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Abstract In this paper, we consider and analyze some classes of resolvent-splitting methods for

solving the general variational inclusions using the technique of updating the solution. These resol-

vent-splitting methods are self-adaptive-type methods, where the corrector step size involves the

resolvent equation. We prove that the convergence of these new methods only require the pseudo-

monotonicity, which is a weaker condition than monotonicity. These new methods differ from the

previously known splitting and inertial proximal methods for solving the general variational inclu-

sions and related complementarity problems. The proposed methods include several new and

known methods as special cases. Our results may be viewed as refinement and improvement of

the previous known methods.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Variational inequalities theory has played a significant and

fundamental role in the development of new and innovative
techniques for solving complex and complicated problems aris-
ing in pure and applied sciences, see (Alvarez, 2000; Alvarez
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and Attouch, 2001; Brezis, 1973; El Farouq, 2001; Giannessi
and Maugeri, 1995; Giannessi et al., 2001; Glowinski and Tal-

lec, 1989; Haugruge et al., 1998; He and Liao, 2002; Kinderleh-
rer and Stampacchia, 2000; Moudafi and Noor, 1999; Moudafi
and Thera, 1997; Noor, 1988, 1993, 1997a,b, 1998, 2000,

2001a,b, 2002a,b, 2003, 2004, 2006a,b, 2009a,b,c, 2010a–d;
Noor and Noor, 2010, 2004; Noor et al., 1993; Noor and Ras-
sias, 2002; Patriksson, 1998; Shi, 1991; Stampacchia, 1964;
Tseng, 2000; Uko, 1998; Xiu et al., 2001). Variational inequal-

ities have been extended and generalized in various directions
using novel and innovative techniques. A useful and important
generalization is called the general variational inclusion involv-

ing the sum of two nonlinear operators T and A. Moudafi and
Noor (1999) studied the sensitivity analysis of variational
inclusions by using the technique of the resolvent equations.

Recently much attention has been given to develop iterative
algorithms for solving the variational inclusions. It is known
that such algorithms require an evaluation of the resolvent
operator of the type ðIþ qðTþ AÞÞ�1. The main difficulty with

such problems is that the resolvent operator may be hard to
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invert. This difficulty has been overcome by using the resolvent
operators ðIþ qTÞ�1 and ðIþ qAÞ�1 separately rather than
ðIþ qðTþ AÞÞ�1. Such a technique is called the splitting meth-

od. These methods for solving variational inclusions have been
studied extensively, see, for example (Glowinski and Tallec,
1989; Moudafi and Thera, 1997; Noor, 1998, 2000, 2001a,b,

2002a,b, 2003, 2004, 2006a,b, 2009a,b,c, 2010a) and the refer-
ences therein. In the context of the mixed variational inequal-
ities (variational inclusions), Noor (2000, 2001a, 2002b, 2003,

2004) has used the resolvent operator and resolvent equations
techniques to suggest and analyze a number of resolvent type
iterative methods. A useful feature of these splitting methods
is that the resolvent step involves the subdifferential of the

proper, convex and lower-semicontinuos function only and
the other part facilitates the problem decomposition.

Noor (1998) introduced and considered the general varia-

tional inclusion, which is an important and significant general-
ization of variational inequalities. It turned out that a wide
class of nonsymmetric, odd-order free, moving, unilateral

and equilibrium problems arising in elasticity, transportation,
circuit analysis, oceanography, nonlinear optimization, fi-
nance, economics and operations research can be studied via

general variational inclusions, see (Alvarez, 2000; Alvarez
and Attouch, 2001; Brezis, 1973; El Farouq, 2001; Giannessi
and Maugeri, 1995; Giannessi et al., 2001; Glowinski and Tal-
lec, 1989; Haugruge et al., 1998; He and Liao, 2002; Kinderleh-

rer and Stampacchia, 2000; Moudafi and Noor, 1999; Moudafi
and Thera, 1997; Noor, 1988, 1993, 1997a,b, 1998, 2000,
2001a,b, 2002a,b, 2003, 2004, 2006a,b, 2009a,b,c, 2010a–d;

Noor and Noor, 2010, 2004; Noor et al., 1993; Noor and Ras-
sias, 2002; Patriksson, 1998; Shi, 1991; Stampacchia, 1964;
Tseng, 2000; Uko, 1998; Xiu et al., 2001). Variational inclusion

theory is experiencing an explosive growth in both theory and
applications: as consequence, several numerical techniques
including resolvent operator, resolvent equations, auxiliary

principle, decomposition and descent are being developed for
solving various classes of variational inclusions and related
optimization problems. Resolvent methods and its variants
forms including the resolvent equations represent important

tools for finding the approximate solution of variational inclu-
sions. The main idea in this technique is to establish the equiv-
alence between the variational inclusions and the fixed-point

problem by using the concept of resolvent operator. This alter-
native formulation has played a significant part in developing
various resolvent methods for solving variational inclusions. It

is well known that the convergence of the resolvent methods
requires that the operator must be strongly monotone and
Lipschitz continuous. Unfortunately these strict conditions
rule out many applications of this method. This fact motivated

to modify the resolvent method or to develop other methods.
The extragradient method overcome this difficulty by perform-
ing an additional forward step and a projection at each itera-

tion according to the double resolvent. This method can be
viewed as predictor-corrector method. Its convergence requires
that a solution exists and the monotone operator is Lipschitz

continuous. When the operator is not Lipschitz continuous
or when the Lipschitz continuous constant is not known, the
extraresolvent method and its variant forms require an Armi-

jo-like line search procedure to compute the step size with a
new projection need for each trial, which leads to expansive
computations. To overcomes these difficulties, several modi-
fied resolvent and extraresolvent-type methods have been sug-
gested and developed for solving variational inequalities, see
(Noor, 1998, 2000, 2001a,b, 2002a,b, 2003, 2004, 2006a,b,
2009a,b,c, 2010a) and the references therein. Glowinski and

Tallec (1989) has suggested and analyzed some three-step split-
ting methods for solving variational inclusions problems by
using the Lagrange multipliers technique. They have shown

that three-step splitting are numerically more efficient as com-
pared with one-step and two-step splitting methods. They have
studied the convergence of these splitting methods under the

assumption that the underlying operator is monotone and
Lipschitz continuous. Noor (2004) has suggested some three-
step projection-splitting methods for various classes of varia-
tional inequalities and variational inclusions using the

technique of updating the solution, in which the order of T
and JAþ ¼ ðIþ qAÞ�1; resolvent operator associated with the
maximal monotone operator A; has not been changed. These

three-step splitting methods are compatible with the three-step
splitting methods of Glowinski and Tallec (1989). For the
applications and convergence analysis of three-step splitting

method, see (Glowinski and Tallec, 1989; He and Liao, 2002;
Moudafi and Thera, 1997; Noor, 1998, 2000, 2001a,b,
2002a,b, 2003, 2004) and the references therein.

In this paper, we suggest and analyze a class of self-adaptive
resolvent methods by modifying the fixed-point equations
involving a generalized residue vector associated with the var-
iational inclusions. These methods are simple and robust. The

searching direction in these methods is a combination of the
generalized resolvent residue and the modified extraresolvent
direction. These new methods are different from the existing

one-step, two-step and three-step projection-splitting methods.
We prove that the convergence of the proposed methods only
requires the pseudomonotonicity, which is weaker condition

than monotonicity.
Noor (2004) and El Farouq (2001) has used the auxiliary

principle technique to suggest and analyze a class of proximal

(implicit) methods. Alvarez (2000) and Alvarez and Attouch
(2001) have considered an inertial proximal method for maxi-
mal monotone operators via the discretization of a second or-
der differential equation in time, which includes the classical

proximal method. We again use the equivalent fixed-point for-
mulation of the variational inclusions to suggest an inertial
proximal method for general variational inclusions. We show

that the convergence of the inertial proximal method requires
the pseudomonotonicity, which is a weaker condition than
monotonicity. Thus it is clear that our results improve the con-

vergence criteria of the inertial proximal methods of Alvarez
and Attouch (2001). Our proof of convergence is very simple
as compared with other methods. Since general variational
inclusions include classical variational inclusions and general

(quasi) complementarity problems as special cases, results ob-
tained in this paper continue to hold for these problems. The
comparison of these methods with the existing ones is an inter-

esting problem for future research work.
2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm
are denoted by h�; �i and k � k, respectively. Let K be a closed
convex set in H and T; g : H! H be nonlinear operators.

Let u : H! R [ fþ1g be a proper, convex and lower semi-
continuous function.
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For given nonlinear operators T; g : H! H, and a maxi-
mal monotone operator A : H! H; consider the problem of
finding u 2 H such that

0 2 Tuþ AðgðuÞÞ; ð2:1Þ

which is called the general variational inclusion. Problem (2.2)
is also known as finding the zero of the sum of two monotone
operators. This problem is being studied extensively and has

important applications in operations research and engineering
sciences. Variational inclusions are being studied and consid-
ered by many authors including Moudafi and Noor (1999)

and Uko (1998).
Note that if g � I, the identity operator, then problem (2.1)

is equivalent to finding u 2 H such that

0 2 Tuþ AðuÞ: ð2:2Þ

Problem (2.2) is known as finding the zero of the sum of two
monotone operators, see (Glowinski and Tallec, 1989; Haugr-
uge et al., 1998; Moudafi and Noor, 1999; Moudafi and Thera,
1997).

IfAð:Þ ¼ @uð:Þ, where @uð:Þ is the subdifferential of a proper,
convex and lower semicontinuous functionu : H! R [ fþ1g,
then problem (2.1) reduces to finding u 2 H such that

0 2 Tuþ @uðgðuÞÞ ð2:3Þ

or equivalently, finding u 2 H such that

hTu; gðvÞ � gðuÞi þ uðgðvÞÞ � uðgðuÞÞP 0; 8v 2 H: ð2:4Þ

The inequality of type (2.4) is called the general mixed varia-
tional inequality or the general variational inequality of the

second kind. It can be shown that a wide class of linear and
nonlinear problems arising in pure and applied sciences can
be studied via the general mixed variational inequalities (2.4).

We remark that if g � I, the identity operator, then the
problem (2.4) is equivalent to finding u 2 H such that

hTu; v� ui þ uðvÞ � uðuÞP 0; 8v 2 H; ð2:5Þ

which are called the mixed variational inequalities. For the

applications, numerical methods and formulations, see (Alva-
rez and Attouch, 2001; Brezis, 1973; El Farouq, 2001; Gian-
nessi and Maugeri, 1995, Giannessi et al., 2001; Glowinski
and Tallec, 1989; Haugruge et al., 1998; Kinderlehrer and

Stampacchia, 2000; Noor, 1997a,b, 1998, 2000, 2001a,b,
2002a,b, 2003, 2004, 2006a,b, 2009a,b,c, 2010a) and the refer-
ences therein.

We note that if u is the indicator function of a closed con-
vex set K in H, that is,

uðuÞ � IKðuÞ ¼
0; if u 2 K

þ1; otherwise;

�

then the general mixed variational inequality (2.4) is equivalent
to finding u 2 H; gðuÞ 2 K such that

hTu; gðvÞ � gðuÞiP 0; 8v 2 H : gðvÞ 2 K: ð2:6Þ

Problem (2.6) is called the general variational inequality, which
was first introduced and studied by Noor (1988). It has been

shown that a large class of unrelated odd-order and nonsym-
metric obstacle, unilateral, contact, free, moving, and equilib-
rium problems arising in regional, physical, mathematical,

engineering and applied sciences can be studied in the unified
and general framework of the general variational inequalities

(2.6). It has been shown in Noor (2000, 2004) that a class of
quasi variational inequalities and nonlinear nonconvex pro-
gramming problems can be viewed as the general variational

inequalities (2.6). For the applications, formulation and
numerical methods of general variational inequalities (2.1),
see (Noor, 1988, 1993, 1997a,b, 1998, 2000, 2001a,b,
2002a,b, 2003, 2004, 2006a,b, 2009a,b,c, 2010a–d; Noor and

Noor, 2010, 2004; Noor et al., 1993; Noor and Rassias,
2002) and the references therein.

For g � I; where I is the identity operator, problem (2.6) is

equivalent to finding u 2 K such that

hTu; v� uiP 0 8v 2 K; ð2:7Þ

which is known as the classical variational inequality intro-
duced and studied by Stampacchia (1964). For recent state-

of-the-art, see (Alvarez, 2000; Alvarez and Attouch, 2001;
Brezis, 1973; El Farouq, 2001; Giannessi and Maugeri, 1995;
Giannessi et al., 2001; Glowinski and Tallec, 1989; Haugruge

et al., 1998; He and Liao, 2002; Kinderlehrer and Stampacchi-
a, 2000; Moudafi and Noor, 1999; Moudafi and Thera, 1997;
Noor, 1988, 1993, 1997a,b, 1998, 2000, 2001a,b, 2002a,b,
2003, 2004, 2006a,b, 2009a,b,c, 2010a–d; Noor and Noor,

2010, 2004; Noor et al., 1993; Noor and Rassias, 2002; Patri-
ksson, 1998; Shi, 1991; Stampacchia, 1964; Tseng, 2000;
Uko, 1998; Xiu et al., 2001).

From now onward, we assume that g is onto K unless,
otherwise specified.

If NðuÞ ¼ fw 2 H : hw; v� ui 6 0; for all v 2 K} is a normal

cone to the convex set K at u, then the general variational
inequality (2.6) is equivalent to finding u 2 H; gðuÞ 2 K such
that

0 2 TuþNðgðuÞÞ;

which are known as the general nonlinear equations, see (Uko,
1998).

If Ttg is the projection of �Tu at gðuÞ 2 K; then it has been
shown that the general variational inequality problem (2.6) is

equivalent to finding u 2 H; gðuÞ 2 K such that

TtgðuÞ ¼ 0;

which are known as the tangent projection equations, see (Xiu
et al., 2001). This equivalence has been used to discuss the local
convergence analysis of a wide class of iterative methods for

solving general variational inequalities (2.6).
If K� ¼ fu 2 H : hu; viP 0; 8v 2 Kg is a polar (dual) cone

of a convex cone K in H, then problem (2.1) is equivalent to

finding u 2 H such that

gðuÞ 2 K; Tu 2 K� and hTu; gðuÞi ¼ 0; ð2:8Þ

which is known as the general complementarity problem, see
Noor (1988, 1993, 2004). For gðuÞ ¼ mðuÞ þ K; where m is a

point-to-point mapping, problem (2.8) is called the implicit
(quasi) complementarity problem. If g � I; then problem
(2.8) is known as the generalized complementarity problem.
Such problems have been studied extensively in the literature,

see the references. For suitable and appropriate choice of the
operators and spaces, one can obtain several classes of varia-
tional inclusions and related optimization problems.

We now recall the following well known result and
concepts.
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Definition 2.1 Brezis, 1973. If A is a maximal monotone

operator on H; then, for a constant q > 0; the resolvent
operator associated with A is defined by

JAðuÞ ¼ ðIþ qAÞ�1ðuÞ; 8u 2 H;

where I is the identity operator. It is well known that a mono-

tone operator is maximal if and only if its resolvent operator is
defined everywhere. In addition, the resolvent operator is a sin-
gle-valued and nonexpansive, that is,

kJAðuÞ � JAðvÞk 6 ku� vk; 8u; v 2 H:

Remark 2.1. It is well known that the subdifferential @u of a
proper, convex and lower semicontinuous function

u : H! R [ fþ1g is a maximal monotone operator, we
denote by

JuðuÞ ¼ ðIþ q@uÞ�1ðuÞ; for all u 2 H;

the resolvent operator associated with @u, which is defined
everywhere on H.

Lemma 2.1 Brezis, 1973. For a given z 2 H, u 2 H satisfies the

inequality

hu� z; v� ui þ quðvÞ � quðuÞP 0; 8v 2 H; ð2:9Þ

if and only if

u ¼ Juz; ð2:10Þ

where Ju ¼ ðIþ q@uÞ�1 is the resolvent operator and q > 0 is a

constant. This property of the resolvent operator Ju plays an
important part in our results.

We now introduce the general resolvent equations. To be
more precise, let RA � I� JA, where I is the identity operator
and JA ¼ ðIþ qAÞ�1 is the resolvent operator. Let g : H! H

be an invertible operator. For given nonlinear operators
T; g : H! H, consider the problem of finding z 2 H such that

Tg�1JAzþ q�1RAz ¼ 0; ð2:11Þ

where q > 0 is a constant. Equations of type (2.11) are called
the general resolvent equations, see Noor (1998).

If g ¼ I; then general resolvent Eq. (2.11) collapse to finding

z 2 H such that

TJAzþ q�1RAz ¼ 0; ð2:12Þ

which are known as the resolvent equations. The resolvent

equations have been studied by Moudafi and Thera (1997)
and Noor (1997b).

If Að:Þ � @uð:Þ; where @u is the subdifferential of a proper,

convex and lower semicontinuous function u : H!
R [ fþ1g, then general resolvent Eq. (2.11) are equivalent to
finding z 2 H such that

Tg�1Juzþ q�1Ruz ¼ 0; ð2:13Þ

which are also called the general resolvent equations, intro-
duced and studied by Noor (1998, 2001b) in relation with
the general mixed variational inequalities (2.4). Using these

resolvent equations, Noor (1998, 2001b) has suggested and
analyzed a number of iterative methods for solving general
mixed variational inequalities. If g � I, the identity operator,
then the problem (2.13) reduces to finding z 2 H such that
TJuzþ q�1Ruz ¼ 0; ð2:14Þ

which are called the resolvent equations. For the applications,
formulation and numerical methods of the resolvent equa-
tions, see (Noor, 1997b, 1998, 2000, 2001a, 2002b, 2003,

2004, 2006a,b, 2009a).
We remark that if u is the indicator function of a closed

convex set K; then Ju � PK, the projection of H onto K. Con-

sequently problem (2.13) is equivalent to finding z 2 H such
that

Tg�1PKzþ q�1QKz ¼ 0; ð2:15Þ

Equations of the type (2.15) are known as the general Wiener–
Hopf equations, which are mainly due to Noor (1993). For
g ¼ I, we obtain the Wiener–Hopf (normal) equations intro-

duced and studied by Shi (1991) in connection with the classi-
cal variational inequalities. We would like to mention that the
Wiener–Hopf equations technique is being used to develop

some implementable and efficient iterative algorithms for solv-
ing various classes of variational inequalities and related fields.
For the recent state-of-the-art, see (Noor, 2001a, 2004, 2009c)
and the references therein.

Definition 2.1. The operator T : H! H is said to be

(i) g-monotone, iff

hTu� Tv; gðuÞ � gðvÞiP 0; 8u; v 2 H:

(ii) g-pseudomonotone with respect to the function uð:Þ; iff

hTu; gðvÞ � gðuÞ þ uðgðvÞÞ � uðgðuÞÞiP 0

implies

hTv; gðvÞ � gðuÞi þ uðgðvÞÞ � uðgðuÞÞP 0 8u; v 2 H:

For g � I; Definition 2.1 reduces to the usual definition of
monotonicity, and pseudomonotonicity of the operator T.

Note that monotonicity implies pseudomonotonicity but the
converse is not true, see (Alvarez and Attouch, 2001).
3. Resolvent-splitting methods

In this section, we use the technique of updating the solution to

suggest and analyze a class of some resolvent-splitting methods
for solving general variational inequalities (2.1). For this pur-
pose, we need the following result, which can be proved by

invoking Lemma 2.1.

Lemma 3.1 (Noor, 1988). The function u 2 H is a solution of
(2.1) if and only if u 2 H satisfies the relation

gðuÞ ¼ JA½gðuÞ � qTu�; ð3:1Þ

where q > 0 is a constant.

Lemma 3.1 implies that problems (2.1) and (3.1) are equiva-
lent. This alternative formulation is very important from the
theoretical and numerical analysis point of view. This fixed-

point formulation has been used to suggest and analyze the fol-
lowing method.

Algorithm 3.1. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative scheme
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gðunþ1Þ ¼ JA½gðunÞ � qTun�; n ¼ 0; 1; 2 . . .

Using the technique of Noor et al. (1993), one can prove that
Algorithm 3.1 has the local convergence behaviour, which en-

ables us to identify accurately the optimal constraint after fi-
nitely many iterations.

It is well known (Noor, 2001a,b) that the convergence of
the classical resolvent methods for solving variational inclu-

sions requires that both the operators T and gmust be strongly
monotone and Lipschitz continuous. These strict conditions
rule out many applications of projection type methods. These

factors motivated to modify the resolvent type methods by
using the technique of updating the solution. Noor (2000,
2004) has used the technique of updating the solution to

suggest and analyze a class of resolvent-splitting algorithms for
general variational inclusions (2.1). Let g�1 be the inverse of
the operator g: Then Eq. (3.1) can be written in the form:

gðyÞ ¼ JA½gðuÞ � qTu�
gðwÞ ¼ JA½gðyÞ � qTy�
gðuÞ ¼ JA½gðwÞ � qTw�:

or equivalently

gðuÞ ¼ JA½I� qTg�1�JA½I� qTg�1�JA½I� qTg�1�gðuÞ
¼ ðIþ qTg�1Þ�1fJA½I� qTg�1�JA½I� qTg�1�JA
½I� qTg�1� þ qTg�1ggðuÞ:

Using Lemma 3.1, one can easily show that u 2 H is a solution
of (2.1) if and only if u 2 H satisfies the equation

gðuÞ � JA½gðwÞ � qTw� ¼ 0:

These modified fixed-point formulations allow us to suggest
and analyze the following resolvent-splitting-type methods

for solving general variational inclusions (2.1).

Algorithm 3.2. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative schemes

gðynÞ ¼ JA½gðunÞ � qTun�
gðwnÞ ¼ JA½gðynÞ � qTyn�
gðunþ1Þ ¼ JA½gðwnÞ � qTwn�; n ¼ 0; 1; 2; . . .

Algorithm 3.2 is known as the predictor-corrector method and
is due to Moudafi and Thera (1997) and Noor (1998).

Algorithm 3.3. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative scheme

gðunþ1Þ ¼ JA½I� qTg�1�JA½I� qTg�1�JA½I� qTg�1�gðunÞ;
n ¼ 0; 1; 2 . . .

which is known as the three-step forward-backward resolvent-
splitting algorithm, in which the order of T and JA has not been
changed unlike in Glowinski and Tallec (1989). Algorithm 3.3

is similar to that of Glowinski and Tallec (1989), which they
suggested by using the Lagrange multipliers method. For the
convergence analysis of Algorithms 3.3, see (Glowinski and

Tallec, 1989; He and Liao, 2002; Noor, 2001a, 2004).

Algorithm 3.4. For a given u0 2 H; compute unþ1 by the itera-
tive scheme
gðunþ1Þ ¼ ðIþ qTg�1Þ�1fJA½I� qTg�1�JA½I� qTg�1�JA
½I� qTg�1� þ qTg�1ggðunÞ; n ¼ 0; 1; 2; . . .

which is also called the splitting resolvent method. Algorithm

3.4 can be viewed as a generalization of the splitting algorithm
of Tseng (2000). Using the technique of Tseng (2000), one can
discuss its applications in mathematical programming and
optimization.

In this paper, we suggest an other class of self-adaptive
resolvent iterative methods with the line search strategy. These
methods include some known splitting methods as special

cases.

We now define the resolvent residue vector by the relation

RðuÞ ¼ gðuÞ � JA½gðyÞ � qTy�
¼ gðuÞ � JA½JA½gðuÞ � qTu� � qTg�1JA½gðuÞ � qTu��:

From Lemma 3.1, it is clear the u 2 H is a solution of (2.1) if

and only if u 2 H is a zero of the equation

RðuÞ ¼ 0:

Consider

gðzÞ ¼ ð1� gÞgðuÞ þ gPA½gðyÞ � qTy� ¼ gðuÞ � gRðuÞ 2 H:

We now prove that the variational inclusion (2.1) is equivalent

to the resolvent Eq. (2.11) by invoking Lemma 3.1. and this is
the prime motivation of our next result.

Theorem 3.1. The variational inclusion (2.1) has a solution

u 2 H if and only if, the resolvent Eq. (2.11) has a solution
z 2 H, where

gðuÞ ¼ JAz ð3:2Þ
z ¼ gðuÞ � qTu; ð3:3Þ

where JA is the resolvent operator and q > 0 is a constant.

From Theorem 3.1, we conclude that the variational inclu-

sion (2.1) and the resolvent Eq. (2.11) are equivalent. This
alternative formulation plays an important and crucial part
in suggesting and analyzing various iterative methods for solv-
ing variational inclusions and related optimization problems.

In this paper, by suitable and appropriate rearrangement, we
suggest a number of new iterative methods for solving varia-
tional inclusions (2.1).

Using the fact that RA ¼ I� JA, the resolvent Eq. (2.11) can
be written as

z� JAzþ qTg�1JAz ¼ 0:

Thus, for a positive stepsize c, we can write the above equation
as

gðuÞ ¼ gðuÞ � cfz� JAzþ qTg�1JAzg ¼ gðuÞ � cDðuÞ;

where

DðuÞ ¼ z� JAzþ qTg�1JAz

¼ RðuÞ � qTuþ qTg�1JA½gðuÞ � qTu�: ð3:4Þ

Also, from (3.1), we have

gðuÞ ¼ JA½gðuÞ � afgðgðuÞ � gðwÞÞ þ qTzg�
¼ JA½gðuÞ � afgRðuÞ þ qTzg� ¼ JA½gðuÞ � adðuÞ�; ð3:5Þ
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where

dðuÞ ¼ gRðuÞ þ qTz � gRðuÞ þ qTg�1ðgðuÞ � gRðuÞÞ: ð3:6Þ

This fixed-point formulation enables to suggest and ana-
lyze the following method for general variational inclusions

(2.1).

Algorithm 3.5. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative schemes

Predictor step

gðynÞ ¼ JA½gðunÞ � qnTun�
gðwnÞ ¼ JA½gðynÞ � qnTyn�
gðznÞ ¼ gðunÞ � gnRðunÞ;

where gn ¼ amn , and mn is the smallest nonnegative integer m

such that

gnqnhTun � Tg�1ðgðunÞ � gnRðunÞÞ;RðunÞi 6 rkRðunÞk2;
r 2 ½0; 1�:

Corrector step

gðunþ1Þ ¼ JA½gðunÞ � andðunÞ�; n ¼ 0; 1; 2; . . .

dðunÞ ¼ gnRðunÞ þ qnTzn � gnRðunÞ þ qnTg
�1ðgðunÞ � gnRðunÞÞ

an ¼
gnhRðunÞ;DðunÞi
kdðunÞk2

DðunÞ ¼ RðunÞ � qnTun þ qTzn

¼ RðunÞ � qnTun þ qnTg
�1ðgðunÞ � gnRðunÞÞ;

Here an is the corrector step size which involves the resolvent
Eq. (2.11).If g � I; the identity operator, then Algorithm 3.5

collapses to the following method for solving classical varia-
tional inclusions (2.2)
Algorithm 3.6. For a given u0 2 H; compute unþ1 by the itera-
tive schemes

Preditor step

yn ¼ JA½un � qnTun�
wn ¼ JA½yn � qnTyn�
zn ¼ un � gnRðunÞ;

where gn satisfies

gnqnhTun � Tðun � gnRðunÞÞ;RðunÞi 6 rkRðunÞk2; r 2 ½0; 1�

Corrector step

unþ1 ¼ JA½un � and1ðunÞ�; n ¼ 0; 1; 2; . . .

where

d1ðunÞ ¼ RðunÞ þ qnTzn � RðunÞ þ qnTðun � gnRðunÞÞ

an ¼
RðunÞ;D1ðunÞi
kd1ðunÞk2

d1ðunÞ ¼ gnRðunÞ þ qnTðun � gnRðunÞÞ
D1ðunÞ ¼ RðunÞ � qnTun þ qnTðun � gnRðunÞÞ:

Here an is the corrector step size, which involves the resolvent
equation.For gn ¼ 1, Algorithm 3.5 becomes:
Algorithm 3.7. For a given u0 2 H; compute unþ1 by the itera-

tive schemes

Predictor step

gðynÞ ¼ JA½gðunÞ � qnTun�
gðwnÞ ¼ JA½gðynÞ � qnTyn�;

where qn satisfies

qnhTun � qnTwn;RðunÞi 6 rkRðunÞk2; r 2 ð0; 1Þ:

Corrector step

gðunþ1Þ ¼ JA½gðunÞ � and2ðunÞ�; n ¼ 0; 1; 2; . . . ;

where

d2ðunÞ ¼ RðunÞ þ qnTwn

an ¼
hRðunÞ;D2ðunÞi
kd2ðunÞk2

D2ðunÞ ¼ RðunÞ � qnTun � qnTwn

and an is the corrector step size.If Að:Þ � @uð:Þ, where @u is the

subdifferential of a proper, convex and lower semicontinuous
function u : H! R [ fþ1g, then JA � Ju ¼ ðIþ @uÞ�1, the
resolvent operator and consequently Algorithm 3.5 collapses

to:
Algorithm 3.8. For a given u0 2 H; compute the approximate

solution unþ1 by the iterative schemes

Predictor step

gðynÞ ¼ Ju½gðunÞ � qnTun� ð3:7Þ
gðwnÞ ¼ Ju½gðynÞ � qnTyn� ð3:8Þ
gðznÞ ¼ gðunÞ � gnRðunÞ; ð3:9Þ

where gn ¼ amn ; and mn is the smallest nonnegative integer m
such that

gnqnhTun � Tg�1ðgðunÞ � gnRðunÞÞ;RðunÞi 6 rkRðunÞk2;
r 2 ½0; 1�: ð3:10Þ

Corrector step

gðunþ1Þ ¼ Ju½gðunÞ � andðunÞ�; n ¼ 0; 1; 2; . . . ð3:11Þ

d3ðunÞ ¼ gnRðunÞ þ qnTzn � gnRðunÞ þ qnTg
�1ðgðunÞ

� gnRðunÞÞ ð3:12Þ

an ¼
gnhRðunÞ;D3ðunÞi
kd3ðunÞk2

ð3:13Þ

D3ðunÞ ¼ RðunÞ � qnTun þ qnTg
�1ðgðunÞ � gnRðunÞÞ; ð3:14Þ

Here an is the corrector step size which involves the resolvent
equation.
For an ¼ 1; Algorithm 3.5 is exactly the resolvent-splitting

Algorithm 3.1, which is due to Moudafi and Thera (1997).
For g � I; and gn ¼ 1; one can obtain several new splitting
type algorithms for solving classical (quasi) variational inclu-

sions (2.2) and (2.3). This clearly shows that Algorithm 3.5 is
unifying ones and includes several new and previously known
methods as special cases.

For the convergence analysis of Algorithm 3.8, we need the
following result, which can be proved using the technique of
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Noor (2001a). For the sake of completeness, we sketch the

main ideas.
Theorem 3.1. If �u 2 H; is a solution of (2.1) and the operator

T : H! H is g-monotone, then

hgðuÞ � gð�uÞ; dðuÞiP ðg� rÞkRðuÞk2; 8u 2 H: ð3:15Þ

Theorem 3.2. Let �u 2 H be a solution of (2.1) and let unþ1 be
the approximate solution obtained from Algorithm 3.8. Then

kgðunþ1Þ � gð�uÞk2 6 kgðunÞ � gð�uÞk2 � ðgn � rÞ2kRðunÞk4

kdðunÞk2
:

ð3:16Þ

Proof. From (3.15), we have

kgðunþ1Þ � gð�uÞk2 6 kgðunÞ � gð�uÞ � and3ðunÞk2

6 kgðunÞ � gð�uÞk2 � 2anhgðunÞ
� gð�uÞ; d3ðunÞi þ ankd3ðunÞk2

6 kgðunÞ � gð�uÞk2 � anhRðunÞ;D3ðunÞ

6 kgðunÞ � gð�uÞk2 � anðgn � rÞkRðunÞk2

6 kgðunÞ � gð�uÞk2 � ðgn � rÞ2kRðunÞk4

kd3ðunÞk2
:

the required results. h

Theorem 3.3. Let �u 2 H be a solution of (2.1) and let unþ1 be

the approximate solution obtained from Algorithm 3.8. If H is
a finite dimensional space and g is injective, then
limn!1ðunÞ ¼ �u:

Proof. Let �u be a solution of (2.1). Then, from (3.16), it fol-

lows that the sequence fkgðunÞ � gð�uÞkg is nonincreasing and
consequently the sequence fgðunÞg is bounded. Thus, under
the assumptions of g, it follows that the sequence fung is

bounded. Furthermore, from (3.16), we have

X1
n¼0

ðgn � rÞ2kRðunÞk4

kdðunÞk2
6 kgðu0Þ � gð�uÞk2;

which implies that

lim
n!1

RðunÞ ¼ 0; ð3:17Þ

or

lim
n!1

gn ¼ 0: ð3:18Þ

Assume that (3.17) holds. Let �u be the cluster point of fung and
let the subsequence funjg of the sequence of fung converge to �u:
SinceT and g are continuous, it follows thatR is continuous and

Rð�uÞ ¼ lim
nj!1

RðunjÞ ¼ 0;

from which it follows that �u is a solution of (2.1) by invoking
Lemma 3.1 and

kgðunþ1Þ � gð�uÞk2 6 kgðunÞ � gð�uÞk2: ð3:19Þ

Thus the sequence fung has exactly one cluster point and
consequently

lim
n!1

gðunÞ ¼ gð�uÞ:
Since g is injective, it follows that limn!1un ¼ �u 2 H satisfying

the general variational inclusion (2.1).
Assume that (3.18) holds, that is, limn!1gn ¼ 0: If (3.10)

does not hold, then by a choice of gn, we obtain

rkRðunÞk2 6 qngnhTun � Tg�1ðgðunÞ � gnRðunÞÞ;RðunÞi:
ð3:20Þ

Let �u be a cluster point of fung and let funjg be the correspond-
ing subsequence of fung converging to �u: Taking the limit in

(3.20), we have rkRð�uÞk2 6, which implies that Rð�uÞ ¼ 0; that
is, �u 2 H is a solution of (2.1) by invoking Lemma 3.1 and
(3.19) holds. Repeating the above arguments, we conclude that

limn!1un ¼ �u: h
4. Inertial proximal methods

In this section, we consider an inertial proximal methods for
solving general variational inclusions (2.1). Inertial proximal

methods were introduced and studied by Alvarez (2000) and
Alvarez and Attouch (2001) in the context of implicit discret-
ization of the second-order differential equations in time.

These inertial type methods include the classical proximal
methods as a special case. Noor (2002a) has used the auxiliary
principle technique to study the convergence analysis of the
proximal-type methods.

We again use the fixed-point formulation (3.1) to suggest
and analyze the following iterative method for solving the gen-
eral variational inclusion (2.1).

Algorithm 4.1. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative scheme

gðunþ1Þ ¼ JA½gðunÞ � qTunþ1�; n ¼ 0; 1; 2 . . . ;

which is known as the implicit resolvent method. For the con-
vergence analysis of Algorithm 4.1, see (Noor, 2001a).

We can rewrite (3.1) in the following equivalent form.

gðuÞ ¼ JA½gðuÞ � qTuþ aðgðuÞ � gðuÞÞ�; ð4:1Þ

where q > 0 and a > 0 are constants.
This formulation is used to suggest the following iterative

method for solving the general variational inclusions (2.1).

Algorithm 4.2. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative scheme

gðunþ1Þ ¼ JA½gðunÞ � qTunþ1 þ anðgðunÞ � gðun�1ÞÞ�;
n ¼ 0; 1; 2; . . .

If Að:Þ � @uð:Þ, where @u is the subdifferential of a proper,
convex and lower semicontinuous function u : H!
R [ fþ1g, then JA � Ju ¼ ðIþ @uÞ�1, the resolvent operator

and consequently Algorithm 4.2 collapses to:

Algorithm 4.3. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative scheme

gðunþ1Þ ¼ Ju½gðunÞ � qTunþ1 þ anðgðunÞ � gðun�1ÞÞ�;
n ¼ 0; 1; 2; . . .

Using Lemma 3.1, Algorithm 4.3 can be written as



60 M.A. Noor et al.
Algorithm 4.4. For a given u0 2 H; compute the approximate

solution unþ1 by the iterative scheme

hqTunþ1 þ gðunþ1Þ � gðunÞ � anðgðunÞ � gðun�1ÞÞ;
gðvÞ � gðunþ1Þi þ quðgðvÞÞ � quðgðunþ1ÞÞP 0; 8v 2 H:

ð4:2Þ

If g ¼ I; the identity operator, then Algorithm 4.3 reduces to:

Algorithm 4.5. For a given u0 2 H; compute the approximate
solution unþ1 by the iterative scheme

hqTunþ1 þ unþ1 � un � anðun � un�1Þ; v� unþ1i þ quðvÞ
� quðunþ1ÞP 0; 8v 2 H:

In a similar way, one can suggest and analyze several iterative
methods for solving the general variational inclusions and its
related optimization.

For the convergence analysis of Algorithm 4.4, we recall the
following well known result.

Lemma 4.1

2hu; vi ¼ kuþ vk2 � kuk2 � kvk2; 8u; v 2 H:

We now study the convergence of Algorithm 4.4. The analysis

is in the spirit of Noor (2004) and Alvarez (2000).

Theorem 4.1. Let �u 2 H be a solution of (2.1) and let unþ1 be
the approximate solution obtained from Algorithm 4.4 If the

operator T : H! H is g-pseudomonotone, then

kgðunþ1Þ � gð�uÞk2 6 kgðunÞ � gð�uÞk2 þ anfkgðunÞ

� gð�uÞk2 � kgð�uÞ � gðun�1Þk2

þ 2kgðunÞ � gðun�1Þk2g � kgðunþ1Þ
� gðunÞ � anðgðunÞ � gðun�1ÞÞk2: ð4:3Þ

Proof. Let �u 2 H be a solution of (2.1). Then

hT�u; gðvÞ � gð�uÞi þ uðgðvÞÞ � uðgð�uÞÞP 0; 8v 2 H;

implies that

hTv; gðvÞ � gð�uÞ þ uðgðvÞÞ � uðgð�uÞÞiP 0; 8v 2 H; ð4:4Þ

since T is g-pseudomonotone.
Taking v ¼ unþ1 in (4.4), we have

hTunþ1; gðunþ1Þ � gð�uÞi þ uðgðunþ1ÞÞ � uðgð�uÞÞP 0: ð4:5Þ

Setting v ¼ �u in (4.2), we obtain

hqTunþ1 þ gðunþ1Þ � gðunÞ � anfgðunÞ � gðun�1Þg;
gð�uÞ � gðunþ1Þi þ quðgð�uÞÞ � quðgðunþ1ÞÞP 0: ð4:6Þ

Combining Eqs. (4.5) and (4.6), we have

hgðunþ1Þ � gðunÞ � anfgðunÞ � gðun�1Þg; gð�uÞ � gðunþ1ÞiP 0;

ð4:7Þ

which can be written as

hgðunþ1Þ � gðunÞ; gð�uÞ � gðunþ1Þi
P anhgðunÞ � gðun�1Þ; gð�uÞ � gðunÞ þ gðunÞ � gðunþ1Þi: ð4:8Þ
Using Lemma 4.1 and rearranging the terms of (4.8), one can

easily obtain (4.3), the required result. h

Theorem 4.2. Let H be a finite dimensional space and g be an
injective operator. Let unþ1 be the approximate solution obtained
from Algorithm 4.4 and let �u 2 H be a solution of (2.1). If, there

exists a 2 ½0; 1½ such that 0 6 an 6 a; 8n 2 N and

X1
n¼1

ankgðunÞ � gðun�1Þk2 61; ð4:9Þ

then

lim
n!1

un ¼ �u:

Proof. Let �u 2 H be a solution of (2.1). First we consider the

case an ¼ 0. In this case, from (4.3), we see that the sequence
fkgðunÞ � gð�uÞkg is nonincreasing and consequently, the
sequence fung is bounded. Also, from (4.3), we have

X1
n¼0
kgðunþ1Þ � gðunÞk2 6 kgðu0Þ � gð�uÞk2;

which implies that

lim
n!1
kgðunþ1Þ � gðunÞk ¼ 0: ð4:10Þ

Let û be the limit point of fung11 ; a subsequence funjg
1
1 of

fung11 converges to û 2 H: Replacing wn by unj in (4.2) and tak-
ing limit the limit as nj !1 and using (4.10), we have

hTû; gðvÞ � gðûÞi þ uðgðvÞÞ � uðgðûÞÞP 0; 8v 2 H;

which implies that û solves the general mixed variational
inequality (2.4) and

kgðunþ1Þ � gðûÞk2 6 kgðunÞ � gðûÞk2:

Thus, it follows that from the above inequality that fung11 has
exactly one limit point û and

lim
n!1

gðunÞ ¼ gðûÞ:

Since g is injective, thus

lim
n!1

un ¼ û:

Now we consider the case an > 0: From (4.3), using the tech-
nique of (Noor, 2009b,c), one can have

X1
n¼1
kgðunþ1Þ � gðunÞ � anðgðunÞ � gðun�1ÞÞk2

6 kgðu0Þ � gð�uÞk2 þ
X1
n¼1
ðakgðunÞ � gð�uÞk2

þ 2kgðunÞ � gðun�1Þk2Þ 61:

which implies that

lim
n!1
kgðunþ1Þ � gðunÞ � anðgðunÞ � gðun�1ÞÞk ¼ 0

Repeating the above argument as in the case an ¼ 0; one can

easily show that limn!1un ¼ û: h
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