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Abstract In this article, we study numerical solutions of time-fractional fourth-order partial differ-

ential equations with variable coefficients by introducing the fractional derivative in the sense of

Caputo. We implement reliable series solution techniques namely Adomian decomposition method

(ADM) and He’s variational iteration method (HVIM). Some applications are presented to high-

light the significant features of these techniques. The comparison shows that the solutions obtained

are in good agreement with each other and with their respective exact solutions. Some of these types

of differential equations arise practically in the theory of transverse vibrations.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Fractional calculus is three centuries old as the conventional
calculus, but not very popular among science and/or engineer-
ing community. The beauty of this subject is that fractional
derivatives (and integral) are not a local (or point) property.

Thereby this considers the history and non-local distributed
effects. In other words, perhaps this subject translates the
.A. Khan).

ity. All rights reserved. Peer-

d University.

lsevier
reality of nature better. Many physical problems (Khan
et al., 2009; Mahmood et al., 2009; Yildirim and Koçak,

2009; Konuralp et al., 2009; Yildirim and Gülkanat, 2010;
Momani and Yildirim, 2010) are governed by fractional differ-
ential equations (FDEs), and finding the solution of these

equations has been the subject of many investigators in recent
years. The main reason consists in the fact that the theory of
derivatives of fractional (non-integers) stimulates considerable

interest in the areas of mathematics, physics, engineering and
other sciences. Most of the FDE cannot be solved exactly,
approximate and numerical methods must be used. Numerical
methods that are commonly used such as finite difference and

characteristics approaches need large amount of computa-
tional work and usually the affect of rounding off error causes
loss of accuracy in the results. The Adomian decomposition

method (ADM) (Wazwaz, 2001, 2002; Adomian and Rach,
1996) and He’s variational iteration method (HVIM) (He,
1997, 1998, 1999, 2006, 2007; He and Wu, 2007; Ates and

Yildirim, 2009) are relatively new approaches to provide the
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http://dx.doi.org/10.1016/j.jksus.2010.06.012
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analytical approximation to linear and nonlinear problems. In
1998, the variational iteration method was first proposed by
He to give approximate solutions of the seepage flow prob-

lem in the porous media with fractional derivatives. These tech-
niques are particularly valuable as tool for scientists and applied
mathematicians, because they provide immediate and visible

symbolic terms of analytic solutions (Biazar and Ghazvini,
2007; Momani and Odibat, 2007; Khan et al., 2010), as well as
numerical approximate solutions to both linear and nonlinear

differential equations without linearization and discretization
(Khaliq and Twizell, 1963). The governing equation of motion
of the beam can be written as

@2uðx; tÞ
@t2

þ gðxÞ @
4uðx; tÞ
@x4

¼ 0; l0 < x < l1; gðxÞ > 0; t > 0;

where gðxÞ is the ratio of flexural rigidity of the beam to its
mass per unit length (Gorman, 1975). The initial and boundary
conditions associated with above equation are of the form
(Khaliq and Twizell, 1963)

uðx; 0Þ ¼ h0ðxÞ;
@u

@t
ðx; 0Þ ¼ h1ðxÞ; l0 6 x 6 ll;

uðl0; tÞ ¼ f0ðtÞ; uðl1; tÞ ¼ f1ðtÞ;
@2u

@x2
ðl0; tÞ ¼ G0ðtÞ;

@2u

@x2
ðl1; tÞ ¼ G1ðtÞ; t > 0;

where the functions h0ðxÞ; h1ðxÞ; f0ðtÞ; f1ðtÞ; G0ðtÞ, and G1ðtÞ
are continuous functions.

In this work, the n-dimensional time-fractional fourth-or-
der partial differential equation with variable coefficients will

be approached analytically by Adomian decomposition meth-
od (ADM) and He’s variational iteration method (HVIM).
Three applications are given to assess the efficiency and conve-

nience of the two methods.
2. Fractional calculus

We give some basic definitions, notations and properties of the
fractional calculus theory used in this work.

Definition 2.1. The Riemann–Liouville fractional integral
operator of order a P 0, for a function f 2 Cl ðl P �1Þ is
defined as

JafðxÞ ¼ 1

CðaÞ

Z x

0

ðx� tÞa�1fðtÞdt; a > 0; x > 0; ð1Þ

J0fðxÞ ¼ fðxÞ: ð2Þ

We will need the following basic properties:

For f 2 Clðl P �1Þ; a; b P 0 and c > 1:

JaJbfðxÞ ¼ JaþbfðxÞ; ð3Þ
JaJbfðxÞ ¼ JbJafðxÞ; ð4Þ

Jaxc ¼ Cðcþ 1Þ
Cðaþ cþ 1Þx

aþc: ð5Þ

Definition 2.2. The fractional derivative of f 2 Cm
�1, in the Cap-

uto sense, is defined as Caputo (Caputo, 1967)
DafðtÞ ¼ 1

Cðm� aÞ

Z t

0

ðt� sÞm�a�1
fðmÞðsÞds;

ðm� 1 < ReðaÞ 6 m;m 2 N; t > 0Þ: ð6Þ

We mention some of its properties as follows:

DaK ¼ 0;

where K is a constant.

Datl ¼
0; l 6 a� 1;
Cðlþ1Þ

Cðl�aþ1Þ t
l�a; l > a� 1:

(
ð7Þ

Also, we need here two of its basic properties:

Lemma 2.1. If m� 1 < a 6 m; m 2 N and f 2 Cm
l ; l > �1,

then

DaJafðxÞ ¼ fðxÞ

and

JaDafðxÞ ¼ fðxÞ �
Xm�1
k¼0

fðkÞð0þÞ x
k

k!
; x > 0:

The Caputo fractional derivative is considered here because
it allows traditional initial and boundary conditions to be in-
cluded in the formulation of the problem.

Definition 2.3. For m to be the smallest integer that exceeds a,
the Caputo time-fractional derivative of order a > 0, is defined
as

Da
t uðx;tÞ¼

@auðx;tÞ
@ta

¼
1

Cðm�aÞ
R t

0
ðt� sÞm�a�1 @muðx;sÞ

@sm ds; m�1< a<m;

@muðx;tÞ
@tm

; a¼m2N:

(

ð8Þ
3. Methodologies

3.1. The Adomian decomposition method (ADM)

Consider the n-dimensional time-fractional differential equa-

tion of fourth-order with variable coefficients

@auðx1; x2; . . . ; xn; tÞ
@ta

þ A1ðx1; x2; . . . ; xnÞ
@4uðx1; x2; . . . ; xn; tÞ

@x4
1

þ A2ðx1; x2; . . . ; xnÞ
@4uðx1; x2; . . . ; xn; tÞ

@x4
2

þ � � �

þ Anðx1; x2; . . . ; xnÞ
@4uðx1; x2; . . . ; xn; tÞ

@x4
n

¼ Hðx1; x2; . . . ; xn; tÞ; x1; x2; . . . ; xn 2 R;

t > 0; 1 < a 6 2: ð9Þ

The time-fractional differential equation (9) can be ex-
pressed in terms of operator form as

Da
t uðx1; x2; . . . ; xn; tÞ þ ðA1L4x1 þ A2L4x2 þ � � � þ AnL4xnÞ
� uðx1; x2; . . . ; xn; tÞ ¼ H: ð10Þ

where Da
t ¼ @a

@ta
and L4xq ¼ @4

@x4q
; q ¼ 1; 2; 3; . . . ; n, while H;A1;

A2;A3; . . . ;An are continuous function and a is the parameter
describing the order of the time-fractional derivative.

On applying the operator Ja, on both sides of Eq. (10), we
obtain
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uðx1; x2; . . . ; xn; tÞ ¼
Xm�1
k¼0

@k

@tk
uðx1; x2; . . . ; xn; 0

þÞ t
k

k!

� Ja½ðA1L4x1 þ A2L4x2 þ � � �
þ AnL4xnÞuðx1; x2; . . . ; xn; tÞ �H�: ð11Þ

The Adomian decomposition method assumes a series solu-
tion for uðx1; x2; . . . ; xn; tÞ given by an infinite series of

components

uðx1; x2; . . . ; xn; tÞ ¼
X1
j¼0

ujðx1; x2; . . . ; xn; tÞ; ð12Þ

where the components ujðx1; x2; . . . ; xn; tÞ will be determined
recursively. Using Eq. (12) in Eq. (11), we get

X1
j¼0

ujðx1; x2; . . . ; xn; tÞ

¼
Xm�1
k¼0

@k

@tk
uðx1; x2; . . . ; xn; 0

þÞ t
k

k!

� Ja ðA1L4x1 þ A2L4x2 þ � � � þ AnL4xnÞ½

�
X1
j¼0

ujðx1; x2; . . . ; xn; tÞ �H

#
ð13Þ

Following the decomposition method, we introduce the

recursive relation as

u0ðx1; x2; . . . ; xn; tÞ ¼
Xm�1
k¼0

@k

@tk
uðx1; x2; . . . ; xn; 0

þÞ t
k

k!
þ JaðHÞ:

ð14:1Þ

urþ1ðx1; x2; . . . ; xn; tÞ
¼ �Ja½ðA1L4x1 þ A2L4x2 þ � � � þ AnL4xnÞurðx1; x2; . . . ; xn; tÞ�;
r P 0: ð14:2Þ

where in above relation (14.1), m ¼ 2, since for our problem

1 < a 6 2.

3.2. He’s variational iteration method (HVIM)

Consider again the time-fractional differential equation (9) of
fourth order. The correction functional for it can be approxi-
mately expressed as follows:

ukþ1ðx1; x2; . . . ; xn; tÞ

¼ ukðx1; x2; . . . ; xn; tÞ þ
Z t

0

kðfÞ @mukðx1; x2; . . . ; xn; fÞ
@fm

�

þ A1

@4~ukðx1; x2; . . . ; xn; fÞ
@x4

1

þ � � �

þ An

@4~ukðx1; x2; . . . ; xn; fÞ
@x4

n

�H

�
df; ð15Þ

where k is a general Lagrange multiplier, which can be identi-

fied optimally via variational theory, here @4 ~uk
@x4

1

; . . . ; @
4~uk
@x4n

are con-

sidered as restricted variations. Making the above functional

stationary, noticing that d~uk ¼ 0,

dukþ1 ¼ duk þ d
Z t

0

kðfÞ @muk
@fm

�H

� �
df ð16Þ

yields the following Lagrange multipliers
k ¼ �1; for m ¼ 1: ð17Þ
k ¼ f� t; for m ¼ 2: ð18Þ

Therefore, for m ¼ 1, we obtain the following iteration
formula:

ukþ1ðx1; x2; . . . ; xn; tÞ
¼ ukðx1; x2; . . . ; xn; tÞ

�
Z t

0

@auk
@fa þ A1

@4uk
@x4

1

þ � � � þ An

@4uk
@x4

n

�H

� �
df ð19Þ

and for m ¼ 2, we obtain the following iteration formula:

ukþ1 ¼ uk þ
Z t

0

ðf� tÞ @auk
@fa þ A1

@4uk
@x4

1

þ � � � þ An

@4uk
@x4

n

�H

� �
df:

ð20Þ
4. Numerical applications

In this section, we apply the ADM and HVIM developed in
Section 3 to solve one and two dimensional initial boundary

value problems with variable coefficients. The methods may
also be applicable for higher dimensional spaces. Numerical re-
sults reveal that the ADM and HVIM are easy to implement

and reduce the computational work to a tangible level while
still maintaining a higher level of accuracy. All the results for
the following three applications are calculated by using the

symbolic calculus software MATHEMATICA.

4.1. Application 1

Consider the following case of one-dimensional time-fractional

fourth-order PDE

Da
t uðx; tÞ þ

1

x
þ x4

120

� �
@4uðx; tÞ
@x4

¼ 0;
1

2
< x < 1;

t > 0; 1 < a 6 2: ð21Þ
subject to the initial and boundary conditions:

uðx; 0Þ ¼ 0;
@u

@t
ðx; 0Þ ¼ 1þ x5

120
; u

1

2
; t

� �

¼ 1þ 0:55

120

� �
sinðt; aÞ; @2u

@x2

1

2
; t

� �

¼ 1

6

1

23
sinðt; aÞ; uð1; tÞ

¼ 121

120
sinðt; aÞ; @2u

@x2
ð1; tÞ ¼ 1

6
sinðt; aÞ: ð22Þ

where the function is defined as sinðt; aÞ ¼
P1

i¼0
ð�1Þi tiaþ1
Cðiaþ2Þ

On applying ADM, the first component of the decomposi-

tion series solution is:

u0ðx; tÞ ¼ 1þ x5

120

� �
t ð23Þ

and the next few successive components are as follows:

u1 ¼ �
taþ1

Cðaþ 2Þ 1þ x5

120

� �
; ð24Þ

u2 ¼
t2aþ1

Cð2aþ 2Þ 1þ x5

120

� �
; ð25Þ

u3 ¼ �
t3aþ1

Cð3aþ 2Þ 1þ x5

120

� �
; ð26Þ
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and so on, in this manner the rest of the components of the

decomposition series can be obtained. The ADM solution in
series form is

u ¼ t� taþ1

Cðaþ 2Þ þ
t2aþ1

Cð2aþ 2Þ �
t3aþ1

Cð3aþ 2Þ þ � � �
� �

1þ x5

120

� �
:

ð27Þ

Now we solve the problem by HVIM. According to the iter-

ation formula (20), the iteration formula for Eq. (21) is given by

ukþ1 ¼ uk þ
Z t

0

ðf� tÞ Da
fukðx; fÞ þ

1

x
þ x4

120

� �
@4ukðx; fÞ
@x4

� �
df:

ð28Þ

Using the above iteration formula, we begin with
u0ðx; tÞ ¼ 1þ x5

120

� �
t, and get the next approximations as

follows:

u1 ¼ t� t3

3!

� �
1þ x5

120

� �
; ð29Þ

u2¼ t� t3

3
þ t5

5!
þ t5�a 1

Cð5�aÞ�
1

ð5�aÞCð4�aÞ

� �� �
1þ x5

120

� �
;

ð30Þ

u3 ¼ t� t3

2
þ t5

40
� t7

7!
þ t5�a 3

Cð5� aÞ �
3

ð5� aÞCð4� aÞ

� ��

þ t7�2a
�1

Cð7� 2aÞ þ
1

ð7� 2aÞCð6� 2aÞ

� �
þ A1ðaÞt7�a

�

� 1þ x5

120

� �
: ð31Þ

and so on, in the same manner the rest of the components of the
iteration formula equation (28) can be obtained, where A1ðaÞ
are given in Appendix. The fourth term approximate solution is

u ¼ t� t3

2
þ t5

40
� t7

7!
þ t5�a 3

Cð5� aÞ �
3

ð5� aÞCð4� aÞ

� ��

þ t7�2a
�1

Cð7� 2aÞ þ
1

ð7� 2aÞCð6� 2aÞ

� �
þ A1ðaÞt7�a

�

� 1þ x5

120

� �
: ð32Þ
Table 1 Comparison of the approximate solutions of equations (21

t x a ¼ 1:50 a ¼ 1:75

uADM uHVIM uADM

0.2 0.50 0.194734 0.196914 0.19736

0.60 0.194309 0.196991 0.197437

0.75 0.195068 0.197527 0.197699

1.0 0.196306 0.198504 0.198953

0.4 0.50 0.370692 0.377682 0.382211

0.60 0.370835 0.377828 0.382359

0.75 0.3713 2 8 0.37833 0.382867

1.0 0.373633 0.38073 0.38529 6

0.6 0.50 0.521419 0.531411 0.546537

0.60 0.521621 0.531617 0.546748

0.75 0.522314 0.532323 0.547475

1.0 0.525627 0.5357 0.550947
When a ¼ 2, the solution obtained by Wazwaz (2001, 2002)

and Biazar and Ghazvini (2007) is recovered as a special case.
Table 1 shows the approximate solutions for Eqs. (21) and

(22) obtained for different values of a using the ADM and

HVIM. It is clear from the table that our approximate solu-
tions using these methods are in good agreement with the exact
values. It is note that only the fourth-order term of HVIM
solution and only four terms of the ADM series used in eval-

uating the approximate solutions for Table 1. It is evident that
the efficiency of these approaches can be dramatically en-
hanced by computing further terms or further components of

uðx; tÞ.

4.2. Application 2

Da
t uðx; tÞ þ

x

sinx
� 1

� � @4uðx; tÞ
@x4

¼ 0; 0 < x < 1; t > 0;

1 < a 6 2; ð33Þ

subject to the initial and boundary conditions:

uðx; 0Þ ¼ x� sin x;
@u

@t
ðx; 0Þ ¼ �xþ sinx;

uð0; tÞ ¼ 0;
@2u

@x2
ð0; tÞ ¼ 0; uð1; tÞ ¼ Expðt; aÞð1� sin 1Þ;

@2u

@x2
ð1; tÞ ¼ Expðt; aÞ sin 1: ð34Þ

where the function Expðt; aÞ is defined as Expðt; aÞ ¼P1
i¼0ð�1Þ

i tia=2

C ia
2þ1ð Þ

On solving Eqs. (33) and (34) by ADM, the first few com-

ponents are

u0ðx; tÞ ¼ ð1� tÞðx� sinxÞ; ð35Þ

u1 ¼
ta

Cðaþ 1Þ �
taþ1

Cðaþ 2Þ

� �
ðx� sinxÞ; ð36Þ

u2 ¼
t2a

Cð2aþ 1Þ �
t2aþ1

Cð2aþ 2Þ

� �
ðx� sin xÞ; ð37Þ

u3 ¼
t3a

Cð3aþ 1Þ �
t3aþ1

Cð3aþ 2Þ

� �
ðx� sin xÞ: ð38Þ

and so on, in this manner the rest of the components of the

decomposition series can be obtained.
) and (22) obtained by ADM and HVIM.

a ¼ 2

uHVIM uADM uHVIM uExact

0.197687 0.198721 0.198721 0.198721

0.1977 63 0.198798 0.198798 0.198798

0.198026 0.199062 0.199062 0.199062

0.199282 0.200325 0.200325 0.200325

0.383217 0.38952 0.38952 0.38952

0.383366 0.389671 0.389671 0.389671

0.383875 0.390188 0.390188 0.390188

0.3363 1 0.392663 0.392663 0.392663

0.547792 0.564789 0.564789 0.564789

0.548005 0.565008 0.565008 0.565008

0.548733 0.565759 0.565759 0.565759

0.552214 0.569348 0.569348 0.569348
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The fourth term approximate solution is given by

u ¼ 1� tþ ta

Cðaþ 1Þ �
taþ1

Cðaþ 2Þ þ
t2a

Cð2aþ 1Þ �
t2aþ1

Cð2aþ 2Þ

�

þ t3a

Cð3aþ 1Þ �
t3aþ1

Cð3aþ 2Þ

�
ðx� sinxÞ: ð39Þ

According to the iteration formula (20), the iteration for-
mula for Eq. (33) is given by

ukþ1 ¼ uk þ
Z t

0

ðf� tÞ Da
fukðx; fÞ þ

x

sinx
� 1

� � @4ukðx; fÞ
@x4

� �
df:

ð40Þ

By the above iteration formula, starting with u0ðx; tÞ ¼
ð1� tÞðx� sin xÞ, we can obtain the following approximations:

u1 ¼ 1� tþ t2

2!
� t3

3!

� �
ðx� sin xÞ; ð41Þ

u2 ¼ 1� tþ t2 � t3

3
þ t4

4!
� t5

5!
þ t4�a 1

ð4� aÞCð3� aÞ

��

� 1

Cð4� aÞ

�
� t5�a 1

ð5� aÞCð4� aÞ �
1

Cð5� aÞ

� ��
� ðx� sinxÞ; ð42Þ

u3 ¼ 1� tþ 3t2

2
� t3

2
þ t4

8
� t5

40
þ t6

6!
� t7

7!
þ A2ðaÞt6�a

�

þ A3ðaÞt7�a þ t4�a 3

ð4� aÞCð3� aÞ �
3

Cð4� aÞ

� �

þ t5�a 3

Cð5� aÞ �
3

ð5� aÞCð4� aÞ

� �

þ t6�2a
1

Cð6� 2aÞ �
1

ð6� 2aÞCð5� 2aÞ

� �

þ t7�2a
�1

Cð7� 2aÞ þ
1

ð7� 2aÞCð6� 2aÞ

� ��
ðx� sinxÞ

ð43Þ

and so on. When a ¼ 2, we recovered the solution obtained by
Wazwaz (2001, 2002) and Biazar and Ghazvini (2007). The ex-
act solution of Eq. (33) for a ¼ 2 is u ¼ ðx� sin xÞe�t.
Table 2 Comparison of the approximate solutions of equations (33

t x a ¼ 1:50 a ¼ 1:75

uADM uHVIM uADM

0.2 0.25 0.0022379 0.00218727 0.00216712

0.30 0.0177361 0.0173348 0.0171751

0.75 0.058934 0.0575971 0.0570666

0.9 0.100577 0.0983018 0.0973963

0.4 0.25 0.00195106 0.00192801 0.00184347

0.50 0.0154628 0.0152801 0.0146101

0.75 0.0513771 0.0507702 0.0485438

0.9 0.0876861 0.0865502 0.0828503

0.6 0.25 0.001573 0.00170687 0.00158783

0.50 0.0124666 0.0135275 0.012584

0.75 0.0414217 0.0449467 0.041812

0.9 0.0706951 0.0767111 0.713612
u3 ¼ 1� tþ 3t2

2
� t3

2
þ t4

8
� t5

40
þ t6

6!
� t7

7!

þ t4�a 3

ð4� aÞCð3� aÞ �
3

Cð4� aÞ

� �

þ t5�a 3

Cð5� aÞ �
3

ð5� aÞCð4� aÞ

� �
þ A2ðaÞt6�a þ A3ðaÞt7�aþt6�2a

� 1

Cð6� 2aÞ �
1

ð6� 2aÞCð5� 2aÞ

� �

þ t7�2a
�1

Cð7� 2aÞ þ
1

ð7� 2aÞCð6� 2aÞ

� ��
ðx� sin xÞ:

ð44Þ

Table 2 shows the approximate solutions for Eqs. (33) and
(34) obtained for different values of a using the ADM and
HVIM. It is clear from Table 2 that our approximate solutions

using the methods are in good agreement with the exact values.
As in the previous example, only the fourth-order term of
HVIM solution and only four terms of the ADM series were

used in evaluating the approximate solutions for Table 2.

4.3. Application 3

We consider a two dimensional time-fractional fourth-order
PDE

Da
t uðx; y; tÞ þ 2

1

x2
þ x4

6!

� �
@4uðx; y; tÞ

@x4

þ 2
1

y2
þ y4

6!

� �
@4uðx; y; tÞ

@y4
¼ 0;

1

2
< x; y < 1; t > 0; 1 < a 6 2; ð45Þ

subject to the initial and boundary conditions:

uðx; y; 0Þ ¼ 0;
@u

@t
ðx; y; 0Þ ¼ 2þ x6

6!
þ y6

6!
;

u
1

2
; y; t

� �
¼ 2þ 0:56

6!
þ y6

6!

� �
sinðt; aÞ;

uð1; y; tÞ ¼ 2þ 1

6!
þ y6

6!

� �
sinðt; aÞ;
) and (34) obtained by ADM and HVIM.

a ¼ 2

uHVIM uADM uHVIM uExact

0.00215504 0.00212546 0.00212545 0.00212546

0.0171111 0.0168449 0.0168449 0.0168449

0.05568538 0.0559694 0.0559693 0.0559694

0.0970331 0.0955238 0.0955238 0.0955238

0.00183161 0.00174018 0.00173996 0.00174018

0.0145161 0.0137915 0.0137897 0.0137915

0.0482315 0.0458239 0.0458181 0.0458239

0.0823173 0.0782083 0.0782083 0.0782083

0.00157339 0.00142474 0.00142307 0.00142474

0.0124697 0.0112915 0.0112783 0.0112915

0.041432 0.0375174 0.0374735 0.0375174

0.0701726 0.0640315 0.0640315 0.0640315



96 N.A. Khan et al.
@2u

@x2

1

2
; y; t

� �
¼ 0:54

24
sinðt; aÞ;

@2u

@y2
x;
1

2
; t

� �
¼ 0:54

24
sinðt; aÞ;

@2u

@x2
ð1; y; tÞ ¼ 1

24
sinðt; aÞ; @2u

@y2
ðx; 1; tÞ ¼ 1

24
sinðt; aÞ: ð46Þ

By applying ADM, we have

u0 ¼ t 2þ x6

6!
þ y6

6!

� �
; ð47Þ

u1 ¼ �
taþ1

Cðaþ 2Þ 2þ x6

6!
þ y6

6!

� �
; ð48Þ

u2 ¼
t2aþ1

Cð2aþ 2Þ 2þ x6

6!
þ y6

6!

� �
; ð49Þ

u3 ¼ �
t3aþ1

Cð3aþ 2Þ 2þ x6

6!
þ y6

6!

� �
; ð50Þ

and so on, in this manner the rest of the components of the
decomposition series can be obtained. The fourth term approx-
imate solution is given by
Table 3 Comparison of the approximate solutions of equations (45

t x a ¼ 1:50 a ¼ 1:75

uADM uHVIM uADM

0.2 0.60 0.389381 0.39374 0.394632

0.70 0.3894 0.393759 0.34651

0.80 0.389439 0.393799 0.394691

1.00 0.389638 0.394001 0.394893

0.4 0.60 0.741216 0.755194 0 764250

0.70 0.741253 0.755231 0.764288

0.80 0.741327 0.755307 0.764365

1.00 0.741707 0.755694 0.764756

0.6 0.60 1.0426 1.06258 1.09283

0.70 1.04265 1.06263 1.09288

0.80 1.04276 1.06274 1.09299

1.00 1.04329 1.06229 1.09355

Table 4 Comparison of the approximate solutions of equations (45

t x a ¼ 1:50 a ¼ 1:75

uADM uHVIM uADM

0.2 0.6 0.389945 0.395355 0.394703

0.7 0.389947 0.395375 0.394722

0.8 0.389509 0.395414 0.394762

1.0 0.389708 0.395617 0.394064

0.4 0.6 0.741349 0.766399 0.764387

0.7 0.741386 0.766437 0.764325

0.8 0.74146 0.766514 0.764501

1.0 0.74184 0.766906 0.764893

0.6 0.6 1.04279 1.09553 1.09302

0.7 1.04284 1.09559 1.09308

0.8 1.04295 1.0957 1.09319

1.0 1.04348 1.09626 1.09375
u ¼ t� taþ1

Cðaþ 2Þ þ
t2aþ1

Cð2aþ 2Þ �
t3aþ1

Cð3aþ 2Þ

� �
2þ x6

6!
þ y6

6!

� �
:

ð51Þ

According to the iteration formula (20), the iteration for-
mula for Eq. (45) is given by

ukþ1 ¼ uk þ
Z t

0

ðf� tÞ Da
fukðx; y; fÞ þ 2

1

x2
þ x4

6!

� �
@4ukðx; y; fÞ

@x4

�

þ 2
1

y2
þ y4

6!

� �
@4ukðx; y; fÞ

@y4

�
df: ð52Þ

Using the above iteration formula, starting with u0ðx; tÞ ¼
t 2þ x6

6!
þ y6

6!

� �
, we can obtain the following approximations:

u1 ¼ t� t3

3!

� �
2þ x6

6!
þ y6

6!

� �
: ð53Þ

u2 ¼ t� t3

3
þ t5

5!
þ t5�a 1

Cð5� aÞ �
1

ð5� aÞCð4� aÞ

� �� �

� 2þ x6

6!
þ y6

6!

� �
: ð54Þ
) and (46) obtained by ADM and HVIM (y = 0.4).

a ¼ 2

uHVIM uADM uHVIM uExact

0.395285 0.397353 0.397353 0.397353

0.395304 0.397372 0.397372 0.397372

0.395344 0.397412 0.397412 0.397412

0.395546 0.397616 0.397616 0.397616

0.766262 0.778864 0.778364 0.778864

0.7663 0.778903 0.778903 0.778903

0.766377 0.778981 0.778981 0.778981

0.766769 0.77938 0.77938 0.77938

1.09534 1.12932 1.12932 1.12932

1.09539 1.12938 1.12938 1.12938

1.0955 1.12949 1.12949 1.12949

1.09606 1.13007 1.13007 1.13007

) and (46) obtained by ADM and HVIM (y = 0.8).

a ¼ 2

uHVIM uADM uHVIM uExact

0.39536 0.397424 0.397424 0.397424

0.395379 0.397443 0.397443 0.397443

0.395429 0.397483 0.397483 0.397483

0.395622 0.397687 0.397687 0 397687

0 766575 0.779004 0.779004 0.779004

0.766613 0.779042 0.779042 0.779042

0.76669 0.77912 0.77912 0.77912

0.767683 0.779519 0.779519 0.779519

1.09702 1.12953 1.12953 1.12953

1.09707 1.12958 1.12958 1.12958

1.09718 1.1297 1.1297 1.1297

1.09774 1.13027 1.13027 1.13027
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u3 ¼ t� t3

2
þ t5

40
� t7

7!
þ t5�a 3

Cð5� aÞ �
3

ð5� aÞCð4� aÞ

� ��

þt7�2a 1

ð7� 2aÞCð6� 2aÞ �
1

Cð7� 2aÞ

� �
þ A1ðaÞt7�a

�

� 2þ x6

6!
þ y6

6!

� �
; ð55Þ

and so on, in the same manner the rest of the components of
the iteration formula (52) can be obtained. The fourth term
approximate solution is given by:

u ¼ t� t3

2
þ t5

40
� t7

7!
þ t5�a 3

Cð5� aÞ �
3

ð5� aÞCð4� aÞ

� ��

þ t7�2a
1

ð7� 2aÞCð6� 2aÞ �
1

Cð7� 2aÞ

� �
þ A1ðaÞt7�a

�

� 2þ x6

6!
þ y6

6!

� �
: ð56Þ

It is obvious that for a ¼ 2, ADM solution (51) and HVIM

solution (56) are identical. The exact solution of Eq. (43) for

a ¼ 2 is u ¼ 2þ x6

6!
þ y6

6!

� �
sin t.

Table 3 for y = 0.4 and Table 4 for y = 0.8 show the

approximate solutions for Eq. (45) obtained for different val-
ues of a using the ADM and HVIM. The values of a = 2 is
the only case for which we know the exact solution. It is clear

from the table that our approximate solutions using the meth-
ods are in good agreement with the exact values. As in the pre-
vious applications only the fourth-order term of HVIM

solution and only four terms of the ADM series were used in
evaluating the approximate solutions for Tables 3 and 4.
5. Conclusions

In this paper, the ADM and HVIM were use to obtain the ana-
lytical/numerical solution of time-fractional fourth-order par-

tial differential equations with variable coefficients. To
illustrate the analytical and numerical results, we used MATH-
EMATICA. There are few important points to make here.
Firstly, ADM andHVIM provide the solution in terms of easily

computable components. These methods are powerful and effi-
cient techniques in finding exact and approximate solutions for
linear and nonlinear models. They provide more realistic solu-

tions that converges very rapidly in real physical problems.
The analytic solutions of three applications, found by these
twomethods, are comparedwith each other as well as with exact

solutions. The numerical results show that the solutions are in
good agreement with each other and with their respective exact
solutions. Secondly, themethods were used in a direct way with-

out using linearization, perturbation or restrictive assumption.
Finally, the recent appearance of fractional partial differential
equations as in applications 1 and 2 modeled in some fields as
transverse vibrations (Gorman, 1975) make it necessary to

investigate themethod of solutions for such equations analytical
and numerical. The selection of the initial approximation is both
one of the simplest and one of themost important choiceswe can

makewhen employing theADMandHVIM.The initial approx-
imation should satisfy the initial and/or the boundary data for
the problem. We remark that the concept of a best initial guess

is a bit superfluous. Indeed, the best initial approximationwould
simply be the exact solution.
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Appendix A

A1ðaÞ ¼
1

ð7� aÞCð6� aÞ �
1

Cð7� aÞ þ
1

ð7� aÞCð5� aÞ

�

� 1

ð6� aÞCð5� aÞ �
1

ð7� aÞð5� aÞCð4� aÞ

þ 1

ð6� aÞð5� aÞCð4� aÞ

�

A2ðaÞ ¼
1

ð6� aÞCð5� aÞ �
1

Cð6� aÞ þ
1

ð6� aÞCð4� aÞ

�

� 1

ð5� aÞCð4� aÞ �
1

ð6� aÞð4� aÞCð3� aÞ

þ 1

ð5� aÞð4� aÞCð3� aÞ

A3ðaÞ ¼
1

Cð7� aÞ �
1

ð7� aÞCð6� aÞ �
1

ð7� aÞCð5� aÞ

�

þ 1

ð6� aÞCð5� aÞ þ
1

ð7� aÞð5� aÞCð4� aÞ

� 1

ð6� aÞð5� aÞCð4� aÞ

�
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