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The current research aims to provide a viable numerical method for solving difficult engineering and
science problems which are in the form of higher order ordinary differential equations. The proposed
method approximates these ordinary differential equations using Newton-Gregory backward difference
polynomial in predictor–corrector mode. The predictor–corrector algorithm is then fitted with a variable
order step size algorithm to reduce computational cost. The variable order stepsize algorithm allows the
method to predetermine the preferred level of accuracy with the added advantage of less computational
cost. The method is subsequently programmed with a two-point block formulation which can be altered
for parallel programming. This research also discusses order and stepsize strategies of the variable order
stepsize algorithm. Stability and convergence estimations of the method are also established. Numerical
results obtained will validate the accuracy and efficiency of the method using various types of linear and
nonlinear higher order ordinary differential equations.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction (2020) and Rasedee et al. (2021) for ordinary differential equations,
Problems in science and engineering are often modeled in the
form of ordinary, partial and fractional differential equations
depending on the type of problem. These problemsmay range from
various field such as the interaction between chemicals as found in
chemical kinetics to the mechanics of fluids which are often mod-
elled in medicine and engineering. For recent analytical and
numerical methods established for solving these differential appli-
cations, readers may refer to literature by Al-Jawary et al. (2020),
Khataybeh et al. (2019), Mohd Ijam et al. (2020), Zhang et al.
Colbrook et al. (2019), Fu et al. (2019) and Lehrenfeld and
Olshanskii (2019) for partial differential equations and Goswami
et al. (2019), Singh et al. (2019), Srivastava et al. (2020) and
Veeresha et al. (2020) for fractional differential equations. The
algorithm development provided in this research is to specifically
cater a numerical method for solving higher order ordinary differ-
ential equations directly using variable order step size formula-
tions. We begin the study with the evolution of the variable
order step size algorithm based on the multistep method.

Previous numerical methods used to solve these higher order
ordinary differential equations (ODEs) by reducing them to sys-
tems of first order ODEs were so efficient such that methods for
solving ODEs directly were considered as robust. These methods
were almost overlooked until (Krogh, 1968) revived the field of
study with a modified version of the divided difference approach.
He proposed that the back values of any point of the derivative

were to be interpolated. In a dth order ODE, the method used to
interpolate the highest derivative value was referred as the Direct
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Integration (DI). Krogh (1968) provide a comparison for two sec-
ond order problems which was similar to Gear (1967) whom used
a Nordsieck version of the multistep method. Suleiman (1979)
extended works of Krogh by adapting the DI for estimating higher
order derivatives (dth order) which corresponds with nonstiff
problems and a generalized backward differentiation method
(GBDF) method for lower derivatives which corresponds with stiff
problems. Omar and Suleiman (2005) adapted Suleiman’s DI algo-
rithm with a two-point explicit block algorithm. By doing so, Omar
was able to reduce computational cost by providing a more effi-
cient divided difference code. In efforts of solving higher order
ODEs directly, Rasedee (2009) proposed a direct method for solving
these higher order derivatives using a backward difference formu-
lation. The backward difference method suggested by Rasedee was
in effort to overcome the drawback of the DI method, as it requires
calculating the integration coefficients at every step change which
proves to be costly. The method proposed by Rasedee (2009)
requires calculating the integration coefficients only once in the
beginning of the algorithm and once more at the end, if deemed
necessary.

This article is part of a research series influenced by the works
of Suleiman (1979). He initiated a series of research based on
Adams type difference formulation for solving ordinary differential
equations (ODEs). In his research, Suleiman established the Direct
Integration method (DI) for solving both, stiff and nonstiff initial
value higher order ODEs directly. This method was formulated
using a multistep method in divided difference form combined
with variable order stepsize (VOS) capability. Using works by Sulei-
man as their foundation, authors such as Omar and Suleiman
(2005), Majid and Suleiman (2006, 2007), Suleiman et al. (2011),
Mohd Ijam et al. (2014) and Waeleh and Abdul Majid (2016) and
Rasedee et al. (2016) have produced an extended variation for solv-
ing various types of differential problems.

The current research proposes a two-point block formulation in
backward difference form (2PVOSBD) for solving both artificial and
real life higher order ODE problems. Equipped with a VOS algo-
rithm similar to Rasedee et al. (2014), the proposed method calcu-
lates the integration coefficients only once at the beginning and
once at the end (if required) in contrast to the DI which requires
calculating integration coefficients at every step change. The
2PVOSBD only requires calculating the integration coefficients a
second time if H P Tend � Tb, where H as the current stepsize,
Tend as the last point of the interval, and Tb as the current point.

When implementing a variable order stepsize strategy, the
acceptance criteria is key. An unsuitable criteria may result in an
increase in the total of steps or the loss of accuracy. The selection
criteria is discussed in the upcoming sections. Following the appro-
priate selection criteria, strategies suggested by Lambert (1973) are
used and integrated with the variable step size code proposed by
Krogh (1973).

The current research also provides the discussion on the order,
stability and convergence of the proposed method. For the variable
order step size techniques and selection criterion implemented in
this research, authors adapted techniques suggested by Gear
(1967), Krogh (1968), Lambert (1973), Hall and Watt (1976) and
Suleiman (1979). And in more recent works for solving higher
order ODEs found in Zainuddin et al. (2016), Rasedee et al.
(2017b, 2018a), Ibrahim et al. (2019) and Asnor et al. (2019) and
others. The following are preliminary definitions that are used to
determine order, stability and convergence of the 2PVOSBD.
2. Preliminaries

This section entails definitions used to determine the order, sta-
bility and convergence of the method.
2

Definition 2.1. The general linear multistep method is denoted
by

Xk
b¼0

abf nþb ¼ h
Xk
b¼0

bb/nþb
Definition 2.2. The linear differential operator L associated with
the linear multistep method is defined

L f tð Þ;h½ � :¼
Xk
i¼0

aif t þ ihð Þ � hbif
0 t þ ihð Þ� �

;

where f tð Þ is an arbitary function in C1 a; b½ �.
Choose a function f tð Þ to be differentiable as often as needed,

and expand f t þ ihð Þ and f 0 t þ ihð Þ with respect to t, and arrange as

L f tð Þ;h½ � :¼ C0f tð Þ þ C1hf
0 tð Þ þ � � � þ Cqh

qz qð Þ tð Þ þ � � �
where Ci; i ¼ 0;1: . . . ; q; . . . are constants.

Definition 2.3. The linear multistep method and associated
difference operator L defined are said to be of order p if in,
C0 ¼ C1 ¼ � � � ¼ Cq ¼ 0; Cqþ1 – 0 where

C0 ¼ a0 þ a1 þ � � � þ ak

C1 ¼ a1 þ 2a2 þ � � � þ kakð Þ � b1 þ b2 þ � � � þ bkð Þ
..
. ..

.

Cp ¼ 1
p a1 þ 2ap

2 þ � � � þ kpak
� �� 1

q�1 b1 þ 2p�1b2 þ � � � þ kp�1bk

� �
Definition 2.4. The block method is zero stable if the roots
rj; j ¼ 1; . . . k of the first characteristic polynomial q rð Þ is denoted
by

q rð Þ ¼ det
Xm
i¼0

Airm�i

 !
¼ 0;

which satisfies the conditions jrjj � 1 and the roots with jrjj ¼ 1,
where the multiplicity does not exceed 2.
Definition 2.5. A Linear Multistep Method (LLM) is said to be
consistent if the LLM is of order p P 1.
3. The higher order ordinary differential equation

Differential equations have been widely used to model various
types of real-life applications, from natural phenomenon to man-
made machinery. Examples of these higher order ODEs can found
in classical mechanics of the two-body problem, chaotic motions
in periodic-self exited oscillators to the elasticity of thin clamp
plates.

The focus of this research is to establish a numerical method for
solving higher order initial value ordinary differential equations.
For the purpose of this research, consider the following higher
order ODE

f nð Þ tð Þ ¼ / t; f ; f 0; f 00; . . . ; f n�1ð Þ
� �

: ð3:1Þ

The initial value condition is defined by F að Þ ¼ e
�
in the interval

a 6 t 6 b where

FT ¼ / f ; f 0; f 00; . . . ; f n�1ð Þ
� �
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and

eT ¼ e; e0; e00; . . . ; e n�1ð Þ� �
:

Conventionally, numerical methods would approximate (3.1) by
reducing it to a system of first order ODEs. The equation is reduced
by letting

f ¼ w1; f 0 ¼ w2; f 00 ¼ w3; . . . ; f n�1ð Þ ¼ wd

with the initial conditions

wT ¼ w1;w2; . . . ;wdð Þ
and

FT t;wð Þ ¼ w1;w2; . . . ;wd;/ð Þ
which reduces (3.1) to

w0 ¼ F t;wð Þ
subjected to the initial conditions w að Þ ¼ e.

Direct methods versus reduction to first order systems have
been extensively discussed by Rutishauser (1960), Collatz (1960),
Henrici (1962) and Gear (1967). These opinions may vary based
on individual preferences. In the case of Henrici (1962), the author
favours reduction methods due to the large global error of direct
methods even though lower order derivatives have small local
truncation error, whereas Collatz (1960) and Gear (1967) prefer
direct methods. Rutishauser (1960) provided proof that the nth lin-
ear order ODE was solved using a direct method (Euler extended
method) had a global error of order 1, which was equal to the glo-
bal error of the reduction method (Euler method). A N order direct
method algorithm requires only storing and updating one set of
back values, where a N reduction method needs N set of back val-
ues. Due to the fact that the accuracy of each derivative is of the
same order thus, the direct method requires controlling the local

error of only N � 1ð Þth derivative because it offers the lowest accu-
racy O hð Þ opposed to controlling the local error of each derivative
as required by the reduction method.

The method proposed in this research approximates (3.1)
directly with minimal loss of accuracy, if not any. The succeeding
section will provide detailed derivation of the proposed method.

4. The two-point block method

This section explains derivation of both first and second point of
the two-point block method. To formulate a two-point predictor–
corrector (PeCe) block method with a variable order step size back-
ward difference algorithm, elements such as explicit–implicit inte-
gration coefficients and order stepsize strategy are necessary.

Firstly, note that the 2PVOSBD method is formulated in predic-
tor–corrector mode similar to the Adam-Basthforth-Moulton for-
mulation. The derivation begins with integrating the higher order

ODE as defined in (3.1). By integrating (3.1) once, f nð Þ becomes

f n�1ð Þ tiþ1ð Þ ¼ f n�1ð Þ tið Þ þ
Z tiþ1

ti

Xk
m¼0

�1ð Þi �s

i

� 	
ri/nþ 1�pð Þdt; p ¼ 0;1

ð4:2Þ

f n�1ð Þ tiþ2ð Þ ¼ f n�1ð Þ tið Þ þ
Z tiþ2

ti

Xk
m¼0

�1ð Þi �s

i

� 	
ri/nþ 2�pð Þdt; p ¼ 0;2:

ð4:3Þ
From Eqs. (4.2) and (4.3), f n�1ð Þ tiþ1ð Þ represents the first block and

f n�1ð Þ tiþ2ð Þ as the second block of the 2PVOSBD method. When
p ¼ 0, both Eqs. (4.2) and (4.3) indicates the corrector equations
whereas when p is otherwise, the equations takes form of the pre-
3

dictor. The following steps are taken to establish the explicit coeffi-
cients for the predictor. First, the limit of integration is changed and
dt is replaced by hds and substituted into the two-point predictor
formula

f n�1ð Þ tiþbð Þ ¼ f n�1ð Þ tið Þ þ
Z b

0
b� sð Þ

Xk
m¼0

�1ð Þm �s

m

� 	
rm/n hds;

b ¼ 1;2:

ð4:4Þ
Then, denoting cpb;j;i by

cpb;j;i ¼ �1ð Þi
Z b

0

�s

i

� 	
ds;

the predictor can be reformulated as follows:

f n�1ð Þ tiþbð Þ ¼ f n�1ð Þ tið Þ þ h
Xk
m¼0

cpb;j;irm/nds: ð4:5Þ

Next, formulating the corrector formula begins in a similar manner
as the predictor with the exception of changing the limit of integra-
tion from �b to 0 thus,

f n�1ð Þ tiþbð Þ ¼ f n�1ð Þ tið Þ þ
Z 0

�b
�sð Þ

Xk
m¼0

�1ð Þm �s

m

� 	
rm/nþb hds:

Now, let ccb;j;i as

ccb;j;i ¼ �1ð Þi
Z 0

�b

�s

i

� 	
ds;

hence (4.5) can be rewritten as

f n�1ð Þ tiþbð Þ ¼ f n�1ð Þ tið Þ þ h
Xk
m¼0

ccb;j;irm/nds: ð4:6Þ

As for a Nth order ODE, the predictor–corrector can be deduced by
integrating (3.1) by N-fold integrals and applying similar require-
ments used in the first integral, which yields the general
formulation;

Predictor:

f d�jð Þ xnþbð Þ ¼
Xj�1

i¼0

hi

i!
f d�jþið Þ xnð Þ þ hj

Xk�1

i¼0

cpb;j;iri/n; ð4:7Þ

Corrector:

f d�jð Þ xnþbð Þ ¼
Xj�1

i¼0

hi

i!
f d�jþið Þ xnð Þ þ hj

Xk�1

i¼0

ccb;j;iri/nþb: ð4:8Þ

with the respective explicit, cpb;j;i and implicit, ccb;j;i integration coef-
ficients as follows

Explicit:

cpb;j;i ¼ �1ð Þi
Z b

0

b� sð Þd�1

d� 1ð Þ!
�s

i

� 	
ds;

Implicit:

ccb;j;i ¼ �1ð Þi
Z 0

�b

�sð Þd�1

d� 1ð Þ!
�s

i

� 	
ds:
5. Integration coefficients

The current section provides derivation for explicit and implicit
coefficients. Firstly, let the first order explicit, Gp

b;1 tð Þ and implicit

Gc
b;1 tð Þ generating functions as
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Gp
b;1 tð Þ ¼

X1
i¼0

cp1;d;it
i

and

Gc
b;1 tð Þ ¼

X1
i¼0

cc1;d;it
i:

Next, by substituting cpb;d;i into Gp
dð Þ tð Þ, the explicit generating func-

tion can be rewritten as

Gp
b;1 tð Þ ¼

X1
i¼0

�tð Þi
Z b

0
b� sð Þ �s

i

� 	
ds

which can be simplified as

Gp
b;1 tð Þ ¼

Z b

0
1� tð Þ �sð Þds: ð5:9Þ

By solving the integral in (5.9) and mathematical induction, Gp
b;1 tð Þ

can be represented as

Gp
b;1 tð Þ ¼ � 1� tð Þ�b

log 1� tð Þ �
1

log 1� tð Þ

" #
: ð5:10Þ

Then by substituting

ccb;j;i ¼ �1ð Þi
Z 0

�b

�s

i

� 	
ds;

into Gc
b;1 tð Þ, reveals the implicit generating function in form of

Gc
b;1 tð Þ ¼ � 1

log 1� tð Þ �
1� tð Þb

log 1� tð Þ

" #
: ð5:11Þ

Through mathematical induction, these explicit and implicit gener-
ating functions can be generalized and constructed as

Gp
dð Þ tð Þ ¼ 1

d� 1ð Þ!
bd�1

log 1� tð Þ �
d� 1ð Þ!Gp

d�1ð Þ tð Þ
log 1� tð Þ

" #
:

Gc
dð Þ tð Þ ¼ 1

d� 1ð Þ!
bd�1 1� tð Þb
log 1� tð Þ � d� 1ð Þ!Gc

d�1ð Þ tð Þ
log 1� tð Þ

" #
:

Integration coefficients are subsequently derived from the generat-
ing functions. By expanding then rearranging these generating func-
tions, the relationship between coefficients of different orders
yields the following

Explicit Coefficients:

cpb;d;0 ¼ cpb;d�1;1; cpb;d;k ¼ cpb;d�1;kþ1 �
Xk�1

i¼0

cpb;d;i
k� iþ 1

 !
; k ¼ 1;2; . . . :

Implicit Coefficients:
Table 1
Explicit integration coefficients.

k 0 1 2 3

cp1;k 1 1=2 5=12 3=8 25

cp2;k 2 2 7=3 8=3 2

Table 2
Implicit integration coefficients.

k 0 1 2 3

cc1;k 1 �1=2 �1=12 �1=24

cc2;k 2 �2 1=3 0

4

ccb;d;0 ¼ ccb;d�1;1; ccb;d;k ¼ ccb;d�1;kþ1 �
Xk�1

i¼0

ccb;d;i
k� iþ 1

� 	
; k ¼ 1;2; . . . :

Inline with the aim of this research to reduce computational cost, a
recursive relationship between explicit and implicit coefficients is
established. The relationship obtained begins in terms of the gener-
ating functions. Referring to Eqs. (5.10) and (5.11), which are the
first order generating functions

Gp
b;1 tð Þ ¼ � 1� tð Þ�b

log 1� tð Þ �
1

log 1� tð Þ

" #
: ð5:12Þ

Gc
b;1 tð Þ ¼ � 1

log 1� tð Þ �
1� tð Þb

log 1� tð Þ

" #
: ð5:13Þ

The explicit generating function, Gp
b;1 tð Þ in ((5.12) be rearranged as

Gp
b;1 tð Þ ¼ � 1� tð Þ�b 1

log 1� tð Þ �
1� tð Þb

log 1� tð Þ

" #
; ð5:14Þ

then substituting (5.13) into (5.14) produces the following recursive
relationship between explicit and implicit generating functions

1� tð ÞbGp
b;1 tð Þ ¼ Gc

b;1 tð Þ
subsequently establish the relationship between coefficients

1� tð Þb
X1
i¼0

cpb;j;it
i ¼

X1
i¼0

ccb;j;it
i: ð5:15Þ

A few examples of the integration coefficients extracted from (5.15)
are presented in Tables 1 and 2 below.

6. Order and stability

Various researchers have studied conditions of zero stability
and the order of a block method which can be found in works of
Watts and Shampine (1972), Mohd Ijam et al. (2018), Mohd Ijam
and Ibrahim (2019) and Rasedee et al. (2021a) and etc. Discussions
on order and stability of the proposed method applies definitions
which are similar to Ola Fatunla (1991).

6.1. Order

The current section will show how the order of the method is
established for the predictor in (4.7) and corrector in (4.8) when
the given k ¼ 7. For the purpose of this research, let consider the
case where d ¼ 1. The derivation begins with establishing the order
method for the predictor. By extracting the explicit coefficients, the
predicted first and second point can be expanded and written as
4 5 6 7

1=720 95=288 19087=60480 5257=17280

69=90 33=10 13613=3780 736=189

4 5 6 7

�19=720 �3=160 �863=60480 �275=24192

�1=90 �1=90 �37=3780 �8=945
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f nþ1 ¼ f n þ h
198721
60480

/n �
9301
1260

/n�1 þ
235183
20160

/n�2 �
10754
945

/n�3

�

þ135713
20160

/n�4 �
5063
2520

/n�5 þ
19087
60480

/n�6Þ ð6:16Þ

f nþ2 ¼ f n þ h
14281
756

/n �
4649
126

/n�1 þ
145261
1260

/n�2 �
113068
945

/n�3

�

þ92621
1260

/n�4 �
7846
315

/n�5 þ
13613
3780

/n�6Þ ð6:17Þ

To start off the derivation of the order method, (6.16) and (6.17) are
defined in the form of matrices whichsatisfy Definition 2.1. Let

X4
i¼0

AiF
p
mþi�4 ¼ h

X4
i¼0

BiU
p
mþi�4

be the general matrix where

X4
i¼0

AiF
p
mþi�4 ¼ 0 0

0 0

� 	
f n�7

f n�6

� 	
þ 0 0

0 0

� 	
f n�5

f n�4

� 	
þ 0 0

0 0

� 	

� f n�3

f n�2

� 	
þ 0 �1

0 �1

� 	
f n�1

f n

� 	
þ 1 0

0 1

� 	
f nþ1

f nþ2

� 	
;

and

X4
i¼0

BiU
p
mþi�4 ¼ 0 19087

60480

0 13613
3780

 !
/n�7

/n�6

� 	
þ � 5603

2520
135713
20160

� 7846
315

92621
1260

 !
/n�5

/n�4

� 	

þ � 10754
945

235183
20160

� 113068
945

145261
1260

 !
/n�3

/n�2

� 	
þ � 18637

2520
198721
60480

� 4078
63

14281
756

 !

� /n�1

/n

� 	
þ 0 0

0 0

� 	
/nþ2

/nþ1

� 	

Next, the coefficients are separated into the following block
matrices

a0 ¼ 0
0

� 	
; a1 ¼ 0

0

� 	
; a2 ¼ 0

0

� 	
; a3 ¼ 0

0

� 	
; a4 ¼ 0

0

� 	
;

a5 ¼ 0
0

� 	
; a6 ¼ 0

0

� 	
; a7 ¼ 1

�1

� 	
; a8 ¼ 1

0

� 	
; a9 ¼ 0

1

� 	

b0 ¼ 0
0

� 	
; b1 ¼

19087
60480
13613
3780

 !
; b2 ¼

�5603
2520
�7846
315

 !
; b3 ¼

135713
20160
92621
1260

 !
;

b4 ¼
�10754
945

�113068
945

 !
; b5 ¼

235183
20160
145261
1260

 !
; b6 ¼

�18637
2520
�4078
63

 !
;

b7 ¼
198721
60480
14281
756

 !
; b8 ¼ 0

0

� 	
; b9 ¼ 0

0

� 	

Then applying the coefficients in Definition 2.3, the result is

C0 ¼ C1 ¼ C2 ¼ � � � ¼ C7 ¼ 0
0

� 	
; C8 ¼

515281
1693440
736
189

 !
:

From the result obtained, it can be concluded that the predictor for-
mula when k ¼ 7, is of order 7 with an error constant of

C8 ¼
515281
1693440
736
189

 !

For the following corrector,

f nþ1 ¼ f n þ h
5257
17280

/nþ1 þ
139849
120960

/n �
4511
4480

/n�1

�

þ123133
120960

/n�2 �
88547
120960

/n�3 þ
1537
4480

/n�4 �
11351
120960

/n�5

þ 275
24192

/n�6Þ ð6:18Þ
5

f nþ2 ¼ f n þ h
41
140

/nþ2 þ
1466
945

/nþ1 �
71
420

/n þ
68
105

/n�1 �
1927
3780

/n�2

�

þ 26
105

/n�3 �
29
420

/n�4 þ
8

945
/n�5Þ ð6:19Þ

the result can be derived similarly to the predictor formula. The
result show that when k ¼ 7, the corrector formulas is of order 8
with an error constant of

C9 ¼ � 33952
3628800

� 119
16200

 !
6.2. Stability

The viability of a linear multistep method is subject to certain
conditions governed by zero stability. Similarly to works discussed
in Hall and Watt (1976), the stability of the two-point predictor
can be obtained by applying Eqs. (6.16) and (6.17) to the standard
linear test problem,

f 0 ¼ kf :

Firstly, the predictor formula is amended in the form of block matri-
ces which is substituted into the standard linear test problemwhich
then expressed as

1 0
0 1

� 	
f nþ1

f nþ2

� 	
¼ 0 1

0 1

� 	
f n�1

f n

� 	
hk

þ
�18637
2520

198721
60480

�4078
63

14281
756

 !
� f n�1

f n

� 	
hkþ

�10754
945

235183
20160

�113068
945

145261
1260

 !
f n�3

f n�2

� 	
hk

þ
�5603
2520

135713
20160

�7846
315

92621
1260

 !
f n�5

f n�4

� 	
hkþ 0 19087

60480

0 13613
3780

 !
� f n�7

f n�6

� 	
hk

ð6:20Þ
therefore, it can be represented as equivalent to

AFi � Bþ Cð ÞFi�1 � DYi�2 � EFi�3 � GFi�4 ¼ 0; n ¼ 2i:

For the purpose of showing stability, (6.20) is reformulated in form
of the stability polynomial which is dictated by, R t;Kð Þ,

R t;Kð Þ ¼ det
Xm
i¼0

Aitm�i

 !
; K ¼ hk ð6:21Þ

where

A0 ¼ 1 0
0 1

� 	
; A1 ¼ �

�18637
2520 1þ 198721

60480
�4078
63 1þ 14281

756

 !
;

A2 ¼ �
�10754
945

235183
20160

�113068
945

145261
1260

 !
; A3 ¼ �

�5603
2520

135713
20160

�7846
315

92621
1260

 !
;

A4 ¼ � 0 19087
60480

0 13613
3780

 !
: ð6:22Þ

Substituting (6.22) into (6.21), attains the following stability
polynomial

R t;Kð Þ ¼ t8 � 1þ 86899
7560

K
� 	

t7 þ 9931223
136080

K2 � 70417
1512

K
� 	

t6

þ 54893593
680400

K2 þ 55919
1512

K
� 	

t5
5374679
340200

K2 þ 144269
7560

K
� 	

t4 � 1032431
680400

t3K2 þ 688823
680400

t2K2 � 99667
680400

tK2

In order to determine zero stability, let K ¼ 0, which yields

R t;Kð Þ ¼ t8 � t7
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with the roots t0 ¼ t1 ¼ � � � ¼ t6 ¼ 0; t7 ¼ 1. Thus by using Defini-
tion 2.4, the predictor formula is zero stable.

Whereas for the corrector, the stability polynomial is estab-
lished as follows

R t;Kð Þ ¼ 1� 72223
120960

Kþ 30791
345600

K2
� 	

t8

� 1þ 239
3360

t7Kþ 122302297
57153600

K2
� 	

t7

� 24961
60480

Kþ 128389687
50803200

K2
� 	

t6

� 2642501
3212160

Kþ 10775593693
12141964800

K2
� 	

t5

� 5807
60228

K
2409485711
54638841600

K2
� 	

t4

� 202192573
36425894400

t3K2 þ 536771
1517745600

t2K2

� 55
571536

tK2 ð6:23Þ

When K ¼ 0, the stability polynomial yields

R t;Kð Þ ¼ t8 � t7 ð6:24Þ
with the roots t0 ¼ t1 ¼ � � � ¼ t6 ¼ 0; t7 ¼ 1. Hence it proves that
the corrector formula as zero stable.

7. Convergence of the backward difference method

As previously shown by Suleiman (1993), there are certain con-
ditions that need to be met to show the convergence of the back-
ward difference method.

Theorem 7.1. The necessary conditions for the linear multistep
method (4.7) and (4.8) to be convergent are
i) the method must be zero.
ii) the method must be consistent.

Proof of the theorem can be found in Suleiman (1993).
In the previous section, both the predictor and corrector satis-

fies conditions in Definition 2.4, making the method zero stable;
whereas the order method as previously shown in Definition 2.3,
with the predictor

C0 ¼ C1 ¼ C2 ¼ � � � ¼ C7 ¼ 0
0

� 	
; C8 –

0
0

� 	

and the corrector

C0 ¼ C1 ¼ C2 ¼ � � � ¼ C8 ¼ 0
0

� 	
C9 –

0
0

� 	

are consistent with Definition 2.5 of order of 8 and 9 respectively.
Satisfying both conditions iÞ and iiÞ of Theorem 7.1 shows that the
method to be convergent.

8. Variable order step size strategies

The literature on the variable order stepsize codes show an
incomplete theory with numerous strategies of order and stepsize
selection are given. Firstly, varying the order. The variable strategies
are dependent on the amount of back values stored.With the appro-
priated amount of back values, the order can simply be increased by
retaining the values of previous steps and can be decreased by dis-
regarding unnecessary values. Previous researches have shown that
6

the order strategies which are unbiased to lower order is efficient in
an Adams based code for solving nonstiff problems.

As mentioned earlier, the acceptance criteria in a variable order
strategy is crucial. In this article, the second step evaluation is
determined on whether the estimated error,

E d�pð Þ
k ¼ hdccb;d�p;krk/nþ1

satisfies the local accuracy requirement,

Hnþ1 E d�pð Þ
k




 


 < TOL; Hnþ1 ¼ 1
Aþ Bþ Pnð Þ

where A and B determine the type of error test, which is discussed
later in the numerical results section. For reason of simplicity, the

error estimate E d�pð Þ
k is denoted as Ek, where

k ¼ n� 2;n� 1;n;nþ 1. The order condition is set for
n > 2;max En�1j j; En�2j jf g 6 Enj j and if both conditions
En�1j j 6 0:5 Enj j and n ¼ 2 are satisfied, the order is reduced by 1. If
Enþ1 is available, the condition to reduce the order is when n > 1
and En�1j j 6 min Enj j; Enþ1j jf g is satisfied. For the latter, the algorithm
must first complete nþ 1 successful steps in constant stepsize, only
then for n > 1 where Enþ1j j < Enj j < max En�1j j; En�2j jf g, and both
Enþ1j j < 0:5 Enj j and n ¼ 1 are satisfied will the order be increased.

As for varying the stepsize, this research adopts the halving and
doubling of the stepsize algorithm suggested by Krogh (1973).
Although doubling the stepsize might seem necessary because
the previous back values of /n�2;/n�4; . . . ;/n�2kþ2 can be used,
Krogh argues that such technique will contribute to the loss of
accuracy. In fact, doubling the stepsize after every evaluation
may also have a toll on the accuracy. This is when halving the step-
size is required. In halving the step size algorithm, new back values
are obtained. The use of back values in the form of
/n�1

2
;/n�1; . . . ;/n�k

2þ1
2
has shown to be more accurate. For more

details on the algorithm, reader may refer to Rasedee (2009) and
Rasedee et al. (2014). Fig. 1 illustrates the general flow of the pro-
posed 2PVOSBD algorithm.

9. Numerical results and discussions

As numerical method becomes more robust, the accuracy of a
method alone is no longer sufficient hence, the need for efficiency.
When dealing with complex problems that require massive calcu-
lation, computational cost becomes a concern. The current
research highlights the efficiency of proposed method. With little
to none loss of accuracy, the 2PVOSBD offers an accuracy to total
step ratio which proves to be efficient, similar as proposed in
Rasedee (2009).

The 2PVOSBDmethod is tested with a combination of linear and
nonlinear higher order initial value ODEs. The selected test prob-
lems are also inclusive of artificial and real-life, practical ODEs.
The approximation obtained by the 2PVOSBD was compared with
approximations of 1PVOSBD and DI methods which were recon-
structed for the purpose of this research. Due to its divided differ-
ence based algorithm, the DI method was considered as a suitable
counterpart of the 2PVOSBD backward difference based algorithm.
The comparison is based on accuracy, total steps and efficiency of
the methods. To compare approximated solution, the error solu-
tion in this research is defined by

Errn ¼ f ið Þn � f tið Þn
Aþ B f tið Þn

� �













where f ið Þn is the nth component of the exact solution and f tið Þn is
the nth component of the approximated solution of f. There are 3



Fig. 1. The general flowchart for the 2PVOSBD algorithm.
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types of error test provided in the algorithm, where the most suit-
able estimation is selected. The choice of error tests are, absolute
error when the corresponding A ¼ 1; B ¼ 0, relative error when
A ¼ 0; B ¼ 1. and mixed error when A ¼ 1; B ¼ 1. For the current
research, the mixed error test was deemed best suited. On the other
hand, the maximum error (MaxErr) is defined as

MaxErr ¼ max
16j6Succstp

max
16j6B6N

Errnð Þ
� 	

and the average error (AvErr)

AvErr ¼
PSuccStp

i¼1

PN
i¼1

PB
i¼1Errn

B � N � SuccStpð Þ
with N as the number of equations and B as the number of blocks.
Contrary, the efficiency of the methods is defined as the ratio of
accuracy compared to the corresponding total steps. These are the
abbreviations that are used in the current section:
PeCe
 predictor–corrector

ODE
 ordinary differential equation

TOL
 tolerance level

H
 stepsize

TStep
 total steps

MaxErr
 overall maximum error

AvErr
 average error

MTD
 method used

DI
 Direct Integration method

1PVOSBD
 One-Point Block VOS backward difference method

2PVOSBD
 Two-Point Block VOS backward difference method
The following are test problems that were selected for
comparisons.
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Problem 1. (Non linear 5th order ODE): The equation

f vð Þ � 2f 0f 00 þ ff ivð Þ þ f 0f 000 ¼ t2 � 2t � 3
� �

et � 8t for 0 6 t 6 2 with

initial value conditions f 0ð Þ ¼ 1; f 0 0ð Þ ¼ 1; f 00 0ð Þ ¼ 3;

f 000 0ð Þ ¼ 1; f ivð Þ 0ð Þ ¼ 1 and f tð Þ ¼ et þ t2 as the exact solution.
Source: Waeleh and Abdul Majid (2016).
Problem 2. (Non linear 5th order ODE): The equation

f vð Þ � 6 2 f 0
� �3 þ 6ff 0f 00

�
þf 2f 000

�
¼ 0 for 1 6 t 6 3 with initial

value conditions f 1ð Þ ¼ 1; f 0 1ð Þ ¼ �1; f 00 1ð Þ ¼ 2;

f 000 1ð Þ ¼ �6; f ivð Þ 1ð Þ ¼ 24 and f tð Þ ¼ 1
t as the exact solution.

Source: Waeleh and Abdul Majid (2016).
Problem 3. (Artificial problem): The equation f 8ð Þ � f ¼ 0 for
0 6 t 6 100 with initial value conditions

f 0ð Þ ¼ f 0 0ð Þ ¼ � � � ¼ f 7 0ð Þ ¼ 0 and f tð Þ ¼ et as the exact solution.
Source: Suleiman (1979).
Problem 4. (4th order ODE) The equation

f við Þ þ 0:1f vð Þ þ 5f ivð Þþ0:5f 000þ4f 00�0:4f 0¼e�t

for 0 6 t 6 16p with initial
value conditions f 0ð Þ ¼ 3 1

9 ; f 0 0ð Þ ¼ 2:9� A; f 00 0ð Þ ¼ �4:99þ
A; f 000 0ð Þ ¼ �9:001� A; f ivð Þ 0ð Þ ¼ 17:0001þ A; f vð Þ 0ð Þ ¼
32:99999� A where A ¼ 1

9 and
f tð Þ ¼ cos t þ sin t þ cos 2t þ sin 2t þ e�0:1t þ 1

9 e
�t as the exact

solution.
Problem 5. (Van Der Pol equation): The equation

f 00 � l 1� f 2
� �

f 0 þ f ¼ 0 for 0 6 t 6 15p with initial value condi-

tions f 0ð Þ ¼ a1; f 0 0ð Þ ¼ a2.



Table 3
Numerical result of the 2PVOSBD in constant order and stepsize mode for Problems 1
and 2.

H Problem 1 Problem 2
TSteps MaxErr TSteps MaxErr

10�1 10 1:33721 �5ð Þ 10 3:05861 �1ð Þ
10�2 100 2:10269 �8ð Þ 100 8:9045 �4ð Þ
10�3 1000 2:20153 �11ð Þ 1000 9:64991 �7ð Þ
10�4 10000 6:72519 �14ð Þ 10000 9:727174 �10ð Þ
10�5 100000 3:39272 �12ð Þ 100000 1:101204 �12ð Þ

Table 4
Numerical result of the 2PVOSBD in constant order and stepsize mode for Problems 3
and 4.

H Problem 3 Problem 4
TSteps MaxErr TSteps MaxErr

10�1 500 5:62642 �5ð Þ 252 2:75520 �1ð Þ
10�2 5000 5:13835 �8ð Þ 2514 2:75520 �4ð Þ
10�3 50000 7:40008 �11ð Þ 25133 2:68345 �7ð Þ
10�4 500000 1:07478 �9ð Þ 251328 2513275 �10ð Þ
10�5 5000000 9:34339 �9ð Þ 2513275 6:31914 �9ð Þ

Table 5
Comparisons of total steps and accuracy for Problems 1 and 2.

TOL MTD Problem 1

10�2 DI 10 6:17871 �6ð Þ 6:2

VOSBD 14 1:17684 �5ð Þ 8:6
2PBVOS 15 3:76917 �4ð Þ 2:8

10�4 DI 13 3:67561 �6ð Þ 3:5

VOSBD 18 1:52822 �5ð Þ 9:9
2PBVOS 27 5:46305 �4ð Þ 1:9

10�6 DI 17 2:37716 �7ð Þ 2:2

VOSBD 21 3:57616 �7ð Þ 3:3
2PBVOS 26 5:70940 �6ð Þ 1:3

10�8 DI 23 2:56338 �8ð Þ 3:1

VOSBD 32 4:60778 �8ð Þ 1:0
2PBVOS 32 1:20022 �7ð Þ 3:8

10�10 DI 31 2:29642 �9ð Þ 3:0

VOSBD 55 2:20703 �8ð Þ 6:8
2PBVOS 49 2:58567 �9ð Þ 2:0

10�10 DI 31 2:29642 �9ð Þ 3:0

VOSBD 55 2:20703 �8ð Þ 6:8
2PBVOS 49 2:58567 �9ð Þ 2:0

Table 6
Comparisons of total steps and accuracy for Problems 3 and 4.

TOL MTD Problem 3
TSteps MaxErr

10�2 DI 96 4:99681 �3ð Þ 2:4

VOSBD 173 1:01436 �4ð Þ 8:5
2PBVOS 92 1:74811 �4ð Þ 1:4

10�4 DI 141 1:79264 �4ð Þ 1:1

VOSBD 142 2:60404 �4ð Þ 1:8
2PBVOS 138 1:14847 �5ð Þ 7:7

10�6 DI 214 1:18826 �5ð Þ 9:0

VOSBD 218 1:56415 �6ð Þ 1:0
2PBVOS 217 4:19170 �7ð Þ 4:4

10�8 DI 335 3:11508 �8ð Þ 2:5

VOSBD 336 3:64286 �8ð Þ 1:2
2PBVOS 335 1:44458 �8ð Þ 1:5

10�10 DI 516 8:37294 �10ð Þ 6:5

VOSBD 517 3:30834 �9ð Þ 2:5
2PBVOS 521 3:10169 �10ð Þ 1:3
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Tables 3 and 4 are the approximated results for Problems 1–4
using the 2PVOSBD, but with the absence of the variable order
stepsize component. The result presented compare the constant
stepsizes, H¼ 10�1, H¼ 10�2, H¼ 10�3, H¼ 10�4 and H¼ 10�5. Start-
ing with Euler’s method, the algorithm increase the back values
(order) each step until the total of 12 back values were obtained.
Then, the algorithm completed its estimation using 12 back values
for the remaining steps.

Table 5 presents the numerical approximation of the DI,
1PVOSBD and 2PVOSBD methods for the 5th order ODEs (Problems
1 and 2). Problems 1 and 2 were selected to test the 2PVOSBD
method in approximating nonlinear ODEs. For Problem 1, the DI
method out performed both 1PVOSBD and 2PVOSBD method in
terms of accuracy and total steps. The non-homogeneous nature
of the problems requires additional steps adjustments which
affected the accuracy and total steps of proposed 2PVOSBD.
Whereas for Problem 2, the proposed method shows better accu-
racy for almost every TOL level. It is also shown that in Problem
2, the 2PVOSBD method required less steps as compared to its
counterpart when finer TOL is applied.

Next, Table 6 compares the numerical results of the 8th (Prob-
lem 3) and 6th (Problem 4) orders ODE. These problems were
selected due to the order of the problems and large intervals. Prob-
Problem 2

1332 �7ð Þ 16 3:19948 �1ð Þ 3:19948 �2ð Þ
1228 �7ð Þ 23 1:81084 �1ð Þ 1:63540 �2ð Þ
2770 �5ð Þ 23 1:57933 �2ð Þ 1:30499 �3ð Þ
3799 �7ð Þ 24 1:99444 �4ð Þ 4:14536 �5ð Þ
1370 �7ð Þ 31 8:90574 �3ð Þ 1:16155 �3ð Þ
4502 �4ð Þ 25 1:72907 �5ð Þ 3:74736 �6ð Þ
8106 �8ð Þ 33 2:93390 �4ð Þ 3:27534 �5ð Þ
2091 �8ð Þ 43 8:34141 �4ð Þ 8:88868 �5ð Þ
0323 �6ð Þ 29 6:92038 �6ð Þ 8:05638 �7ð Þ
6854 �9ð Þ 46 1:50674 �5ð Þ 1:53006 �6ð Þ
2584 �8ð Þ 57 7:57985 �8ð Þ 6:17374 �9ð Þ
2540 �8ð Þ 39 1:297591 �7ð Þ 3:26005 �8ð Þ
7931 �10ð Þ 84 3:91504 �8ð Þ 3:35185 �9ð Þ
2589 �9ð Þ 71 1:35719 �7ð Þ 1:91950 �8ð Þ
7796 �9ð Þ 58 4:02752 �7ð Þ 1:98350 �8ð Þ
7931 �10ð Þ 84 3:91504 �8ð Þ 3:35185 �9ð Þ
2589 �9ð Þ 71 1:35719 �7ð Þ 1:91950 �8ð Þ
7796 �9ð Þ 58 4:02752 �7ð Þ 1:98350 �8ð Þ

Problem 4
AvErr TSteps MaxErr AvErr

7698 �3ð Þ 128 2:19551 0ð Þ 6:89295 �1ð Þ
8874 �5ð Þ 126 1:37312 0ð Þ 6:78583 �1ð Þ
6155 �4ð Þ 103 2:43499 0ð Þ 1:46793 0ð Þ
9952 �4ð Þ 204 1:00719 0ð Þ 7:66888 �1ð Þ
9056 �4ð Þ 202 2:73723 �2ð Þ 5:73163 �3ð Þ
5051 �6ð Þ 156 7:39295 �1ð Þ 3:47230 �1ð Þ
1852 �6ð Þ 51 1:30145 0ð Þ NAN

9680 �6ð Þ 296 8:32079 �3ð Þ 2:91860 �3ð Þ
4841 �7ð Þ 248 6:26771 �3ð Þ 7:77267 �4ð Þ
8590 �8ð Þ 409 1:17334 0ð Þ 5:67692 �1ð Þ
1667 �8ð Þ 434 1:12434 �4ð Þ 2:59048 �5ð Þ
9774 �8ð Þ 348 7:573041 �5ð Þ 9:25471 �6ð Þ
1148 �10ð Þ 384 1:35703 �7ð Þ 4:00835 �8ð Þ
2921 �9ð Þ 393 8:39002 �8ð Þ 1:93736 �8ð Þ
2179 �10ð Þ 385 5:10680 �6ð Þ 2:09405 �7ð Þ



Fig. 2. Efficiency of the DI, 1PVOSBD and 2PVOSBD methods.

Fig. 3. Van Der Pol Problem l ¼ 5 using different TOL levels.
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lem 3 is an artificial problem obtained from Suleiman (1979). The
accuracy of 2PVOSBD shows to be superior compared to latter
methods. The 2PVOSBD out performs the accuracy of the other
methods at every TOL. In terms of total steps, the 2PVOSBD and
DI method shows to be competitive. Whereas for Problem 4, dis-
plays the rivaling nature of accuracy between the 1PVOSBD and
2PVOSBD. To avoid unbiasness, all methods used for comparison
are structured with similar order stepsize conditions. Due to the
characteristics of the DI method, certain criteria are not able to
be met causing the DI method to be ineffective when dealing with
large TOL for this particular problem. This becomes evident at
TOL¼ 10�6. Due too many steps failures, the DI is forced to make
an early exit from the program.
9

The accuracy to the total step ratio can be emphasized clearer
by using illustrations. The efficiency of Problems 1 to 4 are pre-
sented in Fig. 1(a)–(d). To determine their efficiency, the accuracy
to the stepsize ratio could be illustrated in the graphical form
where the most efficient method is defined in Rasedee (2009) as
the undermost curve. Fig. 1 exemplifies the efficiency of the DI
for Problem 1(a) whereas the efficiency displayed in Figs. 1(b)
and (c) favours the 2PVOSBD. On the other hand, the competitive
efficiency between 2PVOSBD and DI is provided in Fig. 1(d), where
the DI method is more efficient for large TOL and the 2PVOSBD is
more efficient for finer TOL.

Finally, the approximation of Van Der Pol’s equation by
2PVOSBD method. Since the Van Der Pol equation is a nonlinear



Fig. 4. Van Der Pol Problem l ¼ 0:01 using different TOL levels.
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ODE without any known exact solution, the authors decided that it
is best to represent the 2PVOSBD’s approximation in graphical
form. Figs. 2 and 3 are provided to illustrate the approximation
capability of the 2PVOSBD when faced with a non-linear oscillatory
equation such as the Van Der Pol’s equation. See Fig. 4.

Fig. 2(a)–(d) are the approximated solution for Van Der Pol’s
equation given l ¼ 5; a1 ¼ 2; a2 ¼ 0 using two separate TOL,
10�5 and 10�10. It can be easily seen that Fig. 2(b) and (d) provide
a smoother approximation as compared to Fig. 2(a) and (c). This
shows the effectiveness of the 2PVOSBD method when using finer
TOL. This becomes evident in Fig. 3(a)–(d) (given
l ¼ 0:01; a1 ¼ 1:5 a2 ¼ 1:32288).

The rapid stepsize increase which is due to a large TOL level,
clearly has a more obvious effect in the accuracy of the approxima-
tion as shown in Fig. 3(a) and (c). By implementing a finer TOL
level, Fig. 3(b) and (d) shows a smoother approximation for the
current problem.

In conclusion, the proposed 2PVOSBD method is a viable instru-
ment for solving higher order ODEs. This is contributed to the
formulation of its algorithm.With a recursive relationship between
different orders, each set of coefficients can be expressed in terms
of the previous order. This eliminates the need to reformulate the
integration coefficients for different orders but can simply be
obtained using the recursive algorithm which reduces computa-
tional cost significantly. The efficiency of the algorithm is then ele-
vated with the relationship between the explicit and implicit
coefficients which allows the corrector code to be written in terms
of the predictor, eliminates the need for tedious to obtain the cor-
rector form scratch.

An extra advantage of the 2PVOSBD method is its adaptability
to parallel programming because even with the current accuracy
per step, there is an obvious difference between the constant and
variable approaches. Problems selected for this research is to chal-
lenge the 2PVOSBD method’s capabilities. The method has also
been tested against the second order systems of ODEs which read-
ers may refer to in the works of Rasedee et al. (2017a, 2018b). The
authors are currently working in effort of refine the order and step
change for both selection criteria and algorithm to overcome any
shortcomings in order to provide a more consistent and optimum
approximation for every TOL level selected regardless of the type
10
of ODE. For future works, the 2PBVOSmethod can modified for par-
allel programming and where reduced computational time can be
observed. The proposed method can be extended to a three, four
and eventually a N block algorithm.
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