponding MLE's &, # and 0 of o, § and 0. It
is clear that the system cannot be solved in closed form. It has to be
solved by using numerical method such as Newton Raphson

= (3.1)

where x = (X1,X2,...,Xg) and k is the normalizing constant.

Under squared error loss function, the Bayes estimator of a
function h(x, g, 0) is the posterior mean of the function and is given
by a ratio of three integrals as follows
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h(ot, B, 0) = E(h(o., . 0)|x)
k/ / / glo, B, 0)m(a, B, 0| x)docdpdo,

Now for computing the Bayes estimate & of «, take h(«, §,0) = o and
then the corresponding estimate is computed as

d d
o o roo -0 bg—Zx,- (-1 Zlog e®i-1) —a b1+z e -1y
& = / / / gd+a ﬁd+a2719d+arlesz be i=1 i1 i=1
Jo JOo JO

The Bayes estimators of 8, and 0 are calculated in a similar man-
ner. But it is not possible to evaluate closed form expressions for
these estimates. The Bayes estimates are obtained by Lindley
(1980) approximation method and the M-H algorithm in next
subsections.

3.1. Lindley approximation

It is not possible to calculate Bayes estimator in closed form
expressions because it is the from of ratio of two integrals. Here
we suggest an approaches to approximate Bayes estimates, namely
Lindley’s approximation method. Consider the ratio of integral I(X),
where

h(ﬂ] 2, 193)31-(171 W2,93)+p(V1,02,93) [)(19] ,92,193)
eLW102.03)+p(01.02.03) (91, 93, Y3)

.[(191 2.03)

I(X) =

(3.2)
f('91 W2,93)

where h(91, 92, ¥3) is function of 91,9, and 95 only and L(94, 92, 93)
is the log-likelihood and p(¥1,92,93) =log p(9¥1,92,93). Let
(91,74, 93) denote the MLE of (97,45, 93). Using the approach devel-
oped in Lindley (1980) for sufficiently large sample size n, the ratio
of integral I(X) as given in (3.2) can be written as

I(X) = u(dh, J2,03) + (U101 + UpV3 + UsVs + Vg + Vs)
+0.5[A(u1011 + Uz012 + Us013) + B(U1 021 + U202, + U3023)
+C(U1 031 + U032 + U3O'33)]

Vi=pP10i1+ P00+ P30, i=1,2,3 04=U13012 +U13013 + U303
Us =0.5(U11011 + U022 +Us3G33)

A=011Li11 +2012L121 +2013L131 + 20231031 + 0220221 + G33L331
B=a11L112+2012L122 +2013L132 + 20231232 + 022L022 + 0331332
C=011Li3 +2012L123 +2013L133 + 20231233 + 0221203 + 0331333

and subscripts 1,2,3 on the right-hand sides refer to ¥,4,,93
respectively and

P G IE)) 1 = U0, 0, 93)
Loo’ ' o ! o900,
L. = ﬂ Ly = oL
Vo omo0 T 000000,

i,j,k=1,2,3 and also, 0;j = (i,j)’h elements of the inverse of the

P04 92,93 1X) -1 58§ .
fﬁ evaluated at (91,92, 93). Other expressions

are obtained as,

matrix

+(n—d)(e’— 1))
dodpdo.

L11=*d Liz=- ,BZ +r)xe (e — 1)
i=1
—Bn—dyce™ (e ~1)"",
d
ﬁ%—aZ(e%—l

i=1

Lp=— ) (log(e™ — 1))’

foc(nfd)(e”‘fl)ﬂ(log(e"c—l))z,
d
OCIBZXIZer, l)x, _ (ﬁewc, _ )
d X
~=D2 ﬁfji)z —apc(n—d)e (e ~1)"* (e - 1),

1

d
Lip=— log(e™ —1)(e™ ~1)"" — (n—d)log(e" — 1) (e* ~ 1)~
i=1

d
Loz =Ly = —a)_x;e™ (€™ —1)"" (1+ plog(e” —1))

i=1
- x e())(X
—a(n—dyce’ (e —1)""(1+ plog(e” — +Zer)x

2d
Ly =3 Liz1 =L131 =0,

1) (log(e” —1))* — (n—d)(e" — 1)’ (log(e™ — 1))*,

d
L122 —_ Z(e()x, _

i=1

d
Loy =—— Oﬂz eMi—
Lig3=— ZX,‘GUX’ (e()xi -1
i1

_ (nfd)ce”f(e““

1))’ —a(n—d)(e* —1)" (log(e" - 1)),

log e —

)" {1+ plog(e™ — 1)}

/:1

{1+plog(e™—1)},

p-2

d
Liss :*/”inzeﬁx’ (e”"' _ )/f Z(ﬁenx, 71)7ﬁC2(n7d)e06(e(1£71) (ﬁer)57 1),
i-1

d
Lo = — ) xie™ (e — 1)1 1){2 + log(e" — 1)}
i=1

—oa(n— 1){2+ plog(e™ - 1)},
d
Lyss = — oy x7e™ (e™ — 1y {2e™ — 1+ Blog(e™ — 1)}

i=1
_ OCCZ e(]c (e(ﬁc _

log(e™i —

d)Ce(’C(e"C )/f 1 log el _

1)"%{2e" — 1+ plog(e” — 1)}
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d
L333 :29%1 h OCﬁfo e (e — 1),373 (1+e™ (B*e™ —3p+ 1))
im1

— 0(/)’(,'3 (n _ d)e()C(e{)c _ 1)/;*3 (1 +eﬂC(ﬁ260C _ 3/))+ 1))H

a -1 az—1
ZT—bL p3: 30 —b3

The Bayes estimate of unknown parameter o based on SEL
function,

P = b1, p, =

oy =0+ 91 +0.5(611A+ 021B+ 031C),

Similarly, we can calculate Bayes estimate of g and 0. But it is
not possible to construct HPD intervals using Lindley’s method.
Therefore, we propose the M-H algorithm to generate samples
from the respective posterior distributions and compute some
more estimates of unknown parameters in next subsection. See
Metropolis et al. (1953) and Hastings (1970) for more applications
of this method.

3.2. The Metropolis-Hastings M-H algorithm

The M-H algorithm is a good method for parameter estimation.
Where, it used to simulate samples from probability distribution
using full joint density function and (independent) proposal distri-
bution. Furthermore, the random samples are generated from pre-
scribed posterior distribution according to the following algorithm:

Step 1: Specify an initial guess of (o, §,60) and say it (oo, fg, 6o)
Step 2: Generate f' using the proposal N(, ;,d?) distribution and
¢ using the proposal N(0, 1,0?) distribution and then o’
from Gy (d +ay, by + Z:Ll (e — 'l)ﬁ +(n—d)(e” — 1)6)
. _ @800
Step 3: Compute h = n(aif/fn,l.r)ﬁ,l|x)

Step 4: Generate a sample u from the uniform U(0, 1) distribution

Step 5: Then if u < h then set

Oy «— o, By — B,

Ol < Olp—1; ﬂn — ﬁn—lv
Step 6: Replicate steps (2-5) Q times.

0, «— 0'; otherwise
971 — Qn—l;

Finally, the associated Bayes estimates of o, f and 0 are respec-
tively given by

N 1 EQ: 3 1 EQ: P
o h =" A a'7 h =~ A i

"Q-Q i=Qq+1 1 TR-Q i=Qq+1 l
- 1 Q

Omh = 53—~ 0;,
-, 2,

where Q denotes the total number of generated samples and Q,
denotes the initial burn-in samples. We must notice that the
100(1 — )%, 0 < u < 1, HPD intervals for the all unknown parame-
ters can easily be structure using the M-H samples. The following
section discussed the performance of all the above-mentioned esti-
mators using simulations.

4. Numerical comparisons

The aim of the simulation is to compare the effect of the point
and interval estimation. We arbitrarily specify true values of the
three parameters as o =0.5,4=0.4 and 0 = 0.5 then generate
Type-I hybrid censored samples from WED for different choices
of n,r and T. The average values (AV) and mean square error
(MSE) values of all estimators are calculated using 10000 repeti-
tions. The study is done to applied the MLEs and the associated
95% asymptotic Cl estimates for each sampling situations. We
specify  informative prior set up hyperparasite as
a; =4;b; =8;a, =2;b, =5;a3 =4;b; =8. Tables 1,2 includes
the average values and MSEs of all estimators. From the tabulated
values, we realized the following observations.

Table 1
MSEs and average values of all estimates of o, # and 6.
T I & o S /} ile BMH 0 Ou Omn
10 30 0.611813 0.65632 0.377178 0.42306 0.455501 0.389726 0.56902 0.477774 0.471545
0.137158 0.065186 0.021264 0.018831 0.015123 0.003151 0.113863 0.121423 0.007832
35 0.575701 0.583291 0.43204 0.424961 0.427378 0.390552 0.548203 0.480493 0.475382
0.094922 0.039545 0.010703 0.018664 0.016782 0.00313 0.076226 0.054593 0.036902
40 0.569694 0.547376 0.490556 0.424462 0.412593 0.400355 0.524493 0.505187 0.492077
0.071873 0.028558 0.009152 0.013788 0.010245 0.003506 0.053222 0.018819 0.011694
12 30 0.602685 0.653479 0.375968 0.423384 0.456354 0.390998 0.572621 0.474439 0.473121
0.131148 0.063255 0.041633 0.016762 0.014298 0.003219 0.112883 0.120247 0.097929
35 0.580825 0.58348 0.434221 0.424547 0.422466 0.389656 0.542043 0.485641 0.475281
0.089835 0.040031 0.020299 0.014494 0.011714 0.003189 0.073319 0.052627 0.027161
40 0.556267 0.544192 0.499443 0.42496 0.413408 0.407883 0.529824 0.504134 0.503321
0.061362 0.026985 0.010843 0.01373 0.00922 0.00351 0.052238 0.013994 0.009635
Table 2
MSEs and average values of all estimates of o, # and 0.
T r o o St B Bu Bun 0 Ou Omn
10 50 0.55554 0.557353 0.39525 0.415645 0.414303 0.39143 0.536703 0.486758 0.479575
0.065924 0.027595 0.016268 0.009171 0.008186 0.002457 0.053216 0.018932 0.096401
55 0.548301 0.536374 0.450788 0.416435 0.409861 0.392215 0.52536 0.504339 0.477371
0.049623 0.020493 0.012989 0.008971 0.005392 0.002647 0.042846 0.007009 0.006237
60 0.548899 0.52696 0.489434 0.418195 0.407974 0.399974 0.511239 0.509336 0.487533
0.045313 0.018562 0.01022 0.008747 0.004432 0.002746 0.03289 0.00666 0.005149
12 50 0.549887 0.556505 0.394296 0.413567 0.413667 0.39115 0.540589 0.488729 0.48043
0.063011 0.029183 0.016252 0.008707 0.00813 0.002546 0.053769 0.019264 0.006099
55 0.543468 0.536428 0.448303 0.414088 0.409976 0.391615 0.530188 0.504587 0.479578
0.049885 0.021081 0.014985 0.008491 0.005101 0.002627 0.042977 0.007135 0.006265
60 0.532158 0.523156 0.500064 0.41527 0411279 0.405214 0.519464 0.507791 0.501875
0.033897 0.012203 0.00976 0.008096 0.003682 0.002814 0.030635 0.003757 0.002942
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We observed from Tables 1 and 2 that in most of the cases, for
all three estimators, that for fixed n as r increases or T increases,
the performances of the Bayes estimates are better than the corre-
sponding MLEs in estimating o, f as well as 0. Furthermore, we
observe from both tables that the Bayes estimates obtained from
the MH method show superior behavior among Lindley and MH
estimates.

Furthermore, Table 3 introduces different 95% asymptotic con-
fidence and HPD intervals for all unknown parameters for different
values of (n,r) and T. In general, we observe that the HPD intervals
compete better when compared with asymptotic intervals. This
gathers for the unknown parameters and all given values of rand T.

Overall, it may be noted that for fixed n and r, by increasing T,
the MSE values of all estimates become a little bit small. Also, sim-
ilar trend is observed when T, n are kept fixed and r is allowed to
increase. Finally in general, as the sample size n increases, the
MSEs and biases of different methods decrease, except for few.

5. Data analysis

In this section, we have analyzed two real data sets which have
been recently considered by Oguntunde et al. (2015) for illustrative

purposes. They fitted these real data sets to WED and found WED
fits the both real data sets reasonably good.

Example 1. This data set demonstrates the breaking stress of
carbon fibres of 50 mm length(GPa). The data has been previously
utilized by Nichols and Padgett (2006). The data is as follows:

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61,1.61, 1.69, 1.80,
1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43,
2.48, 2.50, 2.563, 2.55, 2.5, 2.56, 2.59, 2.67, 2.73, 2.74,
2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97,
3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28,
3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70,
3.75, 4.20, 4.38, 4.42, 4.70, 4.90.

Based on the above Type-I hybrid censored samples, we
obtained the estimate of the parameters using classically and
Bayesian procedures. Lindley and M-H estimates are derived using
the SEL under a noninformative prior. In Table 4, all the estimates
of o, g and 0 are presented for different combinations of r and T. In
Table 5, we have also computed approximate 95% confidence
intervals and noninformative HPD intervals of the unknown
parameters.

Table 3
95% asymptotic confidence and HPD intervals estimates of «, 8 and 0.
T=10 T=12
n r Appr. Con. Int. HPD Int. Appr. Con. Int. HPD Int.
40 30 (0, 1.11804) (0.263862, 0.514021) (0, 1.11039) (0.261584, 0.514625)
(0.20171, 0.644421) (0.302551, 0.480021) (0.20087, 0.645898) (0.303418, 0.481277)
(0, 1.19006) (0.36431, 0.584473) (0, 1.19931) (0.365498, 0.587659)
35 (0.024733, 1.02339) (0.324614, 0.548846) (0.02234, 1.04673) (0.326944, 0.54966)
(0.210874, 0.639047) (0.307251, 0.477454) (0.21197, 0.636887) (0.306703, 0.476437)
(0.025376, 1.05331) (0.372941, 0.582588) (0.022034, 1.04701) (0.371927, 0.58352)
40 (0.097942, 0.978024) (0.383321, 0.60049) (0.112166, 0.955331) (0.391589, 0.609859)
(0.219097, 2.58598) (0.318949, 0.485198) (0.22047, 0.629521) (0.326309, 0.493173)
(0.654194, 2.58832) (0.390452, 0.596258) (0.10704, 0.941467) (0.401946, 0.607506)
60 50 (0.096334, 0.95227) (0.289718, 0.51933) (0.094752, 0.952104) (0.289365, 0.517833)
(0.241265, 0.590025) (0.313745, 0.471942) (0.239349, 0.587785) (0.313902, 0.471726)
(0.083953, 0.987755) (0.378393, 0.586811) (0.083722, 0.993138) (0.379339, 0.587363)
55 (0.149071, 0.913909) (0.348563, 0.559434) (0.148146, 0.905059) (0.347119, 0.557422)
(0.247216, 0.585654) (0.317061, 0.471532) (0.245143, 0.583033) (0.317087, 0.470203)
(0.13518, 0.911668) (0.379437, 0.580334) (0.13726, 0.920513) (0.381906, 0.582127)
60 (0.181033, 0.891345) (0.386335, 0.595257) (0.197139, 0.851851) (0.397552, 0.605462)
(0.251525, 0.584865) (0.325573, 0.479014) (0.250465, 0.579839) (0.330943, 0.483571)
(0.164013, 0.856293) (0.390845, 0.588615) (0.181122, 0.856061) (0.404667, 0.602548)
Table 4
Point estimates of «, 8 and 6 for data set 1.
r T o o Onari B Bu Bun 0 Ou Omn
60 35 5.09564 5.21406 5.17384 3.053 3.47442 2.74276 0.151757 0.14746 0.13145
4 5.96719 5.02238 5.17794 3.14514 3.56083 2.82614 0.148072 0.12344 0.135906
66 3.8 5.96872 5.12238 5.45904 3.12018 3.55468 2.73751 0.147359 0.15276 0.133378
4 5.5727 5.78224 5.06376 2.96234 3.88888 2.77513 0.145313 0.155313 0.135918
Table 5
95% intervals estimates of o,  and 6 for data set 1.
o p 0
r t Appr. con. Int. HPD Int. Appr. con. Int. HPD Int. Appr. con. Int. HPD Int.

60 3.5 (5.03366, 5.15762) (5.07933, 5.25331) (2.99102, 3.11498)
4 (5.90521, 6.02917) (5.09654, 5.27524) (3.08316, 3.20712)

66 3.8 (5.90674, 6.03076) (5.27323, 5.62839) (3.0582, 3.18216)
4 (5.51072, 5.63468) (4.97349, 5.20393) (2.90036, 3.02432)

2.65505, 2.87629)
2.68778, 2.9812)

2.65189, 2.84955)
2.66716, 2.85787)

(0.089776, 0.213738)
(0.086091, 0.210052)

(0.085378, 0.209341)
(0.083332, 0.207294)

(0.12153, 0.141436)
(0.125198, 0.145513)

(0.123035, 0.143629)
(0.126549, 0.144892)
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Table 6
Point estimates of o,  and 6 for data set 2.
r T & o OlpH B Bu Bun 0 Oy On
60 1.8 0.016031 0.017375 0.011408 3.23072 3.5553 3.00937 0.935313 0.821945 1.00585
2 0.015967 0.011356 0.012131 3.24816 3.94743 3.05139 0.935374 0.644358 0.893187
63 2 0.010404 0.089768 0.014748 2.97893 3.18815 3.0264 1.05552 0.903603 0.969879
2.5 0.01647 0.022785 0.029056 2.93347 3.09661 2.9637 0.986311 1.11555 0.892012
Table 7
95% intervals estimates of o, f and 6 for data set 2.
o p 0
r t Appr. con. Int. HPD Int. Appr. con. Int. HPD Int. Appr. con. Int. HPD Int.
60 1.8 (0, 0.115809) (0.006018, 0.014978) (0.846664, 5.61477) (2.94067, 3.05528) (0, 2.27255) (0.938418, 1.04609)
(0, 0.097924) (0.010585, 0.031746) (1.233, 5.26333) (2.99963, 3.10249) (0, 2.03133) (0.847588, 0.937197)
63 2 (0, 0.070845) (0.007162, 0.024959) (0.163934, 5.79392) (2.98804, 3.06966) (0, 2.7213) (0.900791, 1.05592)
2.5 (0, 0.147977) (0.018238, 0.042189) (0, 6.82763) (2.85819, 3.04172) (0,3.19214) (0.845884, 0.934036)

Example 2. The second data set was originally discussed by work-
ers at the UK National Physical Laboratory and it has been used by
Smith and Naylor (1987). It is on the strengths of 1.5 cm glass
fibres. The data are as follows:

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24,
1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48,
1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55,
1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63,
1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70,
1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89,
2.00, 2.01, 2.24

The MLEs and Bayes estimates of unknown parameters are
presented in Table 6. The approximate confidence intervals and
non informative HPD intervals for the unknown parameters are
also presented in this Table 7.

6. Conclusion

In this paper based on Type-I hybrid censored sample, both the
classical and Bayesian inference procedures for the parameters of
WED have been successfully discussed. We have considered MLE
and Bayes estimates under square error loss function. Since the
Bayes estimates cannot be obtained in explicit forms, so Lindley
method and M-H algorithm are considered. The CIs and HPD inter-
val of unknown parameters are calculated. We compared all classi-
cal and Bayesian estimations numerically and appropriate
comments have been provided. Based on the results of the simula-
tion study, we see obviously that, the Bayesian estimation exhibit
reasonably good behavior compared to the respective MLEs. The
computational results show that the performances of all estimators

are improved when the effective sample size increases. HPD inter-
vals is found to be preferable then asymptotic confidence intervals.
Same method can be extended for other distribution and censoring
schemes also. We believe, more work is needed along these
directions.
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