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Abstract This paper discusses the probabilistic backorders inventory system when the order cost

unit is a function of the order quantity. Our objective is to minimize the expected annual total cost

under a restriction on the expected annual holding cost when the lead time demand follows the uni-

form distribution. Then some special cases are deduced and an illustrative numerical example with

its graphs is added.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Many authors including Feldman (1978), Richards (1975) and
Sahin (1979) have studied continuous review inventory models
with constant units of cost and stationary distributions of

inventory level. The inventory models under continuous review
with stationary distribution of inventory level, or inventory
position in the case of positive lead-time, have been derived
using renewal theory as in Arrow et al. (1958). In addition,

Ben-Daya and Abdul (1994) examined unconstrained inven-
tory model with constant units of cost, demand follows a
normal distribution and the lead-time is one of the decision

variables.
Taha (1997) treated unconstrained probabilistic inventory

problems with constant units of cost. Hadley and Whitin
.
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(1963) discussed probabilistic continuous review inventory
models with constant units of cost and the lead-time demand

is a random variable. Their work gives heuristic approximate
treatment for each of the backorders and the lost sales cases.
Fabrycky and Banks (1967) studied the probabilistic single-
item, single source (SISS) inventory system with zero lead-

time, using the classical optimization. Abou-El-Ata et al.
(2003) introduced a probabilistic multi-item inventory model
with varying order cost; zero lead-time demand under two

restrictions and no shortage are to be allowed. Fergany and
El-Wakeel (2006a,b), applied several continuous distributions
for constrained probabilistic lost sales inventory models with

varying order cost using Lagrangian method. Recently, Kotb
and Fergany (2011) deduced multi-item EOQ model with vary-
ing holding cost using geometric programming approach.

This paper considering the backorders inventory model

with varying order cost, a restriction on the expected annual
holding cost and the lead-time demand follows Uniform distri-
bution. The policy variables of this model are the order quan-

tity and the reorder point, which minimize the annual total
cost. Finally, two special cases are deduced, which have been
previously published and a numerical illustrative example is

added with its graphs.
ier B.V. All rights reserved.
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2. Assumptions and notations

The following assumptions are usually made in the simple

treatments for developing the mathematical model:

1. The reorder point r is positive.
2. The demand is a random variable with known probability.

3. An order quantity of size Q per cycle is placed every time
the stock level reaches a certain reorder point r.

4. Assume that the system repeats itself in the sense that the inven-

tory position varies between r and r+ Q during each cycle.

The following notations are adopted for developing our

model:
ch = The holding cost

per year

cb =The backorder

cost per unit

backordered per cycle

co =The order cost

per cycle

Co(Q) = coQ
b = The varying order cost per cycle, b is a real number

D=The average

demand per year

E(r � x) = ss= Safety stock = The expected net inventory

H=The average units on hand inventory = Max: on handþMin: on hand
2

¼ ssþQþss
2 ¼ Q

2 þ ss ¼ Q
2 þ r� EðxÞ

K=The limitation on the expected annual holding cost

L= The lead time between the placement of an order and its

receipt

n=The number of cycles

N=The inventory cycle

Q=The order quantity per cycle

x= The continuous random variable represents the units

demanded during L

f(x) = The probability density function of the lead-time demand x

r � x =The random variable represents the net inventory

p(x > r) = The probability of shortage =
R1
r fðxÞdx ¼ PðrÞ

¼ 1� FðrÞ= The reliability function

BðrÞ= The expected number of backorders per

cycle =
R1
r ðx� rÞfðxÞdx
3. The mathematical model

Using the expression of the expected value of a random vari-

able, it is possible to develop the expected annual total cost
as follows:

EðTotal CostÞ¼EðOrder CostÞþEðHolding CostÞþEðBackorders CostÞ:
i:e:; EðTCÞ¼EðOCÞþEðHCÞþEðBCÞ

ð1Þ
where

EðOCÞ ¼ CoðQÞ � n ¼ coQ
b D

Q
¼ coDQb�1 ð2Þ

EðHCÞ ¼ chH ¼ ch
Q

2
þ r� EðxÞ

� �
ð3Þ

and

EðBCÞ ¼ cb � n � BðrÞ ¼
cbD

Q

Z 1

r

ðx� rÞfðxÞdx ð4Þ
Therefore

E½TCðQ; rÞ� ¼ coDQb�1 þ ch
Q

2
þ r� EðxÞ

� �
þ cbD

Q

�
Z 1

r

ðx� rÞfðxÞdx ð5Þ

Our objective is to minimize the expected annual total cost
E[TC(Q, r)] under the following constraint:

ch
Q

2
þ r� EðxÞ

� �
6 K ð6Þ

To solve this primal function which is a convex programming
problem, let us write it in the following form:

E½TCðQ; rÞ� ¼ coDQb�1 þ ch
Q

2
þ r� EðxÞ

� �
þ cbD

Q
BðrÞ ð7Þ

subject to : ch
Q

2
þ r� EðxÞ

� �
6 K ð8Þ

To find the optimal values Q* and r* which minimize Eq. (7)
under the constraint (8), we will use the Lagrangian multiplier
technique as follows:

LðQ; r; kÞ ¼ coDQb�1 þ ch
Q

2
þ r� EðxÞ

� �
þ cbD

Q
BðrÞ

þ k ch
Q

2
þ r� EðxÞ

� �
� K

� �
ð9Þ

where k is the Lagrangian multiplier.

The optimal values Q* and r* can be found by setting each
of the corresponding first partial derivatives of Eq. (9) equal to
zero at Q = Q* and r= r* respectively, we obtain:

Q�2 þ 2ðb� 1ÞcoD
ð1þ kÞch

Q�b � 2cbD

ð1þ kÞch
BðrÞ ¼ 0 ð10Þ

and

Pðr�Þ ¼ ð1þ kÞch
cbD

Q� ð11Þ

Clearly, it is difficult to find an exact solution of Q* and r* of

Eqs. (10) and (11). So, we have to solve the two equations
numerically, by the following algorithm that gives a closed
approximate solution of these equations in a finite number

of iterations:

� Step 1: Assume that B ¼ 0 and r= E(x), then from Eq. (10)

we have:

Q1 ¼
2ð1� bÞcoD
ð1þ kÞch

� � 1
2�b

ð12Þ

� Step 2: Substituting from Eq. (12) into Eq. (11) we get:

Pðr1Þ ¼
ð1þ kÞch

cbD

2ð1� bÞcoD
ð1þ kÞch

� � 1
2�b

ð13Þ

� Step 3: Substituting by r1 from Eq. (13) into Eq. (10) to find
Q2 as:

Q2
2 þ

2ðb� 1ÞcoD
ð1þ kÞch

Qb
2 �

2cbD

ð1þ kÞch
Bðr1Þ ¼ 0 ð14Þ
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The procedure is to varyk in Eqs. (13) and (14) until the small-

est value of k. > 0 is found such that the constraint holds for
the different values of b.
� Step 4: Repeating the steps 2 and 3 until obtaining succes-

sive values of Q and r, such that they are sufficiently close,
which are the optimal values Q* and r*.
4. The uniform model

To get an exact solution, assume that the lead-time demand
follows the Uniform distribution, as follows:

Let

fðxÞ ¼ 1

b
; 0 6 x 6 b; with EðxÞ ¼ b

2
and PðrÞ ¼ 1� r

b

and

BðrÞ ¼ r2

2b
þ b

2
� r ð15Þ

Thus our simple model becomes:

E½TCðQ;rÞ�¼ coDQb�1þch
Q

2
þr�b

2

� �
þcbD

Q

r2

2b
�rþb

2

� �
ð16Þ

subject to : ch
Q

2
þr�b

2

� �
6K ð17Þ

To find the optimal values Q* and r* which minimize Eq. (16)

under the constraint (17), we use the Lagrangian multiplier
technique, thus the Lagrangian function is:

LðQ; r; kÞ ¼coDQb�1 þ ch
Q

2
þ r� b

2

� �
þ cbD

Q

r2

2b
� rþ b

2

� �

þ k ch
Q

2
þ r� b

2

� �
� K

� �
ð18Þ

The optimal values Q* and r* are found by setting each of the

corresponding first partial derivatives of Eq. (18) equal to zero,
as follows:

ð1þ kÞchbQ�2 þ 2ðb� 1ÞcoDbQ�b � cbDðr� bÞ2 ¼ 0 ð19Þ

r� ¼ b 1� ð1þ kÞch
cbD

Q�
� �

ð20Þ

Solving Eqs. (19) and (20) simultaneously, we get:

Q� ¼ 2ð1� bÞcbcoD2

ð1þ kÞch½cbD� ð1þ kÞbch�

� � 1
2�b

ð21Þ

r� ¼ b 1� 2ð1� bÞco½ð1þ kÞch�1�b
Db

c1�b
b cbD� ð1þ kÞbch
� �

 ! 1
2�b

0
@

1
A ð22Þ
Table 1 The expected minimum total cost for Q* and r* at all diffe

b k* Q* r*

0 0 47.5191 14.2062

0.1 0.09 52.968 13.4017

0.2 0.302 56.92 11.5303

0.3 0.54 61.6328 9.1526

0.4 0.789 67.405 6.2956

0.5 1.025 74.4607 2.7677

0.6 1.246 82.1577 �1.0887
0.7 1.414 89.2209 �4.6148
0.8 1.464 91.5611 �5.7836
0.9 1.167 79.2261 0.37909
Now Eqs. (21) and (22) gives the optimal values Q* and r*

respectively. The procedure is to vary k in Eqs. (21) and (22)
until the smallest positive value of k is found such that the con-
straint holds for the different values of b.
5. Special cases

We deduce two special cases of our model as follows:

Case 1: Let b = 0 and K fi 1) Co(Q) = co and k = 0.
Thus Eqs. (10) and (11) become:

Q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðco þ cbBðrÞÞ

ch

s
and Pðr�Þ ¼ ch

cbD
Q�

This is unconstrained probabilistic inventory model with back-
orders case and constant units of cost, which are the same re-
sults as in Hadley and Whitin (1963).

Case 2: Let b = 0 and K fi 1) Co(Q) = co and k = 0,
when the lead-time demand has the Uniform distri-
bution. In this case, we obtain an exact solution of

the optimal inventory policy. So Eqs. (21) and (22)
will be in the form:

Q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cocbD2

chðcbD� bchÞ

s
and r� ¼ b 1� ch

cbD
Q�

� �

This is unconstrained probabilistic inventory model under
backorders case with uniformly lead-time demand and con-
stant units of cost. Which are the same results as in Fabrycky

and Banks (1967) when we consider that the unit cost cP of the
item is a constant independent of Q.
6. An illustrative example

Consider an item for the demand treated as a constant, the

average demand being 100 units per year. The cost of placing
an order is a function of Q and equal to $40.00.The item’s
holding cost is $4.00 per year. The procurement lead-time is

not a constant and the lead-time demand is distributed uni-
formly in the interval 0–20 units. All demands occurring when
the system is out of stock are backordered, and the cost is
$7.00 per backorder. The inventory is controlled using a

ÆQ, ræ system under the constraint that the average holding
cost is either less than or equal $120 per year. Determine Q*

and r* for this model.
rent values of b.

E(OC) E(HC) E(BC) min(TC)

84.1767 111.143 13.1424 208.462

112.318 119.543 14.3843 246.245

157.706 119.961 22.0551 299.722

223.456 119.876 33.4099 376.742

319.775 119.992 48.7603 488.528

463.55 119.992 69.791 653.333

685.805 119.961 94.7305 900.496

1039.73 119.983 118.84 1278.55

1620.76 119.988 127.062 1867.81

2583.291 119.969 85.03 2788.3
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Figure 1 The expected order cost and the expected total cost via the values of b.
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Using Eqs. (21) and (22), we can obtain the optimal values
Q* and r* for different values of b at varying values of k that
yield the holding constraint as shown in Table 1.

From the above table, we can draw each of E(OC) and

minE(TC) against b as shown in Fig. 1.

7. Conclusion

This paper investigating probabilistic backorder inventory sys-
tem with varying order cost and continuous lead time demand

under the holding cost restriction. We have calculated Q* and
r* numerically and obtain the min (TC) for different values of
b by using Lagranian multiplier technique. In the Uniform

model, we can evaluate the exact solution for each Q* and r*

at different values of b, which minimize the expected total cost,
mathematically.
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