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In this paper, we provide some interested operator inequalities related with non-negative
linear maps by means of concavity and convexity structure, and also establish some new attractive
inequalities for the Khatri-Rao products of two or more positive definite matrices. These results
lead to inequalities for Hadamard product and Ando’s and a-power geometric means, as a special
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1. Introduction

The geometric mean of two or more positive (semi) definite
matrices arises naturally in several areas such as in Electrical
Network Theory, Statistics, Engineering, and many fields of
pure and applied Mathematics; and it has several properties
(equalities and inequalities) of the geometric mean of positive
scalars (Ando and Hiai, 1998; Bhatia and Kittaneh, 2000; Xiao
and Zhang, 2003). Let R™ be positive real numbers and for
every x,y € R* | then the function M:R" x R™ — R™ is said
to be a mean if the following properties hold:
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(i) M(x,x)=x (1-1)
(i) M(x,y) = M(y,x) (12)
(iii) Ifx <y, thenx < M(x,y)<y (1-3)
(iv) Ifx; <x,andy, <y,, then M(xy,y,) < M(x2,,) (1-4)
(v) M(x,y)is continuous. (1-5)
(vi) Ifk e R*, then M(kx,ky)=kM(x,y). (1-6)

For positive real numbers x and y, the geometric mean
G(x,y) = /3y , the arithmetic mean 4(x, y) = ** and the har-

monic mean H(x, y) = * 2" are the familiar means and some-
times called the Pythagorean means. Note that there are many
other means for two or more positive numbers as well, such as
the logarithmic mean, power mean, Identric mean, Horn
mean, generalizations of power mean, generalizations of Horn
means,Young means , Heinz mean, binomial means, Lehmer
means, power difference means, Stolarsky means, Heron
means, Karcher Mean and Geometric Bonferroni mean, (Alic
et al., 1997; Ando, 1983; Ando et al., 2004; Fiedler and Ptak,
1997; Furuichi et al., 2005; Furuta, 2006; Mond and Pecaric,
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1997; Mond et al., 1996; Qi and Guo, 2003; Sagae and Tanabe,
1994; Xiao and Zhang, 2003; Lim and Palfia, 2012; Lim and
Yamazaki, 2013; Xia et al., 2013; Bhatia and Kosaki, 2007).
Before starting on the geometric means of positive definite
matrices, we need to study some important basic concepts and
results on matrices. Let us first introduce the definitions of
Kronecker, Hadamard, Tracy—Singh and Khatri-Rao prod-
ucts of matrices which are defined, respectively, by (Al-Zhour
and Kilicman, 2006; Al-Zhour, 2012; Cao et al., 2002; Kilic-
man and Al-Zhour, 2005; Liu, 2002; Liu, 1999; Zhang, 1999).

(i) A®B=(a;B), (1-7)
(i) Ao C = (azcy);=CoA (1-8)
(iii) A®B = (Ai/GB)f/ = ((Af/‘ ® Bk/)k/)(/ (1'9)
(iV) A*B= (Ai/' & Bi/')g/ (1'10)
where 4 =[ay] and C =[c;] are matrices of order

m x n(m =30 m,n= Z;:1”i> and B = [by] is a matrix of

order px q(p = Xipa = Xi1)) s and A = (4,18 = (Bl
are partitioned matrices (where 4; and By, are sub-matrices of
order m; X n; and py X q,, respectively).

Note that if 4 and B are non-partitioned matrices, then
AO®B is reduced to 4 ® B and A*B is reduced to AoB(Liu,
1999).

Let 4 and B be Hermitian matrices, then the relation
A > B means that 4 — B > 0 is a positive definite matrix
and the relation 4 > B means 4 — B > 0 is a positive semi-
definite matrix. If 4 > 0, then A" is called the positive defi-
nite square root of A. Zhang (1999) showed that if 4 > 0
and B >0, then the relation 4 > B implies
A'< B ' 4% > B*and 4'* = B'>

Here the symbol M, , stands to the set of all m X n matrices
over the field M and when m = n, we write M,, instead of
M, . The symbols AT 4%, 47" stand to, respectively, the trans-
pose, conjugate transpose and inverse of matrix 4. The Sym-
bols H, and H; are, respectively, the space of n-square
Hermitian and n-square positive definite matrices. The linear
map ¢ from H, to H,, is said to be positive if it transforms
H' to H! . The positive linear map ¢ is said to be unital or nor-
malized if it transforms the identity 7, to the identity matrix 7,
and monotone if A < B implies ¢(A4) < ¢(B). For more details,
see (Ando, 1979).

The following formula is very important for getting our re-
sults which is studied by many researchers (Al-Zhour and
Kilicman, 2006; Al-Zhour, 2012; Cao et al., 2002; Liu, 2002;
Liu, 1999; Zhang, 1999) :

k k
[[+4=2 (H@A,-) Z,,

i=1 i=1

(1-11)

where A; € M,y (1 <i<kk > 2) are compatibly parti-
tioned  matrices, (m= Hlem(i) and n= Hf.‘:ln(i)7
k - k : . . .

r= 3 limy (i), s = 30 Tl mi(),m(i) = 350 my(0), - n(i) =
>imi(i)). Zy and Z, are real matrices with entries zeros and
ones of order mxr and nXxs, respectively such that
ZITZI = I,‘7ZZTZZ =1, , where I, and I, are identity matrices of
order r x r and s X s, respectively.

In particular, if m() = n(i), then
m x r(m =TI, m(), r = Z;:ll_[lem_,-(i» matrix Z of zeros
and ones such that Z7Z = I, and

there  exists

(1-12)

i=1 i=

k k
H*A,-—ZT< G)A,-)Z.
1

Let A; and B(1 <i<k,k = 2) be compatibly partitioned
matrices, then (Al-Zhour and Kilicman, 2006; Al-Zhour,
2012; Liu, 2002; Liu, 1999) :

(i) (f[G)A,) (ﬁ®3i> = <ﬁ®(A,.B,.)>
(ii) (fﬂ%) =f[@A; and <ﬁ*A,-). :ﬁ* A7 (1-14)

i=1 i=1

(1-13)

(iii) If A4; are positive (semi) definite matrices and r any real
number, then

<ﬁ®Af) :ﬁ®Af (1-15)
o (fom) - (L)o(lls) oo

Now, let us study some means on matrices. Let 4 and B € M,,,
then the arithmetic mean is defined as follows (see, e.g., Ando,
1979; Alic et al., 1997):
A~B= % (4 + B).
Similarly, when 4 and B > 0 of order n X n, then the harmonic
mean is given by (Ando et al., 2004; Beesack and Pecaric, 1985;
Bhatia and Kittaneh, 2000; Cao et al., 2002; Furuichi et al.,
2005; Furuta, 2006; Fiedler and Ptak, 1997) :

(1-17)

-1
AB = {%(A’I+B")} (1-18)
Researchers have tried to define a geometric mean on two or
more positive definite matrices, but there is still no satisfactory
definition because the geometric mean A#B of two positive
nxn matrices 4 and B should satisfy at least the desirable
properties (i)—(viii) that mentioned in (Kilicman and Al-Zhour,
2005), which are, respectively: commutative property, positive
property, symmetry property, arithmetic-geometric-harmonic
inequality, distributive property, mixed property, inverse prop-
erty and eigenvalue property. For example, Kilicman and Al-
Zhour (2005) discussed a family of candidates of geometric
means of positive definite matrices and proved that all consid-
ered definitions failed to satisfy at least one of the desirable
properties that are mentioned above. Ando (1979) defined
the geometric mean for two positive n x n matrices 4 and B
as follows:

A#B = A'*D'?4'? . D= A""2BA7', (1-19)

which is called Ando’s geometric mean and satisfied the first se-
ven properties that are mentioned in (Kilicman and Al-Zhour,
2005) and many other desirable properties such as:

(a) A#A=4 (1-20)
(b) A'#AT = AP for all — oo < p,q < 00 (1-21)
(c) (A#B)A™'(A#B)=B (1-22)
(d) (AB'A)#B=4 (1-23)
( (1-24)

e) A} (A#B)B~'? is a unitary matrix.
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Ando and Hiai (1998) generalized Ando’s geometric mean to
the o -power mean that still satisfied properties from (i) to
(vii) that are mentioned in (Kilicman and Al-Zhour, 2005) as
follows:

A#B=A"?D*4"?: D=A4""2B47' (1-25)
o

where o is any real number; and 4 and B are positive definite

matrices. This definition also satisfies the following new

properties:

(@) A#A=4 (1-26)

(b) AP # A7 = A" for all — oo < p,g <oo.  (1-27)
Micic et al. (2000) also generalized the a-power mean to the
operator mean as follows:

AcB = A"*f(D)A?: D=A"2BA7'. (1-28)

where f{(f) is any non-negative operator monotone function on
[0,00) and A and B are positive definite matrices. In fact, the o-
power means are determined by the operator monotone func-
tion f(f) = * when 0 < o < 1 or by the operator monotone
function f{z) = /* whenl < &« < o0.

Ando et al. (2004) found other desirable properties that
should be required for a reasonable geometric mean of three
positive definite matrices.

Hu et al. (2005) presented several kinds of mixed means for
three or more positive definite matrices, and proved some re-
lated mixed mean inequalities. Lim (2008) described the max-
imal and minimal positive definite solutions of the non-linear
matrix equation X = 7 — BX 'B in terms of Ando’s geomet-
ric mean A#B.

Jung et al. (2009) established some new properties of o-
power mean and used this mean in the solution of non-linear
matrix equation X" = f(X).

Recently, Lee et al. (2011) defined a family of weighted geo-
metric means of n-tuples positive definite matrices and showed
that these weighted geometric means satisfied multidimen-
sional versions of all properties that one would expect of a
two-variable weighted geometric mean. Fujii et al. (2010) pre-
sented the Cauchy—Schwraz and Holder inequalities involving
geometric means of positive definite matrices. Kim et al. (2011)
defined a new family of matrix means such as a resolvent mean
which is defined of m positive definite matrices A = (4,45,
.. .,A4,,) with weight vector @ = (w,wy,...,w,,) as follows:

-1
“RH(Av (1)) = |:Zwi(Ai + M[)_l:| - :Ll[v n =0
i=1

and this mean satisfies several desirable properties that are
mentioned in (Kim et al., 2011). Note that for u = oo, the
resolvent mean is the weighted arithmetic mean.

Ito et al. (2011) described some geometric properties of po-
sitive definite matrices cone with respect to the Thompson met-
ric. More Recently, Lim (2012) introduced a new class of
(metric) geometric means of positive definite matrices varying
over Hermitian unitary matrices and gave some basic proper-
ties comparable to those geometric means. Finally, Bhatia and
Grover (2012) presented the norm inequalities related to the
geometric mean of positive definite matrices.

Here in this paper, we recover Ando’s geometric mean to
the case of operator mean and derive some desirable properties

which play a central role for establishing our results. Several
inequalities related to operator means and Khatri-Rao prod-
ucts are established by applying concavity and convexity struc-
tures. Finally, the results lead to inequalities for Hadamard
Product, and Ando’s and a-power geometric means, as a spe-
cial case.

2. Further properties and connections

In this section, we study some interested properties and con-
nections which are very important to obtain our results in next
section.

Lemma 2.1. Let A; > 0 and B; > 0(i = 1,2) be n X n compat-
ible partitioned matrices. Then for any real number o,

(i) (410B))#(A4,0B8,) (A.q?&Az)(B(BlazﬁBz)

o

(2-1)

(i) (4, #B)O(A# By) (4,045)#(B OBy). (2-2)

Proof. (i) In order to see if this indeed
Dy = A;'? 4,47 and D, = B;"*B,B;"*. Then

is true, let

(410B)) #(4,0B,) = (4,0B,)*((4,08,) > (4,08,)(4,0B,) )" (4,0B,)"?

= (4108 ((4""08"") (4:08,) (4 *08;"?) ) () 05]")

= (4 #fAz)Q(BI #1#32)-
Similarly, we can prove part (ii).

Theorem 2.2. Let A; > 0 (i = 1,2) be n X n compatible parti-
tioned matrices. Then

(4104, #(4,04,)! = (4,04,) 7

o

(2-3)
where o is any real number and for all —co < p,q < co.

Proof. Due to Lemma 2.1 and 1-27, we have

(4O #(AO4) = (A10.4) # (A104) = (A'; #A‘{>®<A§#A’z’)

o

_ Agl—z)erxz/@A(zl—x)]wxq _ (AIGAZ)(I—a)/Hrzq.

Theorem 2.3. Let A; > 0(1 <i< kk = 2) be nxn compatible
partitioned matrices. Then

k k k
o4 o4! | = [ T[o4! ),

where o is any real number and for all —oo < p,q < 0.

(2-4)

Proof. The proof is straightforward by using Theorem 2.2 and
induction on k.

Theorem 2.4. Let A;> and B; > 0(1 <i<kk >=2) be nxn
compatible partitioned matrices. Then
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(2-5)

(2-6)

Proof. The proof follows immediately by induction on k.

Theorem 2.5. Let A; > Oand B; > 0(1 <i<kk =2)benxn
compatible partitioned matrices and let f(t) be a non-negative

operator — monotone  function on [0,00) such that
f(HLG)D,-) = HL@f(D,-) for any matrices
D; (1 i<kk>=2). Then
k
Ha (4,0B)) (H(;A > <HO’B,->. (2-7)
i=1
k k
[[e(4i0B)) <H®A ) (HG)B,). (2-8)
i=1 i=1

Proof. The proof is straightforward by induction on k& and
Eqgs. 1-13,1-15 and 1-16.

3. Several types of inequalities on operator means and Khatri—
Rao products

For many years mathematicians have been interested in
inequalities involving geometric means of positive semi-definite
matrices (Ando, 1983; Ando, 1979; Ando et al., 2004; Hu et al.,
2005; Furuichi et al., 2005; Furuta, 2006; Hernandez et al.,
2001; Kilicman and Al-Zhour, 2005; Micic et al., 2000; Mond
et al., 1996; Qi and Guo, 2003; Sagae and Tanabe, 1994; Sat-
noianu, 2002; Xiao and Zhang, 2003, Lim and Yamazaki,
2013; Fujii et al., 2010; Bhatia and Grover, 2012). In this sec-
tion, we present many attractive inequalities involving geomet-
ric means and Khatri-Rao products of positive definite
matrices based on the properties of convexity and concavity
structures.

Definition 3.1. Let 4;, B; € H, (i=1,2,...,k)and 0 < 2 < 1.
Then the map ¢ from H; x --- x H, to H,, is said to be :
(i) Convex if

o(A, + (1 — 2)By,... iAc + (1 — 2)By)

< Ap(Ar, ..., Ar) + (1 = A)e(By, ..., Br). (3-1)
(ii) Concave if the map (4i,....4))— — @(Ay,...,Ay) is
convex
(iii) Affine if
(1A, + (1 = A)By, ..., 24 + (1 — 1)By)
=ip(Ar,..., A) + (1= )p(By, ..., By). (3-2)

Definition 3.2. Let f be a real valued continuous function .
Then

(1) fis Supermultiplicative if

Jxy) Z [ ). (3-3)

(i) fis Submultiplicative if

Slxy) < fIfW). (3-4)

Lemma 3.3. Let ¢ be a normalized positive linear map and cbe
an operator mean which has the representation function f which
is not affine (f is an operator-monotone on (0,00)). If A and B
are positive definite matrices, then the following statements are
equivalent:

(i) @(40B) < ¢(A)op(B). (3-5)
(i) @(f(4)) <Sl(4)). (3-6)

Proof. It suffices to show that (ii) implies (i). Consider the map
Y defined by

Y(X) = (4) Pp(4'2 XA ) p(4). (3-7)
It follows from the assumption of (ii) that y (4~ >BA~1/?))
< fP(A~"2BA~2)). Therefore we have
@(AoB) = (A" P47 BAT) A1)
= () YA BAT ) p(4)"?
))p(4)'?
)

¢(A)
= o(A)*flp(4) P p(B)p(A) ) p(4)'?
¢(4)

Theorem 3.4. let ¢ be a positive linear map and let A and B be
positive definite matrices. Then
(3-8)

o(4 affB) < @A) # @(B).

Proof. Consider the map y defined by

V(X) = o(B)"p(B*XB'?)p(B) .

By a nice technique in the proof of Lemma 3.3, set f{r) = * for
any real number o, we get 3-8.

The following results as in Theorems 3.5 and 3.6 are
referring to Ando (1979).

Theorem 3.5. Let A € H. Then the map

(i) A+ A” is concave if 0 < p<1 and is convex if
1<p<K2or—-1<p <0
(ii) A — log[A] is concave, while the map 4+ Alog[A] is

convex.

Theorem 3.6. Let ¢ be a normalized positive linear map from H,
to H,, and A > 0. Then

(i) @(4) <o) if 1 < p < oo, (3-9)
(i) o(4) > o()" it J<p<1, (3-10)
(i) ¢(d) > (A if 1< p <o, (3-11)
(iv) g(logld]) < loglp(4)], (>12)
(V) o(Alogld]) > ¢(4)loglo(4)]. (3-13)
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Theorem 3.7. Let A; € HH (1 < i<k k =
compatible partitioned matrices. Then

2) be commutative

k k I/p
i) Jo4: < (H@A{?) if 1 <p< oo, (3-14)
i1 i=1
k k ey
ii 04; > 047 if —<p<1, 3-15
i 11 (H ) . (3-15)
k k -1/p
(i) J[o4; = <H®A[”> if 1 <p < oo, (3-16)
i1 i1
k k
(iv) J]©logl4] < log [[[O4:, (3-17)
i=1 i1
k k k
[[0410g[4)] > (H@A,-) log |[[©4; (3-18)
i1 i=1 i1
Proof. The proof is  straightforward by  setting
o(Ay,...,Ax) = HL@Ai in Theorem 3.6.
Corollary 3.8. Let A; € H (1 <i<k,k = 2) be commutative

compatible partitioned matrices. Then

k k 1/p
(1) H*A,«g <H*A{’> if 1 <p < oo, (3-19)
i=1 i=1
k Kk ey
(i) [ > (H*Af) if S<p<l, (3-20)
i=1 i=1
k k ~lp
(i) J[*4 > (Hm/’) if 1 <p < oo, (3-21)
i=1 i=1
k k
(iv) ] xlogl4] <log |J] x4, (3-22)
i=1 i=1
k k k
(v) ] *4itogl4] = (H*A,-) log [ 4:- (3-23)
i=1 i=1 i=1

Proof. The proof follows immediately by applying 1-11 and 1-
12 on Theorem 3.7.

Theorem 3.9. Let A; and B, € H, (1 <i<kk = 2) be com-
patible partitioned matrices. Let 6 be an operator mean with
supermultiplicative representing function f. Then

(i) ﬁ O(4,0B;) <H®A> <ﬁ®B,~>. (3-24)
k k k
i) J]*(4i0B) < (H*A,-)a(H*B,-). (3-25)

Proof. (i) Set X; = A;'?BA7"* (i=1,2,...
lows from supermultiplicative of f that

f(ﬁQX[> = ﬁGf(X

,k), then it fol-

(3-26)

Now

k

[[0t0B) = (41x)4))0- -0 (41X 4!

i=1

- 04%) ()0 0f1x,) (4170 0.4))

= (4l
(i) o) i)
< ( ’ ’

‘e
H@A )1 : (H@X) (H@A,) "
= (gm,) J<Q®B,>.

(it) It follows immediately by applying 1-11 and 1-12 in Part (i)
of Theorem 3.9.

Corollary 3.10. Let ¢ be a positive linear map, then for any
compatible partitioned matrices A; and B; € H; (i = 1,2)

o((4,:0B)) #(4,0B,) <

o

(A1 # 4:)O¢(B, # B,). (3-27)

Proof. It follows by replacing 4 by 4,0 B, and B by A, @B, in
Theorem 3.4.

Corollary 3.11. Let ¢ be a positive linear map, then for any
compatible partitioned matrices A; and
BieH (1<i<kkz=>?2)

o

S QA1 # Ay #---F# A )O@(By # By # - - - # By). (3-28)

Proof. The proof is straightforward by using Corollary 3.10
and induction on k.

Corollary 3.12. Let A;and B; € H, (i =
titioned matrices. Then

1,2) be compatible par-

(41 % B)) #(42 % By) = (4

o

| qiEAz) * (B ;2&32). (3-29)

Proof. Due to Corollary 3.10, Lemma 2.1 and using 1-11 and
1-12, then there is a normalized positive linear map ¢ such that

(Al 72£Az) * (Bl 7?32) = (p((A](':)Bl) %(AZG)BZ))
= o((4 #AZ)@)(B@Bz))

0(4108)) # p(A420B,) = (A * B1) #(42 * By).

Corollary 3.13. Let A; and B; € H;
compatible partitioned matrices. Then

li[#(A,- * B;) = <H#A,-> * (H#Bi>~

=1 =1 i=1

(1<i<kk=2) be

(3-30)
Proof. The proof is straightforward by using Corollary 3.12

and induction on k.

Corollary 3.14. Let A; € H (1 < i< k,k = 2) be compatible
partitioned matrices. Then for —oo < p,q < o0,
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>

(3-31)

) * AV | # ) * A *A"*"
1} [ i=1 [ i=1

Proof. Due to Theorem 2.3, Theorem 3.4 and using 1-11 and
1-12, then there is a normalized positive linear map ¢ such that

k k k
® (H@A{) # <H®A§’> =0 (H@A}!’*‘”/Z)
i=1 i=1 i=1

k k K k
<o (H@Aﬁ’) #o (H®A7> = (H * Af-’) # (H * A;’) .
i1 i1 i1 i1

Theorem 3.15. Let A and B € H} be compatible partitioned
matrices such that AxB = BxA. Then

Ax B > (A#B) * (A#B). (3-32)

Proof. Since A*B = B*A, then

(Ax B)#(B+ A) = (A * B)#(A« B) = (4 x B).
Since A#B = B#A and from Corollary 3.12, then we have
(A% B)#(B* A) = (A% B) > (A#B)  (B#A)

= (A#B) x (A#B).

Theorem 3.16. Let A; and B; € H;(l < i< k) be compatible
partitioned matrices and let @; be a concave map from H, to
Hj, (1 <i<k). Then the map

Ay, Hr[@(p (3-33)
is convex.
Proof. It suffices to show the convexity when 4 = 1/2. Since
the map under consideration is continuous, then
H@(p, (44, + (1 = 1)B, HG‘/’r % A-+B,-))71
i=1
k 1
<[[OG{e(4) +¢i(B)})"  (Concavity of ¢,)
i1
k ] k
< J]O(pi(4)#0,(B)) H “#e(B) )

1

=

= { ' ®§DI(AI)71 }#{ﬂ(')(p;(&)'} (Theorem(2.4)
%{H(@(o, S+ [eeB) }

Corollary 3.17. Let A; € Hj;
tioned matrices and let 0 < p; <1 (1

»—>H®A i

is convex on H:l

(1 < i< k) be compatible parti-
<i< k). Then the map

(Ay,...,A4 (3-34)

X H .

ny

Proof. The proof is straightforward by applying Theorems
3.16 and 3.5.

Corollary 3.18. Let A; € H, (1 <i< k) be compatible parti-
tioned matrices and let 0<p; <1 (1<i<k) such that
Zf:lpi < 1. Then the map

k
(Ay,..., A [047 (3-35)
i=1

-x HY

ng

is concave on H, x

Proof. The proofis by induction on k. If k = 1, then the result
is true by Theorem 3.5. Suppose that Eq. 3-35 is true for the
case k—1. If pp =1, then p,=0 (1<i<k—1) and the
map becomes (Ay,..., A)—[O--- O, A, which is con-
cave. If p, = 0, then the map becomes

"/(

(Ai,..., 4 )~ AV O - - @A 0L,

which is concave. Now suppose 0 < p, < 1. Then the map

k—1
(A17 ey A/cfl)’_)H®A?i/(l_1]k)

i=1

is concave by the induction assumption. Now with f(1) = 27,
the map

k
(Ay,..., A)—~] [04"

i=1

is concave.

Corollary 3.19. Let A; € H, (1 <i<k) be compatible parti-

tioned matrices and let 1<q<2, 0<p;,<1 (1< i<k)
such that ZHI’: q — 1. Then the map
k
(Ao, Ay, - .., A )—>AO (H@Aﬂ") (3-36)
i1

is convex on H;l X oo X H:{k.

Proof. The map

k
o(An iy, Ai) = 4570 (Hmﬁ”)

i=1

is concave, while the map

o[ for)

is affine, and the Corollary 3.19 follows by using the following
result (Ando, 1979): If ¢ and  are maps from H; to H;; and
if ¢ 1is concave and  is affine. Then the map
A Y(A)p(A)~"W(A) is convex.

Y(Ag, A, ..., Ax) =

Remark 3.20. All results obtained in Section 3 is quite general.
These results lead to inequalities involving the Hadamard and
Kronecker product for non-partitioned matrices A(i = 1,2
, ...k > 2);and Ando’s mean by setting « = 1/2, as a spe-
cial case.
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4. Conclusion

Several new attractive and interested inequalities related to
operator means associated with non-negative linear maps
and Khatri-Rao products of positive definite matrices are
established by using means of concavity and convexity theo-
rems. Some important special cases of these inequalities are
also discussed. The satisfactory definition of geometric mean
of positive definite matrices which satisfy properties from (i)
to (viii) and properties from (1) to (12) that are mentioned,
respectively, Kilicman and Al-Zhour (2005) and Kim et al.
(2011), and many other desirable new properties still need fur-
ther researches.
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