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Abstract This paper deals with determining the optimal straight line route that minimizes the sum

of the weighted expected distances between the moving service facility and the random demand

points. The problem is investigated using different distance measures and different probability dis-

tributions of the random demand points.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Facility location problems involve locating one or more service
facilities, so as to optimally supply a given set of demand
points (also called existing facilities). On the macro scale they

involve location of airports, waste disposal sites, manufactur-
ing and distribution facilities. Depending on the application
being modeled, the facilities and demand points may be nodes
in a network or points in a planar region. Facility location in-

volves as well the problem of determining a path of a moving
y. Production and hosting by

Saud University.

lsevier
service facility, which during its journey provides service to a

set of demand points.
In this paper, we focus on the problem of finding the opti-

mal travel route for a service facility which moves through a
planar region and interacts with a number of potential demand

points and it is not known which particular ones will request
service. In several instances the assumption of known fixed de-
mands points does not hold. Consider for example, the case of

determining a route for a patrol car maintaining radio contacts
with potential stations and it is not known which particular
ones will request service or the case of determining a trajectory

for a surveillance aircraft or submarine moving in enemy terri-
tory and threatened by several unknown missile sites. Our
objective is the minimization of the weighted expected dis-
tances between the facility and the existing facilities over all in-

stants of time during the travel period.
There is scarce research work on moving facility location

problem with deterministic demands points, but to the best

of our knowledge, research on moving facility location with
random demand points remains largely unexplored. The prob-
lem assessed here is new and has not been treated in the

literature. Here is some of the current literature on moving
facility location problem with deterministic demands points.

mailto:abdefoul@ksu.edu.sa
http://dx.doi.org/10.1016/j.jksus.2011.03.003
http://dx.doi.org/10.1016/j.jksus.2011.03.003
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Sherali and Seong-in Kim (1992) have introduced a new class
of problems involving the determination of an optimal con-
strained path for a moving facility that interacts with a set

of fixed existing facilities. Using weighted-distance related cost
function, they have analyzed both the total cost and the aver-
age cost problems. Seong-In Kim and In-Chan Choi (1994) ex-

tended the model of Sherali and Seong-in Kim (1992) to a
larger class that includes a general cost structure. Then they
showed that an optimal path can be easily obtained to the

model with a specific form of nontrivial cost function. In
Seong-In Kim and In-Chan Choi (1997), Kim and Choi have
formulated the problem of finding an optimal path of a mov-
ing vehicle on a sphere as a variational problem under the

assumption that the demands were generated from an indepen-
dent Poisson process. The perturbation technique, coupled
with dynamic programming procedure, was suggested to solve

the variational problem.
In Caccetta et al. (2005), Caccetta et al. (2005), Hallam

(1997), Howlett et al. (1992), Rehbock et al. (2000), a class

of moving facility location problems, called ‘‘Transit path
problems’’, have been investigated. Such problems arise when
an object needs to traverse between two points through a spe-

cific region. The path must optimize a prescribed criterion such
as risk, reliability, or cost and satisfy a number of constraints
such as total travel time.

The remaining of the paper is organized as follows. In Sec-

tion 2, the problem is analyzed and the main results are de-
scribed. Illustrative examples are provided.

2. Analysis

Suppose there is a set of m demand destinations randomly
{Yi = (Ui,Vi):i= 1,2, . . . ,m} distributed over some rectangle

[0,s] · [0,t] in R2(s,t> 0). Assume that Ui (resp. Vi) has the
probability density function fUi

ðuÞ (resp. fVi
ðvÞ) and cumulative

distribution function FUi
ðuÞ (resp. FVi

ðvÞ). Let wi > 0 be the

demand for service at destination i= 1,2, . . . ,m. Suppose that
there is a vehicle moving in this plane along the route
z(t) = (x(t),y(t)) at a constant velocity v, starting from some

origin S and arriving at a destination located at D. The prob-
lem we address here is to determine a route for the moving
facility that minimizes the expected sum of the weighted dis-
tances between the moving facility and the demand destina-

tions over some time framework T. The problem can be
stated as

MinzðtÞJðzðtÞÞ ¼
Z T

0

Xm
i¼1

wiE½dðzðtÞ;YiÞ�
( )

dt ð1Þ

where d(.,.) designates either the rectilinear or the squared

Euclidean distance between the facility z(t) and the destination
Yi and E [.] denotes the expected value.

For simplicity, assume that the path traced by the moving

facility is represented by z(x) = (x,y(x)), where y(x) is a
straight line. Then the feasible set of routes from the origin
S to the destination D, denoted by Z, may be described by
the set

Z ¼ fzðxÞ ¼ ðx; yðxÞÞ : yðxÞ ¼ axþ b; x 2 I ¼ ½0; h�g
where a and b are the slope and intercept parameters, respec-
tively, of the straight line. h is a positive real number.
S= (0,y(0)), D= (h,y(h)).
Note that v ¼ ds
dt
, where ds is the incremental distance trav-

elled in the incremental time dt, we obtain that ds ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
:dx. The problem may then be

stated as follows:

MinzðxÞ2ZJðzðxÞÞ ¼
Z h

0

Xm
i¼1

wiE½dðzðxÞ;YiÞ�
( ) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ðxÞ2
q

dx

ð2Þ

In the coming sub-sections, we study Problem (2) for different

distance measures d(z(x),Yi) and different probability distribu-
tions for the random demand points Yi.

2.1. Case when d(z(x),Yi) is the rectilinear distance

The rectilinear distance between the demand point Yi =
(Ui,Vi) and moving facility z(x) = (x,y(x)) is given by

d(Yi,(x,y(x))) = Œx � Ui Œ + Œy(x) � Vi Œ and its expected
value by

E½dðYi; ðx; yðxÞÞÞ� ¼ E½jx�Uij� þ E½jyðxÞ � Vij�

Now, let fiðxÞ ¼ E jx�Uij½ � and giðyðxÞÞ ¼ E jyðxÞ � Vij½ �.
Then, we have

fiðxÞ ¼ EðUiÞ � x½1� 2FUi
ðxÞ� � 2

Z x

�1
ufUi
ðuÞdu

and

giðyðxÞÞ ¼ EðViÞ � yðxÞ½1� 2FVi
ðyðxÞÞ� � 2

Z yðxÞ

�1
vfVi
ðvÞdv

Then Problem (2) can be stated as:

Minðx;yðxÞÞ2ZJðx; yðxÞÞ

¼
Z h

0

Xm
i¼1

wiðfiðxÞÞ þ giðyðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0ðxÞÞ2

q( )
dx ð3Þ

By substituting y(x) = ax + b into the above problem and
denoting the real function

Pm
i¼1wigiðaxþ bÞ in the variables

a and b by Gx(a,b) and the constant
Pm

i¼1wi

R h
0
fiðxÞdx by C,

Problem (3) then becomes:

min
ða;bÞ

Jða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

Cþ
Z h

0

Gxða; bÞdx
� �

ð4Þ

In the sequel, (a*,b*) denotes an optimal solution to Problem
(4), and y*(x) = a*x + b* the optimal straight line route.

Now let’s consider the following sub-problem:

min
ða;bÞ

Gxða; bÞ ð5Þ

Optimal solutions to Problem (5) are characterized by the fol-
lowing theorem:

Theorem 1. For arbitrary bivariate distribution of the random

demand point Yi = (Ui,Vi), any solution (a,b) to the following
equation:

Xm
i¼1

wið2FVi
ðaxþ bÞ � 1Þ ¼ 0

is a global minimum to Problem (5).



Table 1 Data of Example 1.

i wi ai bi ci di

1 1 3 1 3 5

2 2 6 2 1 4

3 2 4 7 0 2

4 1 7 10 5 8
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Proof. By applying first order optimality conditions to the

unconstrained Problem (5), we have that:

rGxða; bÞ ¼
x
Pm
i¼1

wið2FVi
ðaxþ bÞ � 1Þ

Pm
i¼1

wið2FVi
ðaxþ bÞ � 1Þ

2
664

3
775

¼
0

0

� �
()

Xm
i¼1

wið2FVi
ðaxþ bÞ � 1Þ ¼ 0

ð6Þ

Then clearly any value of a and b satisfying Eq. (6) is a critical
point. To determine the kind of these critical points, we use
second order optimality conditions. Since the Hessian matrix

of Gx(a,b) given by

Hða; bÞ ¼
2x2

Pm
i¼1

wifVi
ðaxþ bÞ 2x

Pm
i¼1

wifVi
ðaxþ bÞ

2x
Pm
i¼1

wifVi
ðaxþ bÞ 2

Pm
i¼1

wifVi
ðaxþ bÞ

2
664

3
775

is positive semi-definite, it follows that the function Gx(a,b)
is convex and, therefore, each critical point is a global
minimum. h

Corollary 1. For arbitrary bivariate distribution of the random
demand point, Yi = (Ui,Vi) if 0, b* (where b* is the solution

to Eq. (6) with a = 0) is a global minimum to Problem (5), then
it is a global minimum to Problem (4).

Proof. Let 0,b* be a global minimum to Problem (5). Then we
have

Gxða; bÞP Gxð0; b�Þ ) Cþ
Z h

0

Gxða; bÞdx

P Cþ
Z h

0

Gxða; b�Þdx; 8a 2 R ð7Þ

which implies that:

Jða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

Cþ
Z h

0

Gxða; bÞdx
� �

P Cþ
Z h

0

Gxð0; b�Þdx
� �

¼ Jð0; b�Þ

"a 2 R. This shows that (a*,b*) is a global minimum to
Problem (4). h

Corollary 2. If Ui (resp. Vi) is a random variable that follows

the uniform distribution over [ai,bi] [(resp. [ci,di]),

then a� ¼ 0; b� ¼ summ
i¼1wiei

2
Pm

i¼1
wiei

� �
is a global minimum of Problem

(4).(where ei ¼ ciþdi
di�ci and �ei ¼ 1

di�ciÞ.

Proof. If Vi is uniform over [ci,di] then Eq. (6) can be expressed

as:

Xm
i¼1

wi 2
axþ b� ci

di � ci

� �
� 1

� �
¼ 0

By Theorem 1, any (a,b) that solves the above equation is a
global minimum to Problem (5). In particular, if we let
a = a* = 0, then from the above equation, we obtain
b ¼ b� ¼
Pm

i¼1
wiei

2
Pm

i¼1
wi�ei

, where ei ¼ ciþdi
di�ci and �ei ¼ 1

di�ci. By Corollary

1, (a*,b*) is a global minimum to Problem (4). h

Example 1. Consider the routing of military vehicle through
explosives detection field. Assume that each explosive is a

point Yi = (Ui,Vi) that could blast according to a bivariate
uniform distribution over the rectangular region [ai,bi] ·
[ci,di], i = 1,2,3,4. Let s = 15, t= 10, and h = s = 15. Table 1

gives the data for this example. According to Corollary 1, the
optimal straight line route in the x–y plane is given by the

equation y* = b*, where b� ¼
Pm

i¼1
wiei

2
Pm

i¼1
wiei
; ei ¼ ciþdi

di�ci and �ei ¼ 1
di�ci.

After simple computation, we found that b* = 2.73 and hence
y*(x) = 2.73 is the optimal route from S= (0,2.73)
to D= (15,2.73).

Corollary 3. If Ui (resp. Vi) is a random variable that follows
an exponential distribution with parameter qi (resp. si), then
a* = 0 and b* (which is the unique solution to equationPm

i¼1wið1� 2e�sibÞ ¼ 0Þ form a global minimum to Problem (4).

Proof. If Vi is exponential with parameter si, then Eq. (6) can
be expressed as

Pm
i¼1wið1� 2e�bsiÞ ¼ 0. By Corollary 1, a* = 0

and b* (the solution to the above equation) form a global min-

imum to Problem (4). To prove that b* is unique and
0 < b* < ln 2/min16i6msi, let fðbÞ ¼

Pm
i¼1wið1� 2e�bsiÞ and

note that f0ðbÞ ¼ 2
Pm

i¼1siwie
�sib > 0. Then f(b) is a strictly

increasing function. Let a = 0 and b = ln 2/min16i6msi. We

have fðaÞ ¼ �
Pm

i¼1wi < 0 and fðbÞ ¼
Pm

i¼1wið1� 2e�sibÞ > 0.
Therefore by Bolzano’s intermediate value Theorem (Bartle,
1976), there exists a unique value b* such that f(b*) = 0 and

0 < b* < ln 2/min16i6msi. h

Example 2. Suppose that we have three demand points
Yi = (Ui,Vi), i= 1,2,3 distributed according to a bivariate
exponential distribution over some rectangular region

[0,15] · [0,10]. Let h = 15, Table 2 gives the data for this
example.

According to Corollary 2, the optimal straight line route in
the x�y plane is given by the equation y* = b*, where b* solves
the following equation:

Pm
i¼1wið1� 2e�bsiÞ ¼ 0() 2ð1� 2e�bÞ

þð1� 2e�5bÞ þ 2ð1� 2e�3bÞ ¼ 5� 4e�b � 2e�5b� 4e�2b. Using
Mathematica software to find the root of an equation of one
variable, we found that b* = 0.368 and hence y*(x) = 0.368

is the optimal route from S= (0,0.368) to D = (15,0.368).

Corollary 4. If Ui(resp. Vi ) is a random variable that follows a
normal distribution with mean li, and standard deviation ri
(resp. l0i and r0i), then a* = 0 and b* (which solves the equation



Table 2 Data of Example 2.

i wi si

1 2 1

2 1 5

3 2 2
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Pm
i¼1wið1� 2PðVi P bÞ ¼ 0ÞÞ form a global minimum to

Problem (4). (P(.) denotes probability measure).

Proof. W.O.L.O.G. Suppose l0i > 0; i ¼ 1; 2; . . . ;m. Let
fðbÞ ¼

Pm
i¼1wið1� 2PðVi P bÞÞ. fðbÞ is a strictly increasing

function since f0ðbÞ ¼ 2
Pm

i¼1wifVi
ðbÞ > 0. Let bmax ¼ max16i6m

l0i
	 


þ e, and bmin ¼ min16i6m l0i
	 


� e, where e > 0. We have
f(bmax) < 0, and f(bmin) > 0. Therefore by Bolzano’s interme-
diate value Theorem (Bartle, 1976), there exists a unique value

such that f(b*) = 0 and bmin < b* < bmax. h

Example 3. Suppose that we have three demand points
Yi = (Ui,Vi), i= 1, 2, 3 distributed according to a bivariate
normal distribution over some rectangular region [0,15] ·
[0,10]. Let h = 15 Table 3 gives the data for this example.

According to Corollary 2, the optimal straight line route in
the x�y plane is given by the equation y* = b*, where b* solves
the following equation:

X3
i¼1

wið1� 2PðVi P bÞÞ ¼ 0

()
X3
i¼1

wi 1� 2P Z P
b� l0i

r0i

� �� �
¼ 0

where Z � N(0,1). We use bisection method to solve the above
equation. Evaluations are easily performed with the aid of a

cumulative normal table. The interval (Caccetta et al., 2005)
is a logical starting interval. After some computation, we
found that b* = 10.6 and hence y*(x) = 10.6 is the optimal

route from S= (0,10.6) to D= (15,10.6).

2.2. Case when d(z(x),Yi) is the squared Euclidean distance

The squared Euclidean distance between the demand point
Yi = (Ui,Vi) and moving facility z(x) = (x, y(x)) is given by

d(Yi,(x,y(x))) = (x � Ui)
2 + (y(x) � Vi)

2 and its expected
value by:

E½dðYi; ðx; yðxÞÞÞ� ¼ E½ðx�UiÞ2� þ E½ðyðxÞ � ViÞ2�

Now, let fi(x) = E[(x � Ui)
2] and gi(y(x)) = E[(y(x) � Vi)

2].

Then, fi(x) and gi(y(x)) can be expressed as:

fiðxÞ ¼ ðx� E½Ui�Þ2 þ Var½Ui�
Table 3 Data of Example 3.

i wi l0i r0i

1 1 3 1

2 4 10 3

3 2 15 4
and

giðyðxÞÞ ¼ ðyðxÞ � E½Vi�Þ2 þ Var½Vi�

where Var[Ui] (resp. Var[Vi]) denotes the variance of the ran-

dom variable Ui (resp. Vi).
The following theorem is a restatement of Theorem 1 in

case d(z(x),Yi) is the squared Euclidean distance.

Theorem 2. For arbitrary bivariate distribution of the random

demand point Yi = (Ui,Vi), any solution (a,b), to the following
equation:

Xm
i¼1

wiðaxþ b� E½Vi�Þ2 ¼ 0

is a global minimum to Problem (5).

Proof. Following the proof steps of Theorem 1 and equalizing
the gradient vector Gx(a,b) to zero, we obtain:

rGxða; bÞ ¼
2x
Pm
i¼1

wiðaxþ b� E½Vi�Þ

2
Pm
i¼1

wiðaxþ b� E½Vi�Þ

2
664

3
775

¼
0

0

� �
() 2

Xm
i¼1

wiðaxþ b� E½Vi�Þ ¼ 0

ð8Þ

Clearly any value of a and b that satisfies (7) is a critical point.
To determine the kind of these critical points, we use second
order optimality conditions for unconstrained problems. Since

the Hessian matrix of Gx(a,b), given by

Hða; bÞ ¼
2x2

Pm
i¼1

wi 2x
Pm
i¼1

wi

2x
Pm
i¼1

wi 2
Pm
i¼1

wi

2
664

3
775;

is positive semi-definite, it follows that the function Gx(a,b) is
convex and, therefore, each critical point is a global minimum.
The following theorem gives a general and unique expression
for the global minimum (a*,b*) to Problem (4) that encom-

passes all types of bivariate distribution of the random demand
point Yi = (Ui,Vi). h

Theorem 3. For arbitrary bivariate distribution of the random

demand point Yi ¼ ðUi;ViÞ a� ¼ 0; b� ¼
Pm

i¼1
wiE½Vi �Pm

i¼1
wi

� �
is a global

minimum to Problem (4).

Proof. Consider Eq. (7)

2
Xm
i¼1

wiðaxþ b� E½Vi�Þ ¼ 0

By Theorem 2, any (a,b) that solves the above equation is a
global minimum to Problem (5). In particular, let a =

a* = 0, then the above equation gives b ¼ b� ¼
Pm

i¼1
wiE½Vi �Pm

i¼1
wi

. By

Corollary 1, (a*,b*) is a global minimum to Problem (4). h
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Remark 1. The intercept parameter b* can be seen to be the

center of gravity (median) of the random demand points Vi

(taken by their expected values E[Vi]). Theorem 3 can be con-
sidered as an extension of Theorem 1(a) (Sherali and Seong-in

Kim, 1992) to random demand destinations.
3. Conclusion and extensions

In this paper, I have considered an instance of the moving
facility location problem. This problem arises in many areas

of real life. For example, routing of military vehicles through
a detection field; determining an optimal path for a submarine
that traverses a field of sonar sensors; or as mentioned in the

Introduction, finding a route for a patrol car maintaining radio
contacts with potential stations.

I studied the moving facility location problem with random
demand destinations and a minimum type of objective and

where the route is confined to a straight line. I have shown
that, in case of rectilinear distance between the moving facility
and the random points an optimal straight line route parallel

to the x-axis exists. In case of squared euclidean distance,
the last theorem gives a unique expression for the intercept
parameter of the optimal straight line route for arbitrary bivar-

iate distribution of the random demand points.
The proposed model can be extended in several ways. These

include multifacility considerations, analysis of minimax as op-
posed to minisum types of objective functions, treatment of

other path equations as opposed to a straight line path. These
problems will be explored in future research.
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