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1. Introduction

Homotopy perturbation method has been used by many math-
ematicians and engineers to solve various functional equations
(Yildirim and Ozis, 2007; Biazar et al., 2007, Noor and Mo-
hyud-Din, 2008; Ozis and Yildirim, 2007; Odibat and Moman-
1, 2008; Siddiqui et al., 2008; Ghori et al., 2007). This method
was further developed and improved by He and applied to
nonlinear oscillators with discontinuities (He, 2004), nonlinear
wave equations (He, 2005a), boundary value problem (He,
2006), limit cycle and bifurcation of nonlinear problems (He,
2005b), and many other subjects (He, 1999, 2000, 2003,
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2004). It can be said that homotopy perturbation method is
a universal one, is able to solve various kinds of nonlinear
functional equations.

2. Basic idea of method

For the purpose of applications illustration of the methodology
of the proposed method, using homotopy perturbation meth-
od, we consider the following nonlinear differential equation

A(u) —fr)=0, reQ, (1)

B(u,0u/on) =0, rerT, (2)
where A is a general differential operator, f{r) is a known ana-
lytic function, Bis a boundary condition and I' is the boundary
of the domain Q.

The operator A can be generally divided into two operators,
L and N, where L is a linear, while N is a nonlinear operator.
Eq. (1) can be, therefore, written as follows

L(u) + N(u) = f(r) = 0. 3)

Using the homotopy technique, we construct a homotopy
U(r,p) : 2 x [0,1] — R which satisfies
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H(U,p) = (1 = p)[L(U) — L(uo))] + p[A(U) — f(r)] or
—0, pelo.1), ree, @) OV dw, (0w U oV U
o o or  OtOx*  Ox*0rr  ox*
or N
1RO\ (100 ) b
H(U,p) = L(U) = L() + pL(w) + p[N(U) = fi)] =0, () +(35w) ~(ea) T10V) =0 12)
where p € [0, 1], is called homotopy parameter, and u is an ini- . .
. o . . . he sol f Eq. (12) has the foll fi
tial approximation for the solution of Eq. (1), which satisfies Suppose the solution of Eq. (12) has the following form
the boundary conditions. Obviously from Egs. (4) and (5) we U=Uy+pU, +p*Us+---. (13)

will have
H(U,0) = L(U) — L(up) =0, (6)
H(U,1) = A(U) - f(r) =0, (7)

we can assume that the solution of (4) or (5) can be expressed
as a series in p, as follows

U=Uy+pU +pUs+---. (8)
Setting p = 1, results in the approximate solution of Eq. (1)
—

In this paper, we consider Cauchy problem for the nonlinear
parabolic-hyperbolic equation of the following type

(2 2) (2 ),

with initial conditions

u

o (0 %) = 9, (X),
where the nonlinear term is represented by F(u), and 4 is the
Laplace operator in R".

X=(x,x2,...,%), k=0,1,2.

3. Examples

Example 1. Consider the following equation

0 FN(F PN (1P 1@ o
ot ox2)\or oxr) 3 Ox2 6 o ’

(10)
subject to the following initial conditions
u(0,x) = —x*,
Ou
a0 =0 (i
ou
W (0, X) =0.

With the exact solution
u(t,x) = —x* 4+ 47,

To solve Eq. (10) by homotopy perturbation method, we con-
struct the following homotopy

PU  Puy
“*”(W*W)

FU SU  dU U 18U\ [18U\
B . + 4 - 116U

o8 910x2 9x29r | ox* ' \3 0x2 6 07

Substituting (13) into (12) and equating the coefficients of the
terms with the identical powers of p leads to

0. 83U() . 831/[0 -
Pes T ar T
pl . 83 Ul (931,40 (93U0 84(]0 84U()

o 98 019x2  0x202 ' Ox*

LU\ (18°Us\
200) _(L950)Y) 6p, =0
+(38x2> (6 az2>+ 0=9

, PV OV 90U 9 207U, OU
P o T oox T oxor T oxt 9 ox? ox2
1 9°U, &°U, 9°U,
- ———+ 16U, =0
72 o o o¢ 0 TY
pj . 83[]/' B 83qu . 84U]>1 +84Uj—1 +l & 82Uk 82Uj—l—k
o8 Otoxr  Ox2012 Ox* 9 L= Ox2  Ox?
1 H oU; 0U; 6U/'7/c7i71
_m; Zo o ot o 16851 =0,
For simplicity we take Uy = uy = —x*. So we derive the follow-

ing recurrent relation for j=1,2,3,....

rt t
o[
0 0

(f _PUL UL +3‘U,4 +lz/—1 DU, Uik

« VG axor | TOL=0T92 A ge ge gy

j—1x~j—i—1 9U; AU, OUjj—i-1 crdeadt:

| OU Ui
0 36 22i-02k-0 o o —ar— T 16U

ot ot ot

(14)
The solution reads
U, =0,
U, =0,
U; = 4[3,
Uy =0,
and by repeating this approach we obtain, Us = Ug = --- = 0.

Therefore, the approximate solution of Example 1 can be read-
ily obtained by

u= U,-:—x4+t3,

00
i=0

and hence, u = —x* + 4%, which is an exact solution.

Example 2. Consider the following equation

o P\[P & Fu\"  [(u)’
(&‘ﬁ) (a_z_a_):<a_z) ‘(97) —ud, (19
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subject to the initial conditions

u(0,x) = e,

Ou N

E(va)ZE ) (16)
& u .

o (0,x) = ¢

With the exact solution
u(t,x) = e

To solve Eq. (15) by homotopy perturbation method, we con-
struct the following homotopy

WP U FU du o
AT o8 ox0r  ox0r | ox

>U >U R
— (7812 ) + <78\2> +2U° | =0,
or

oU_duw  (Fw OV _ U oU_(OU ’
0x20r2 " 9x*

o8 s ot dxdr o
>u\’
— 207 | =0. 1
+(8x2)+U) 0 (17)
Suppose the solution of Eq. (17) has the following form
U=Uy+pU +pUs+--. (18)

Substituting (18) into (12) and equating the coefficients of the
terms with the identical powers of p leads to

0 . 83U0 _ 831/{0 _
P or ’
83 U] 83110 83 Uo 84U0 84U0 82U0 :
pl . + _ _ + —
©or or  0tox* Ox20rr  ox* or?
2 2
- (aago) 20 =0
o’u, U,  o‘u, d'u, _o*U, BPU,
p2 . _ _ + —
o8 0t0x2  Ox20F  Ox* o o
U, &*U
+25 3 s AU =0,
v OU; U U U (< PU Ui
TOP a0xr oxaR | oxt = o o
U Uy
,Zaxz 57 +2kZUk,.k_0
k=0 0

starting with

2
U():u(): (1—0—1‘—0—5)8"‘6. (]9)
We have the following recurrent equations for j =1,2,3,....

t t
-
0 0

PU U =1 U 92U 1

t —_ = Zk
% / X208, 9x208 + 5\”4 Zl\ =09¢ 92
1 QU 3 U 1ok
0 +Zk 0 o +22 oUrUjm1 -k

2

) dé,déydt.

(20)

We obtain the following results
U1 = %e"',
4
U, = iex7
U; = 1706 vdots

Solution of Eq. (15) will be derived by adding these terms, so
U= Z U, = et
=0

Example 3. Consider the following equation
g & o Ou  &u du
5 e lu=ur+ 55 (21)
ot ox*)\or ox? ot or* Ox

with initial condition,

u(0, x) = cos x,

%(O,x) = —sinux,
2
?912 (0,x) = —cosx.

To solve Eq. (21) by homotopy perturbation method, we con-
struct the following homotopy

(1-p) ‘y_(/,% + 83_U, 2Y _ a'v

P\ o5~ o ) TP\ o8 " axor  axcor
o'U U O*U U

o~ Y )*07

orr Ox
or

PU  uy (a% U o'u  8'U

o0 op o8 oxor  ox0r T ot
U U U
ot o 8x) (22)

Suppose the solution of Eq. (22) has the form (8), substituting
(8) into (22), and comparing the terms with identical powers of
p, leads to

FU, &u
0. o 0
P es T an =9,
83U1 631/{0 83U() 64U() 64U0
P o - +
C o8 ot 0toxr Ox20rr  Ox*
20U 00y
"ot o ox
v, ou,  o‘u, d'u oU U,
2. 2 _ 1 _ 1 1 _ _l_ _0
P "o axar T aw Do ar Uiy
o Ox or ox
U UL a“U,-1 U, aU, 1k
P on T oo owor T on ZUk
_’Z‘:azm Uik _
or Ox ’
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We take
2
7 CosX. (23)

We have the following recurrent equations for j =1,2,3,...

Il

Uy = uy = cosx — tsinx —

f _PUua du a Uiy Z, 1 U, UL
Ix20&, ox* k=0 9¢
% / Ox2¢ " :;)xudtd " 1<: 9¢; d(, dfldfzdt.
0 +Zk 0 ()YA <)/7 ""22 Uk U.f*'*k
(24)

With the aid of the initial approximation given by Eq. (23) and
the iteration formula (24) we get the other of component as
follows

£ I
U, = §s1nx+mcosx
. — £ £
2=y sinx — G cos X,
¢ 4
Us; = = sinx + — COS X,
T 8!

The solution in a series form is

u=U+U +Uy+---
r : R
:cosx(l———l- + - )—smx(z—§+§+...)

274
= cos(x + 1),

which is an exact solution.
Example 4. Consider the following equation

a & F\N/¥ & & Ou
(550 52)(or2a sa) =52 @

subject to the initial condition,
u(0,x1,x7) = sinh(x; + x3),

0 .

%(O,XI,XQ) :2smh(x1 +XQ), (26)
2

%(o,xl,m = 4sinh(x; + x,).

With the exact solution
u(t, x1,x,) = sinh(x; + x,)e*

To solve Eq. (25) by homotopy perturbation method, we con-
struct the following homotopy

(1— p)(a‘_(]_%>+ <a3_U_ﬂ_ oru

o or ot dox? 91D
_d'u +(94_U+ duv v o'u
Ox30  Ox}  Ox3Ox3  Ox30P  Ox30x%
o'U  aU
+F—E+2U) =0,
or
PU Puy Puw U U QU +a“_U
o Ak 98 910X 910x2  Ox20r ' oxt
o'u o'u o'u 9'u oU
oo " oxor Tadon o o T 2U> 0. (27)

Suppose the solution of Eq. (27) has the following form (8),
substituting (8) into (27) and equating the coefficients of the
terms with the identical powers of p leads to

po . 83U() . 83140 _
- or or '
1 63U| 631/1() 83U0 83U0 84U0
D i —mx tHmz - -
or o OtOx?  O0x3  Ox30F
+a“UO+ v, 90U
oxt  0x20x3  OxX30P
U, Uy 09U,
— 20, =0,
Toxoetod T T
ou
o ! (0, x1,x2) = 2sinh(x; + x3),
, U, du, du,  d'u,  d'U
J - - - +
or  01oxt  019x3 OxPorr  Oxt
o'u,  o'u,  d'U
Ox30x3  Ox30*  Ox30x3
o'u,  au;
———+2U, =0,
ot o Y
>U .
8[22( ,X],Xz) = 4Sll’lh()€1 +X2),
LU UL UL UL UL
P o T oo ool 00 oxt
n U 90U 9'Up
Ox10x3  Ox30r  Ox30x3
U U,
. 2U;,_, =0,
o o o
We take
U() = Uy = sinh(x1 + .X'z). (28)
So we have
Qv Pu,  duly | dul | dul 9tuL
7ﬁfﬁfavzéﬂ+ ()\5’ +0\ (5\ 8'(5/7
x G ) dedeyt.
/0 (“r::vbé\% z U" -3 lo%dﬁﬁ: ok 4 45 UUp g l

(29)

With the aid of the initial approximation given by Eq. (28) and
the iteration formula (29) we get the other of component as
follows

4
U, = §t3 sinh(x; + x,),

2
U, = §[4 Sil’lh(X] + Xz),

4
U; = 1—5t4 sinh(x; + x7),

Therefore, the approximate solution can be readily obtained
by

u= Uo + U] + Uz +-.-= €2t sinh(x1 +X2),
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hence, u = ¢* sinh(x; + x,), which is an exact solution of
Example 4.

4. Conclusion

In this work, we used homotopy perturbation method for solv-
ing nonlinear partial differential parabolic-hyperbolic equa-
tions. The results have been approved the efficiency of this
method for solving these problems. The solution obtained by
homotopy perturbation method is valid for not only weakly
nonlinear equations but also for strong ones. Furthermore,
accurate solutions were derived from first-order approxima-
tions in the examples presented in this paper.
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