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In this paper, we analytically investigate axi-symmetric flow of a micro-polar fluid induced by peristaltic
waves with progressively dilating amplitude. By means of mathematical formulation we examine its
impact on swallowing of single food bolus through oesophagus. Liquid crystals, blood, some edible solu-
tions resemble micro-polar property. Engineering applications using polymer solutions, colloidal solu-
tions, drilling fluids in oil industries etc. may be better understood by this investigation. Long
wavelength and low Reynolds number approximations are employed to get rid of non-linear convective
terms and minimise curvature effects of the wall. It is inferred that increasing coupling number and
amplitude dilation parameter enhance the pressure inside the tube, while micro-polar parameter is
responsible for reducing the pressure along the axis of the tube. Local wall shear stress too increases with
amplitude dilation parameter. The study suggests that achalasia patients should avoid the consuption of
micro-polar fluids. It is also concluded that reflux action weakens with dilation of wave amplitude for
micro-polar flows.
� 2020 Indian Institute of Technology (BHU), Varanasi, India. Published by Elsevier B.V. on behalf of King
Saud University. This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Combination of periodically alternating contractions and relax-
ations of muscles responsible for most of the physiological flows is
peristalsis. This combination forms a transverse and progressive
wave. This mechanism has several engineering applications. Sev-
eral innovators, across various fields, are developing peristaltic
machines that can move in cylindrical tubes to locate ruptures at
the joints of gas and water pipelines and those caused by cracks.
Many such machines are being designed to serve industries for
sanitary fluid transport, blood pumps in heart/lung machines,
transport of corrosive fluids without contacting machinery compo-
nents. Studies are also focused on realization of machines that can
pass through intestines and blood vessels. Peristalsis, observed in
earthworms and nematodes, induces shape variation and a shift
in the center of gravity. This causes extensional waves to propagate
and thus progress without injury to the vulnerable inner walls of
blood vessels. This moving mechanism together with catheters
can reach a diseased site by itself (Nakazato et al., 2010).

Eringen (1966) formulated the effects of individual particles
such as micro-rotation in flow, which are concentrated suspension
of non-deformable neutrally buoyant rigid particles in a viscous
medium. Micro polar fluids contain micro constituents which can
undergo rotation. Rotation of micro constituents can affect the
hydrodynamics of flow and make the fluid distinctly non-
Newtonian. Physically, micro polar fluids represent fluids consist-
ing of rigid, spherical or randomly oriented particles with ignored
deformation suspended in a viscous medium (Lukaszewicz, 1999).
Liquid crystals, blood, some edible solutions resemble micro-polar
property. Engineering applications using polymer solutions, col-
loidal solutions, drilling fluids in oil industries etc. may be better
understood by this investigation (Pandey and Tripathi, 2011a).

Devi and Devanathan (1975) studied peristaltic transport of
micro-polar fluids in a cylindrical tube with a sinusoidal wave of
small amplitude. Philip and Chandra (1995) explored peristaltic
transport of a simple micro-polar fluid which accounts for micro-
rotation and micro-stretching of the particles contained in a small
volume element using long wave length approximations.
Srinivasacharaya et al. (2003) examined different micro-polar
properties on pressure across one wavelength and also on trap-
ping; Hayat et al. (2007) investigated the effects of different wave
forms; Muthu et al. (2005, 2008a, b) studied wall properties in
channels and tubes respectively whereas Hayat and Ali (2008)
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investigated effects of an endoscope. The same authors (Ali and
Hayat, 2008) studied the effects of asymmetricity of wave propaga-
tion of channel while Mekheimer and Elmaboud (2008) studied the
flow in an annulus. Asghar et al. (2018) used micro-polar fluid to
characterize the rheology of a thin layer of slime and its dominant
micro-rotation effects. Recently some interesting papers dealing
with the flow of micro-organisms such as bacteria and cilia driven
flows under different conditions have been published (Ali et al.,
2016; Asghar et al., 2017, 2018, 2019a; Asghar and Ali, 2019;
Asghar et al., 2019b; Ali et al., 2019a; Asghar et al., 2019c; Ali
et al., 2019b; Javid et al., 2019; Asghar et al., 2020a, b, c).

Unlike aforementioned authors, Pandey and Tripathi (2011a)
investigated flow of a micro-polar fluid in a finite tube with the
consideration that peristaltic waves do not move beyond the sta-
tionary boundary of the tube to match such a flow in oesophagus.
Such a wave propagation was designed by Misra and Pandey
(2001).

Pandey et al. (2017) concluded in their investigation that the
wave amplitude does not remain constant during the wave propa-
gation in a peristaltic motion when anything swallows in the
oesophagus. The conclusion was derived in order to model the
experimental reports of Kahrilas et al. (1995) who had located a
higher pressure zone in the distal part of the oesophagus in normal
as well as pathological state. Pandey and Tiwari (2017) further
investigated swallowing of fluids that match the properties of Cas-
son fluid, due to peristaltic waves of dilating amplitude.

In light of the observation of dilating peristaltic waves by
Pandey et al. (2017) in oesophagus which validates experimental
investigation, peristaltic swallowing of micro-polar fluids
(Pandey and Tripathi, 2011a) requires a revisit of investigation.
Particularly the impact of dilation of wave amplitude on the non-
dimensional parameters such as coupling number and micro-
polar parameter may be worth reporting.
2. Formulation of the problem

We consider the flow of micro-polar fluid in a tube of length of l
�

caused by continuous contraction waves that propagate along the
walls of the tube (cf. Fig. 1), which are given by
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and c respectively stand for radial displace-

ment of the wall, axial coordinate, time, radius of the tube, ampli-
tude of the wave, wavelength, dilation parameter and wave
velocity (cf. Pandey et al., 2017).
Fig. 1. Schematic diagram of oesophagus (based on Eq. (16)) represents the
propagation of a progressive wave, where d ¼ a

k, Re, Q denote respectively the wave
number, the Reynolds number and the volume flow rate.
The governing equations of the flow of micro-polar fluid in the
absence of body forces and body couple are given by
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where u
�
;v
�
;w
�
; r
�
;q;r

�
are respectively the axial velocity, the radial

velocity, the micro-polar vector, the radial coordinate, the fluid den-
sity and the micro-gyration parameter. The parameters l; k;a;b; c
are material constants satisfying the following conditions:

2lþ k � 0; k � 0;3aþ bþ c � 0; c � bj j: ð6Þ

For details of the equations for micro-polar fluids, please see
Asghar et al. (2018).

The following dimensionless parameters are introduced for the
subsequent analysis:

x ¼ x
�

k
; r ¼ r

�

a
; t ¼ c t

�

k
;u ¼ u

�

c
;v ¼ v

�

cd
; d ¼ a

k
;w ¼ aw

�

c
;H ¼ H

�

a
;

x ¼ x
�
k; l ¼ l

�

k
;/ ¼ /

�

a
;r ¼ r

�

a2
;p ¼ p

�
a2

lck ;Re ¼ qcad
l ;Q ¼ Q

�

pa2c : ð7Þ

Introduction of the dimensionless parameters gets Eqs. (2)–(5)
transformed to
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Employing the long wavelength and low Reynolds number
approximations, the dimensionless Eqs. (8)–(11) reduce to
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where N ¼ k
lþk is the coupling number, which is a measure of parti-

cle coupling with its surroundings 0 � N � 1ð Þ;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k 2lþkð Þ
c lþkð Þ

q
is the

micro-polar parameter and a;b do not appear in the governing

equation as the micro-rotation vector w is solenoidal, i.e.r!w ¼ 0.
In the limiting case, k ! 0 implying N ! 0 the governing equations
for the micro-polar fluid reduce to the governing equations for
Newtonian fluid.

Similarly the wall Eq. (1), under non-dimensionalisation reduce
to

H x;x; tð Þ ¼ 1� /exx cos2 p x� tð Þ: ð16Þ
The following are the boundary conditions imposed on the gov-

erning equations:
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3. Solution of the problem

Integration of Eq. (13), once with respect tor, yields

@u
@r

¼ 1� Nð Þ r
2
@p
@x

� Nwþ C1

r
; ð19Þ

Further, integrating Eq. (15) twice with respect to r and also
using Eq. (19), we obtain non-homogeneous Bessel equation in
the cylindrical coordinates as
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where C1;C2; C3 are arbitrary functions independent of r and
I1 mrð Þ;K1 mrð Þ are respectively the modified Bessel functions of
the 1st and the 2nd kind of the 1st order.

Then applying the fourth boundary condition of Eq. (17), and
the boundary conditions (18), Eqs. (19) and (20) become
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And further integrating Eq. (21) and applying the no-slip condi-
tion of Eq. (17), the axial velocity is found as
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where I0 mrð Þ; I0 mHð Þ are the modified Bessel functions of the 1st

kind and the 0th order.
The radial velocity is derived from Eq. (15), by substituting u

from Eq. (23) and integrating it once with respect tor. The regular-
ity condition, given in Eq. (17), determines the constant term and
gives the radial velocity as
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In order to get pressure gradient, we apply the radial velocity of

the wall, given in Eq. (17), on Eq. (24). This gives
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Integrating this, with respect to x, yields the pressure gradient
as
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Integrating it once again from 0 to x, the pressure is obtained as
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Substituting x ¼ l in Eq. (27), the pressure between the inlet and
the outlet of the tube, is obtained as
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where Dpl tð Þ ¼ p l; tð Þ � p 0; tð Þis the pressure difference between the
inlet and outlet of the tube.
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The time-averaged volume flow rate may be given in terms of the
flow rate in the wave frame, and also in the laboratory frame, as
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This helps us express the pressure gradient in terms of the time-
averaged volume flow rate. With somemanipulations Eqs. (30) and
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Finally, the local wall shear stress is defined as
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G tð Þ þ p/

4

R x
0e

xx 2/exx�4ð Þ
sin 2p x�tð Þþ/exx sin 4p x�tð Þ

h i
ds

1� /3e3xxcos6p x� tð Þ � 3/exxcos2p x� tð Þ
þ3/2e2xxcos4p x� tð Þ þ 4NH

m2 1� mHI0 mHð Þ
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� �
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;

ð36Þ
4. Reflux limit

Reflux is an important phenomenon of peristaltic movement
and refers to the presence of fluid particles that move, on the aver-
age, in a direction opposite to the net flow in the close vicinity of
the wall (Shapiro et al., 1969).

For the axi-symmetric case, the dimensional form of the stream
function in the wave frame is defined as

dw
�
¼ 2pR

�
U
�
dR

�
�V

�
dX

�� �
; ð37Þ

where w
�
;X
�
;R
�
;U
�
and V

�
are stream function, the axial and the radial

coordinates, the velocities components the axial and radial direc-
tions respectively.

Using the following transformations between the wave and the
laboratory frames, defined as
X
�
¼ x

��c t
�
;R
�
¼ r

�
;U
�
¼ u

� � c
�
;V
�
¼ v

�
; q
� ¼ Q

�
�cH

�
2;W

�
¼ w

�
�r

�2; ð38Þ
where the left side of the parameters is in the wave frame while the
right side of the parameters are in the laboratory frame, we obtain
stream function as

w¼�

Q
�
þ/exxþ/2e2xxcos4p x� tð Þ�2/exx

cos2p x� tð Þ�3
8/

2e2xx

0
@

1
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þ4NH2

m2 � 1�mHI0 mHð Þ
2I1 mHð Þ

� �
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2
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; ð39Þ

Stream function at the wall, ww is solved from Eq. (39) by sub-
stitutingr ¼ H. A simplification yields

wjr¼H ¼ ww ¼ Q
�
�1þ /exx � 3

8
/2e2xx; ð40Þ

Reflux flow rate, Qw xð Þ associated with a particle at the position
x is given by

Qw xð Þ ¼ wþ r2 w; xð Þ; ð41Þ
which, on averaging over one cycle, gives

Q
�
w ¼ wþ

Z 1

0
r2 w; xð Þdx; ð42Þ



Fig. 2. Pressure distribution along axial distance at different time instants showing the effect of dilation parameterx. Other parameters are taken
asl ¼ 3;/ ¼ 0:7;N ¼ 0:10;m ¼ 1:0.
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Moreover, in order to evaluate the reflux limit, Q
�
w is expanded

in a power series, in terms of a small parameter e about the wall,
where e ¼ w� wwð Þ is subjected to the reflux condition
Q
�
w

Q
� > 1 as e ! 0; ð43Þ

The coefficient of the first two terms in the expansion of r is
obtained only for small values of m. Substituting the expansion
r2 w; xð Þ ¼ H2 þ a1eþ a2e2 þ a3e3 þ � � � into equations (39), and
using equations (40), we get
a1 ¼ �1; ð44Þ

a2 ¼ �
1� 1

4
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3
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;

ð45Þ



Fig. 3. Pressure distribution along axial distance at different time instants showing the effect of coupling numberN. Other parameters are set as
l ¼ 3;/ ¼ 0:7;x ¼ 0:01;m ¼ 1:0.
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Then integrating Eq. (41) with respect to x and using Eqs. (42)–
(45), we obtain the reflux limit (i.e. The occurrence of the reflux) as
Q
�
< 1� /exx þ 3

8
/2e2xx �

Z 1

0

1�
�

1þ /2e2xxcos4p x� tð Þ � 2/

Z 1

0

1�
�

1þ /4e4xxcos8p x� tð Þ þ 6/2e2xxcos4p xð
þ 4NH2

m2

�

where H has been given by Eq. (16).
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4
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� tÞ � 4/exxcos2p x� tð Þ � 4e3xxcos6p x� tð Þ
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�
dx

; ð46Þ



Fig. 4. Pressure distribution along axial distance at different time instants showing the effect of micro polar parameterm. Other parameters are taken
asl ¼ 3;/ ¼ 0:7;x ¼ 0:01;N ¼ 0:50.
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5. Results and discussion

In order to explore the effects of various parameters such as
coupling number, micro-polar parameter, wave amplitude dilation
parameter and the wall shear stress on swallowing of micro-polar
fluid, we plot graphs for local pressure distribution along the axis.
In order to examine the contribution exclusively of peristalsis,
pressure of zero magnitude is prescribed at the two ends of the
oesophagus, which makes Dpl tð Þ ¼ 0. At a particular time, only
one bolus moves in the oesophagus, which is easily experienced
when a non-Newtonian fluid swallows. Therefore, for analysis,
we consider a single bolus swallowing in the tube which has the
capacity to accommodate three boluses at a time, so far our discus-
sion is concerned.

The fundamental motive is to study the local pressure distribu-
tion along the axis when a bolus travels down the oesophagus
towards the cardiac sphincter. Since the mathematical model
involves expressions that cannot be integrated by classical meth-



Fig. 5. Wall shear stress sw distribution along axial distance at different time instants showing the effect of dilation parameterx. Other parameters are taken
asl ¼ 3;/ ¼ 0:7;N ¼ 0:10;m ¼ 1:0.
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ods, the only way out is to go for numerical evaluation. Moreover,
the values of all the non-dimensional parameters are merely suit-
able assumptions to facilitate qualitative investigation.
5.1. Effect of dilating wave amplitude x on pressure

The bolus is supposed to be already there in the tube att ¼ 0:00.
Dashed line symmetric about the axis of the tube are drawn to
indicate the position of the bolus in the direction left to right. Fall
of pressure from the left towards right paves way for the bolus to
move in the tube. Different inclinations of the pressure curve indi-
cate different pressure gradients of the corresponding part of the
bolus. Its gradual rise from the head of the bolus to the end of
the tube is the revelation that the motion is under control; the
bolus is never let move freely.

The effect of dilating wave amplitudex on the flow dynamics is
plotted in Fig. 2. We fix the various parameters
asl ¼ 3;/ ¼ 0:7;N ¼ 0:10;m ¼ 1:0, and let x vary. Fall and rise of
pressure throughout the length of the tube from t ¼ 0:00 to
t ¼ 2:00 in the plots is observed to be dependent on the wave
amplitudex, x ¼ 0:00 corresponding to the constant amplitude
(Fig. 2). Variation between the maximum and the minimum pres-
sures becomes larger when the wave-amplitude dilates, e.g.,
whenx ¼ 0:01,0:02 (Fig. 2). An observation of Fig. 2(a-f) reveals
that pressure gradients, corresponding to x ¼ 0:01 andx ¼ 0:02,
are larger in magnitude in the lower oesophageal part than that



Fig. 6. The diagram exhibits the relation between time averaged flow rate Q
�

and
wave amplitude / showing the effect of dilation parameter x on reflux limit. Other
parameters are taken as N ¼ 0:10;m ¼ 1:0.
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in the upper oesophageal part and also, if we measure the magni-
tude, the pressure rises more in the lower part of the oesophagus. It
conforms the experimental observations of high pressure zone in
the lower oesophageal part even when the fluid transported is of
micro-polar nature (Kahrilas et al., 1995).
5.2. Effect of coupling number N on pressure

Plots in Fig. 3 depict the impact of the coupling effect parame-
terN, a measure of particle coupling with its surroundings, on pres-
sure distribution along the axis of the tube. We set the various
parameters asl ¼ 3;/ ¼ 0:7;x ¼ 0:01;m ¼ 1:0, and let Nvary in
the range 0–0.75.

It is observed that pressure gradient as well as pressure along
the length of the oesophagus increases as the coupling effect
parameter N increases throughout the length of the tube. This
may be physically interpreted as that internal rotation of the fluid
particles increases pressure; and finally the fluid reduces to New-
tonian, i.e. as N ! 0, pressure is minimum. This leads to the con-
clusion that physically the oesophagus has to make additional
efforts to swallow a micro-polar fluid. Similar is the observation
for all values of t ranging from 0 ! 2, i.e., throughout swallowing.
Temporal effects are similar to those observed for other fluids such
as Newtonian, power-law, visco-elastic, visco-plastic and magneto
hydrodynamic fluids (Misra and Pandey, 2001; Pandey and
Tripathi, 2010). Figures, together with captions, provide the details
(cf. Fig. 3). Achalasia causes inadequate lower oesophageal sphinc-
ter relaxation; as a consequence of which oesophageal clearance is
delayed. A possible treatment of patients with inadequate lower
oesophageal sphincter relaxation is through drugs or by operation
(Spechler and Castell, 2001). Thus, this problem will be more acute
if the fluid is micro-polar.
5.3. Effect of micro-polar parameter on pressure

Our next analyse the role of the other micro-polar parameterm
by setting other parametersl ¼ 3;/ ¼ 0:7;x ¼ 0:01;N ¼ 0:50, and
vary m in the range 1.0–5.0. It is noticed that the pressure along
the entire length of the tube decreases as m increases. Hence, this
parameter has an opposite effect vis-à-vis coupling number N (cf.
Fig. 3). Since no value of m can lead to Newtonian nature, no com-
parison can be made with Newtonian fluids. In fact, the micro-
polar fluid has a complicated characteristic that is built up by the
combined effects of several parameters. This may be recorded that
onceN vanishes, m no longer exits (cf. Fig. 4 ).
5.4. Effect of dilating wave amplitude x on wall shear stress sw

Fig. 5 depict the temporal effects of dilating wave amplitude x
on wall shear stress sw along the length of the tube for distinct val-
ues oft ¼ 0:00 ! 2:0. It is observed that the local wall shear stress
sw increases with the dilating wave amplitude x. We found that
the bolus felt more stress, more than double, at t ¼ 2:0 instead
oft ¼ 0:00. Therefore, in the lower part of the oesophagus, bolus
will experience higher pressure to transport the bolus in the
human oesophagus. Due to the high stress, the size of bolus looks
shrunk in the lower part of the human oesophagus (Kahrilas et al.,
1995).
6. Effect of dilating wave amplitude on reflux

Flow rate enhances when wave amplitude is increased. Shapiro
et al. (1969) discovered retrograde motion corresponding to a
given wave amplitude. Less flow rate across a cross section than
that across a smaller area within the same cross section is an indi-
cation of retrograde motion. In such a case, some fluid flows in the
opposite direction near the tubular wall. Consequently, the amount
of flow diminishes. This is because close to the inner the periphery,
flow is in the reverse direction diminishing the net flow as
expected. The flow rate, beyond which there is no reflux, was ter-
med as reflux limit. For small and large amplitudes, Shapiro et al.
(1969) used different perturbation techniques to estimate the
limits.

The analysis for large amplitude and high flow rates has been
carried out. Pandey and Tripathi (2011b) observed that micro-
polar fluids are more prone to reflux. The curves representing
reflux limits for micro-polar fluids are higher compared to that of
Newtonian fluid, for low flow rates. In order to examine the role
of dilating amplitude, we fix the coupling number and micro-
polar parameter as N ¼ 0:10;m ¼ 1:0, and then vary the dilating
parameter by plotting the time averaged flow rate against wave
amplitude. The curves indicate that as the amplitude increases
more flow rateis required for reflux to take place. We further
observe that the curve corresponding to reflux limit rises as wave
amplitude is augmented with the dilating parameter of higher
magnitude (Fig. 6), clearly indicating that reflux actions weakens
with dilating wave amplitude. Only higher flow rates may cause
reflux. Thus, dilating wave amplitude saves flow from retrograde
motion in the oesophagus.
7. Conclusion and physical interpretation

The objective of this analysis is to learn the effect of dilating
wave amplitude on the non-Newtonian nature of fluid, which is
swallowed in the oesophagus. Here, the non-Newtonian nature is
characterized by the micro-polar parameter and coupling number.
These characteristics give it the name micro-polar fluid. It is found
that the presence of coupling number and micro-polar parameter
requires more pressure to be exerted by the wall of the oesophagus
on the fluid swallowing inside it. Dilating wave amplitude
increases it further. This confirms the experimental observations
(Kahrilas et al., 1995) of high pressure zone in the lower part of
the oesophagus.

The micro-polar and Newtonian fluids have qualitatively simi-
lar pressure distributions; but differences in magnitudes are very
much significant. The acknowledgment is that coupling numberN
and dilation parameter x increase pressure along the entire length
of the oesophagus, while the other micro-polar parameter m
decreases it.

It is observed that for exponentially increasing wave-amplitude,
pressure increases along the entire length of the oesophagus; and
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finally towards the end of the oesophageal flow, it is at the peak. It
is found that the pressure distribution is dependent on the position
of the wave that propagates in the oesophagus. The local rate of
change in the pressure difference is much greater when the wave
originates at the inlet and terminates at the outlet of the oesopha-
gus than when the wave lies midway. This may be associated to
the fact that the pumping action does not take place along the
entire length of the oesophagus uniformly. The rate of change is
higher in the proximity of the inlet and the outlet. This present
investigation prohibits feeding of micro-polar fluids to the patients
suffering from achalasia.

It is also concluded that for the non-Newtonian micro-polar flu-
ids, reflux is less probable with increasing amplitude and further
augmented by the dilation parameter.
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