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ABSTRACT

This research deal the probabilistic multi-product multi-vendor inventory model include varying order
cost and zero lead-time under linear and non-linear constraints for the number of periods Ny, the first
linear constraint on the expected holding cost, the second nonlinear constraint on the buffer stock and

Available online 12 March 2018 the third linear constraint on the storage space. The goal is to limit the expected holding cost by an upper

limit k;, the limit for the buffer stock by an upper limit k, and the limit for the storage space by an upper
ﬁylv‘{ordS:d limit k3. The searchers’ aim is to determine the minimum expected total cost, the optimal number of per-
ulti-product iod N;; and the optimal maximum inventory level Q.. by using a geometric programming approach.
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1. Introduction

Many studies and research have emerged since more than
ninety years to study the inventory. Harris (1915) was one of the
first who managed to formulate effective inventory system by
deriving the simple lot size formula and named (Wilson Formula)
Proportion to Wilson who has published in 1930 in a way indepen-
dent from Harris.

A lot of studies appeared to studying the unconstrained proba-
bilistic inventory models, the first study in 1960’s by Hadley and
Whitin (1963) has Followed by many researches and studies.
Duffin et al. (1967) debated the basic theories on GP with applica-
tion in their book.

In 1965’s Fabrycky and Banks (1965, 1967) treated some prob-
abilistic inventory models and used the classical optimization for
studied. It was Kotchenberger (1971) the first person who used
Optimization by geometric programming on inventory problems.
Zener (1971) used a geometric programming technique to solved
a specific sort of non-linear problems. In 1989 Cheng (19893,
1989b) used a geometric programming to studied an EOQ model
and develop some inventory models. Ben-Daya and Raoyf (1994)
presented unconstrained inventory model through GP method.

Also, appeared the more studies and researches for the proba-
bilistic inventory models under linear and non linear constraints.
Hariri and Abou-El-Ata (1995), Abou-El-Ata et al. (2003) and
Fergany (2005) used a geometric programming approach to treated
some of the constrained probabilistic inventory models with vary-
ing order cost. Similarly, Fergany and El-Wakeel (2004) applied
geometric programming approach to studied the probabilistic
inventory system with varying order cost. In (1997) Abou-el-ata
and Kotb (1997) progress the restriction crisp inventory model
by GP method. Teng and Yang (2007) treated deterministic Inven-
tory Lot Size Models with time-Varying demand and Balkhi and
Tadj (2008) were made a more dynamic models through the
derivation of the EOQ model. Also El-Sodany (2011) studied the
probabilistic safety stock model with varying holding cost by geo-
metric programming approach. Islam (2015), applied a geometric
programming approach to solved the multi-item, multi- criteria
and multi-constraint level economic production planning inven-
tory problem under the constraints of space capacity and the total
allowable shortage cost.

In this paper we will discuss three probabilistic multi-product
multi-vendor inventory models include varying order cost and zero
lead-time under linear and nonlinear constraints for the number of
periods N, the first linear constraint on the holding cost, the sec-
ond nonlinear constraint on the buffer stock and the third linear
constraint on the storage space. The aim of the search to determine
the minimum expected total cost, the optimal number of period N,
and the optimal maximum inventory level Q, . by using a geomet-
ric programming approach (GPP). We discussed the model I in the
case g(N,s) = y for the probabilistic MIMS inventory model, and we
got the same formulas for policy variables contained in Fabrycky
and Banks (1967) in the same case g(N,s) = 7 for the probabilistic
SISS inventory models, this mean that the model I for the MIMS
inventory models is a generalization of the probabilistic SISS inven-
tory model for Fabrycky and Banks (1967). Also, we discussed the
model Il in the case g(Ny) ="t for the probabilistic MIMS
inventory model, and we got the same formulas for policy variables

contained in Fabrycky and Banks (1967) in the same case
&(Ns) = % for the probabilistic SISS, this mean that the model
Il for the MIMS inventory models is a generalization of the proba-
bilistic SISS inventory model for Fabrycky and Banks (1967). The
model III, we discussed it in the case g(N;s) = y + 4 for the proba-
bilistic MIMS inventory model and determined the optimal policy
variables, and we deduced the optimal policy variables for the
model I and model II as special cases from model III. Next, applying
a numerical example for the three models, and finally, comparisons
are done and conclusion is deduced.

2. Model’s parameters and evolution

We adopted assumptions and notations for the model as
follows

Cprs The production (purchase) cost for the rth product
and st vendor.

Cors(Nrs) The varying procurement cost for the rth product
per cycle and st vendor.

Chr The holding cost for the rth product per period.

Dy The annual demand rate for the r" product per

period. (Units)

f(D;) The probability density function of the Demand
with known average D;.

1 The expected level inventory for unit period. (Units/
period)

Xur The maximum demand for the r® product during
cycle. (Units/cycle)

Qs The maximum inventory level of the rt" product

and st vendor (Units)

Nis The number of periods per cycle of the r* product
and st vendor, the review of the stock level of the
r product is made every Ny period.

E(TC) The expected total cost function.

E(HC) The expected annual holding cost.

E(OC) The expected annual procurement cost.

E(PC) The expected annual purchase cost.

Kk, The limitation on the expected holding cost. (Units)
ko The limitation on the expected buffer cost. (Units)
k3 The limitation on the area. (meter square m?)
MIMS Multi product (item), Multi-vendor. (source)

3. Assumptions for the model

1. A survey of stock level each N5 periods.

2. An amount is ordered, so return the stock level to its initial pos-
ture specified Q.

3. Suppose that Q,, is a random variable representing the order
amount of the r item and s source or vendor through cycle.

4. Shortages are not allowed.

5. The maximum inventory level of the r'" item and s source is
Qs as follows:
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ers = g(Nrs)E(Qrs)
= Nrsﬁr and =

Where : E(Q,) = NsE(D;)

- [ ore

6. The procurement cost per unit is a varying function of N, has
the from:

Cos(Nis) = CosNE. where  Cos >0, >0

4. Probabilistic (MIMS) inventory model with zero lead time
under three constraints and varying order cost

We define the expected total cost for the period, that is the sum
of the expected purchase cost for the period, the expected procure-
ment cost for the period and the expected holding cost for the per-
iod as follows:

E(TC) = E(PC) + E(OC) + E(HO)

Where : E(PC)

n
Cors X
k)

Nis

= Z?:l Cprsﬁr

" Chyl
Nis

= Zr::l CprsE(D)

E(0C) =

r=1

E(HC) =

r=1

The expected level inventory I is given by:

- N*D
I= %[Zg(Nrs) —1]

Now the holding cost component is given by:
" CpNisD
E(HC) = ZhT (2g(Nis) — 1)

where g(Ny) is the relational function just mentioned .The main
variables for this model are Q,,, and N, , then, we rewritten the
total expected cost for the period as follows:

" [~ Cas CwNsD;
Z CprsDr'f‘I\;s‘f'hrTs

r=1

E(TC) =

(28(Ns) = 1)

where  g(Ny) >% (1)

4.1. Model I: Consider the case g(Ny) =y where y > 1

Substituting g(N,s) =y where yis constant, in the expected
level inventory I and the expected holding cost E(HC) are given by:
T N2 D _ i ChrNrSEr

= T2y -1) and E(HC) = 5

e 2r-1)

r=1

Also, the expected total cost in Eq. (1) is obtained as:

< B—1 ChrNrsﬁr
E(TC) = | CprsDr + CarsNE; ES@y -1 0<p<d
r=1
(2)
Subject to:
n —
ZCIUDZrNrs < k]
r=1
n —
CpyDrv

Nrx < k2

r=1

n
ZSBrNrs < k3

The term 3", C,sD; is constant, then the expected total cost (2)
can be written as following from:

. _
min E(TC) = Z Corsts’1 +M(2~/ -l 0<p<1
r=1 2
3)
Subject to:
S %"k?' Nis <1
S G < @)

n  SD;N
S T < 1

Applying the geometric programming technique to the Egs. (3)
and (4), we obtain the primal geometric function:

H( )W CuDr(2y - D\"™ ( CuD: |
= Wirs 2VVer 2k1W3rs
Wars = Wsrs
) <ChrDrV> . ( SDr ) N%f—l)whﬁwz,ﬁw;,s—W4,S+WS,S (5)

k2 Wars k3 Wspg

where W =wj,, 0 <wjs <1, r=1,2...n,s=1,2,...-m, j=1,2,
3,4,5 are the weights that achieve orthogonal and natural condition
as follows:

Wirs + Wars = 1

(ﬂ - l)wlrs + Wars + Waps — Waps + Wsps =0

By solving the above equation, we get:

1 + Wars — Wars + Wsis

2-p (6)

1- ﬂ — Wsps + Wars — Wsys

2-p

Wirs =

Wors =

The dual function is given by substitution from Eq. (6) into
Eq. (5) as follows:

TtWars—Wars tWsrs
B

g(W3r57 Weys, W5rs) = H(l (2 — :B)Cors )

e + W3rs — Wars + Wiy

Lo fwaps +Wars—Wsps
=

(2= B)CuwDr(2y - 1)
2(1 = B — Waps + Wars — Wsys)

=\ Wars = Wars = Wsrs
. ChrDr ChrDr SDrNrs (7)
2W3rs 2kl Wy k3 Wspg

Now, take the logarithm of Eq. (7) and equate the first partial
derivatives of Ing(ws,,, Wy, Wi,) to zero, respectively to calculate
Wi, Wy, and wi,, which maximize g(wj,, wj,, Wi,), we can
obtain:

f(WSrs) = Wg;sﬂ +A1W;rs -A AZWEZSrs/f +A3W5rs + (ﬁ - 1)A1A3W5rs
—A1AA; =0 (8)

Fwas) = wi + (1= P — (A + Ag)wi ) + Aswig — Aswass
—As(A2+A4) =0 9)

fwsrs) = Wil + Aswi f — AsAsws ! + Asw + (B — 1)AsAsWays

— AsAsA; = 0 (10)
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Where:

2kS _ ~ CyD2Sv

a 2]{15 + Chrkg, 2= k2k3e2

2C,DI-#S*F

3= 3

Chr(2y — 1) (kse)
_ GDv (2y ~ 1)(CuDy)” "v2

47 2k kye2 2Cors(kae)> ™"

Chrks +2Kk;S 2y — 1)(2kse)*”

It could easily prove that f;(0) <0 and f;(1) >0, Vj=3,4,5
this means that are three roots wjs € (0,1) Vj=3,4,5. Any
method such as the trial and error method could be used to calcu-
late this root .We can verify that any root wj,,, wj,, and wg, calcu-
lated from Egs. (8)-(10) maximize (gwj,, Wi, Ws,,) respectively.

This is done by the second derivatives that verify Hessian
matrix always negative as follows:

A

A

0 In g(Wsrs, Wars, Wrs) [ 1 1 1 0
ow?, Tl W 2w w_] -
Vi=3,45
9 Ing(Wars, Wars, W) [ 1 1
MWirs Wi Tl pwe 2o ﬁ)ZWZJ <0
i#j; i,j=3,5

1 1
2 + 2 >0
(2 - ﬁ) Wirs (2 - ﬁ) Wer:l
Vj=3,5

2
13} lng(w3rs, Wars, WSrs) o
aWélrsavvjrs

2
0 lng(w3r57 Wy, WSrs)
aWirsawjrs

and clearly ‘

2
< 0 ll'lg(ng Wars, WSrs)

P, i#j; 1,j=3,4,5

2
82 lng(W3r57 Ways, WSrs) < 82 ]1’1 g(W3r57 Wars, W5rs)
6Wirsawjrs 62 Wips

y (82 lﬂg(WBrsa Wy, WSrs)

i%j: ij=34,5
82ers ) 1 J

Therefore from the Hessian matrix, we get:

C TN 5 * * * o
% 2y-1)= Wng(W3rsW4rsv WSrs)

By solving the above equations, then substituting the values of
wi,., Wy, and wi,. we get the optimal number of period per cycle
N;, as follows:

— N
Nt — ChrDr(zy — l)(l + W;rs — Wt*lrs + W;rs) " (11)
" 2C0T5(1 -B- Wips + Wiy — Wgrs)
Then, the maximum inventory level Q. is given by:
— 1
Q* _ 5 ChrDr(z'y — 1)(1 + Wgrs — Wjlrs + Wgrs) " (12)
" ' ZCWS(] -p- W3 + Wy — Wgrs)

Substituting the value of N}, from Eq. (11) into Eq. (3) after add-
ing the constant term:

, [ CirDr(2y = 1)(1 + Wi — Wiee + W)\
min E(TC) = CprsDy + C, L = =
(7€) Z[P . ( 2Con(T— Wiy + Wi, - Wi

_ — =
+ ChrDr(ZV - 1) ChrDr(zy - 1)(1 + W;,rs — Wer + W;rs) " (]3)
2 2Cors(‘1 - .B - W§rs + W:11'5 - W;rs)

4.2. Model II: The case g(N;s) = “4'= where v > 0

The expected total cost in Eq. (1) will be:

. — = CuD:N
ETC) =" {CWDr + CorsNE + CeDrv + ’2} ;. 0<p<l1

r=1

(14)

Now, we defined the optimal minimum expected total cost
min E(TC) under the following constraints:

n ChrBrNrs
Zr:l 2 < k]

n Chrﬁrv
Zr:l Nis gk;

Z’::]SErNrs < k3
Then Eq. (14) can be rewritten the annual expected total cost as

following Whereas the term 3. ,C,sD, and 31 ,CnD,v are
constants:

1 1 1 1 1
A=— 5 + + +
(2 — ﬁ) WirsW3rsWars WorsW3rsWars WirsW3rsWsrg WorsW3rsWsrs

Thus the roots wi,, w;,, and wg,, calculated from Egs. (8)-(10)
maximize the dual function (gws,,, wj,, w,) and the optimal solu-
tions are wjs € (0,1)Vj=3,4,5 where w;, ., w;.andw;, are
obtained from Eqgs. (8)-(10) respectively.

To find the optimal expected number of periods per cycle N
use the following relations due to Duffin and Peterson’s theorem
(Duffin et al., 1967) of geometric programming as follows:

p-1 _ % * * *
COTSNrs - erg(w3rsw4rsﬂ WSrs)

1 1 1
+ + <0
WirsWarsWsrs WorsWarsWsrs W3rsWarsWsrs

: o[ p-1 ChrNrsﬁr
min E(TC) = > | CorsNJ; += | 0<p<t (15)

r=1

Subject to:

n CpDrNis
Zr:l y2k1 gl

S Gl (16)

Nrsky

n  SD;N
S B <1
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Applying the geometric programming technique to the Eq. (15)
and (16), where W=wj,0<wj)s<1,r=12...n5s=1,
2,...m,j=1,2,3,4,5 are the weights that achieve orthogonal
and natural condition whereas Wiy = MtV gpd

Wyys = IR Ws, e get:

Ttwsys ’Wé/hs Wsrs
—p

ﬂmmmmm@:ﬁ< (2= B)Cos )

1 1 + W3rs — Wars + Wi

1-p-Wars +Wars—Wsp

(2 - ﬁ)chrﬁr > Chrﬁr Wars
2(1 = f— W35 + Waps — Wsps) 2k W3y
Chrﬁr e SErNrs o
Ky Wars k3Wss

(17)

Now, take the logarithm of Eq. (17) and equate the first partial
derivatives of Ing(ws,, w;,, Wi,) to zero, respectively to calculate
Wi, Wiandwg,. which maximize g(ws,, wj,,, W), we get:

fwss) = Wil + Aws ) — AAws [l 4 Asws
+ (ﬁ — 1)A1A3W3,—5 —A1A2A3 =0 (18)

82 lng(W3r57W4r5~,W5rs) _ 1 . + 1 . <0
aVVirsaers (2 — ﬂ) Wirs (2 — ﬂ) Wars
i#j: i,j=3,5
82 lng(W3r37 W4rs» WSrs) o 1 1

+ >0
aWAlrsaers (2 — ﬁ)2W2r5:|

(2- ﬁ)zwlrs
Vj=3,5

2
8 lng(W3rs,W4r57W5rs)
2
19 Wirs

2
and clearly |8 lng(w3r57w4rs>WSrs)
| aWirsavvjrs

<

i, i,j=3,4,5

2
82 lng(W3r57 Wars, WSrs) < 82 In g(W3rs> Wars, WSrs)
aWirsavvjrs 82Wirs

~ <02 ln g(W3rS7 W4rs; WSrs)

Pwys ) i#j; 1.j=3,4,5

Then:

1 1 1 1 1
=- 3 + + +
(2 — ﬁ) WirsW3rsWars WorsW3rsWars WirsW3rsWsrg WarsW3rsWsrs

Fwas) = i + (1= pwyS — (A2 + Agwy,)
+ AW, — AsWars — As(Az +Ag) = 0 (19)

4 3_p 2
f(WSrs) = WSrsﬁ +A6W5rs/ - A4A5W5rsﬂ +A7W§rs

+ (p — 1)AsA7Wss — AsAsA7 =0 (20)
Where:
A Cuks o GDv _ 2Cos(CuDy)" "
! Chrks + 2k(S 2 2k k,e? (2[(1 e)z_ﬁ
CuD2Sy (CuDy)* v b
Ay = L 5 ; As = N
k2k3e zcors(RZe)
2k;S _  2CosD} s>

6= m B Chr(kge)zﬁg

It could easily prove that f;(0) < Oandfj(1) > 0,Vj = 3,4,5 this
means that are three roots wj € (0,1)Vj = 3,4, 5. Any method such
as the trial and error method could be used to calculate this root .
We can verify that any root wj,, wj,, and wg, calculated from Eqgs.
(18)-(20) maximize (gws,, Wj,, Wi,,) respectively. This is done by
the second derivative that verify Hessian matrix always negative
as follows:

2
0 lng(w3r572W4rs>W5r$) - 12 + 12 +L <0
8Wirs (2 - ﬂ) Wirs (2 - ﬂ) Wars Wirs
Vi=3,4,5

1 1 1
+ + <0,
WirsWarsWsrs WorsWarsWsrs W3rsWarsWsrs

thus the roots wj,, w;,andws,, calculated from Egs. (18)-(20)
maximize the dual function (gws,,, wj,, w,) and the optimal solu-
tion is wj € (0,1)Vj = 3,4,5 where wj,, wj,andws,, are obtained
from Egs. (18)-(20).

By using the relations for Duffin and Peterson’s theorem (Duffin
et al., 1967) of geometric programming to find the optimal number
of periods per cycle N, we get:

- i
N — ChrDr(l + W;rs — thrs + Wgrs) " (21)
" 2C0r5(] -B- W§rs + errs - Wgrs)

*
mrs

Then, the maximum inventory level Q; . as follows:

(22)

ZCOI’S(‘1 - ﬁ - W;rs + Wjlrs - Wgrs

— 1
— * gk * -2
Q:nrs =D, [U + ( C’”Df(l + Wi — Wy + WSrs) )) ]
Substituting the value of N;; from Eq. (21) into Eq. (15) after
adding the constant term to get the minimum expected total cost
as follows:

g1

n n T * =
min E(TC) = Z l:cprsDr +Cm< CrrDr (1 + W3 — Wiy +Woi) ))

2C0V5(1 - ﬁ - Wgrs + lers - W;rs

r=1
1
—  CuDr [ CuDi(1+wy —wi +ws)
Cyy D0 rs rs rs 23
o * 2 <2COTS(1 -p- W;rs + lers - Wgrs) ( )

4.3. Model III: The case g(Nys) =y + 3 where v > 0,y > ]

The expected total cost in Eq. (1) will be:
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n _ . CuD.N.(2y—1 — Where:
E(TC) = [CprsDr + ConsNi " + % + CpDyv|;
r=1 R4
Chrks Ci D2v 2Cors(CneDy)
1 24 A= ——Frc e A=
0<h< @Y A eGrraks | P T ke YT 2 - 1)(2ke) "
The optimal minimum E(TC) under the following constraints: —
G D2Sy oA (@- 1)(CwDy)’ v2 #
_ ~ kakse? ’ >
n ChrDrNrs <k 2% zcurs(kZ"’)
> 2 M ~2kS _ _ 2C,DlIs*!
7 Cuks + 2k4S T (29— 1)Chr(kse)>”

n ChrBrV
Zr:l Ny < k2

S SDiNis < ks It could easily prove that f;(0) < 0 and f;(1) >0, Vj=3,4,5

this means that are three roots wjs < (0,1) Vj=3,4,5. Any
method such as the trial and error method could be used to calcu-
late this root .We can verify that any root wj,, w;..andwyg,, calcu-
lated from Egs. (28)-(30) maximize (gws,,, Wi, Wi,,) respectively.

Then can be rewritten the annual expected total cost as follow-
ing whereas the term Y"1 ,CpsD; and 31 ,C;,.D,v are constants:

. n . CuDiNys(2y — 1) This is done by the second derivative that verify Hessian matrix

min E(TC) = Z CosNis + - 3 ;0<p<1 (25) always negative as follows:
r=1
Subject to: i lng(w3r5,2w4,5,w5rs) - [ 12 N 12 N 1 <0
_ 8W1rs _(2 - /}) Wirs (2 - /3) Wars  Wirs
S BN <1 ¥i=3.4,5
2 153:5&‘ <1 20) 21 1 1
Zr:1 SDIQ;V“ g 1 a ng(W3r5aW4r57W5rs) _ . + . < 0
8Wirsawjrs _(2 — ﬂ) Wirs (2 - ﬂ) Wors
Applying the geometric programming technique to the Egs. (25) i#j; 1,j=3,5

and (26), where W =wj;,0 <wjs <1,r=1,2...n,s=1,2,...m

j=1,2,3,4,5 are the weights that achieve orthogonal and naturai 0% In g(W3rs, Wars, Wsrs) _ 1 N 1 -0
condition, we get: OWagysOWirs - (2 - ﬁ)ZWm (2 - /)’)ZWer
Vj=3,5

n

)Cors
g(W3r37 W4r57 W5rs H( + W3 —wy ¥ Ws
rs TS TS

TtW3ps—Wars +Wsps
P

= 1= BWgps Wi gy W AlSO 82 lﬂg(Wm, Wyys, WSrs) 82 ln g(W3r57 Wars, WSrs)
_ IS TS IS — w- s
(2 - /))) (2’)) - ])Cm—Dr o ChrDr ’ 7 awirsawjrs azwirs
2(1 — B — W35 + Wars — Wsys) 2k W3 i#; 1,j=3,4,5
ChrDr SDr "
kyw. ksw (27) 2 2 2 2
2 Wars 3Wsrs 0 lng(Wsrs.,Wm,Wsrs) < 1% lng(W3r37W4rs~,W5rs) 0 lng(w3r5¢w4r57w5rs>
OWirs OWjrs 82wi,5 (92er5
Now, take the logarithm of Eq. (27) and equate the first i 1) =3,4,5
partial derivatives of Ing(ws,, W, Wi,) to zero, respectively to The Hessian matrix:
calculatews,, wjandw;,, which maximize g(wi,, Wy, Wt,) ,we
obtain:
1 1 1 1 1 1 1 1
A=-— 5 + + + + + + <0
(2 — ﬂ) W1rsW3rsWars W2rsW3rsWars Wi1rsW3rsWsis WorsW3rs Wi W1rsWarsWsis W2rsWarsWsis W3rsWars Wi

fwsi) = Wi + Aws — AAaws S + Aswi
+(f — 1)A1A3W3s — A1AA3 = 0 (28) thus the roots wj,,, w;,andws,, calculated from Egs. (28)-(30)
maximize the dual function (gws,,, wj,, w,) and the optimal solu-
tion is wjs € (0,1)Vj = 3,4,5 where wj,,, w;,andwy;,, are obtained
f(Wars) = W4rsﬁ +(1- 5)W4rs (A2 +A4)W‘21fs from Equ. 5(28()—(32))Jrespectively. e ”
+AsW2, . — AsWars — As(Ay +Ag) =0 (29) By using the relations for Duffin and Peterson’s theorem (Duffin
et al., 1967) of geometric programming to find the optimal number

_ _ of periods per cycle N, we get:
f(w57’5) = Wgrsﬁ + Aﬁwgrsﬁ - A4A6W§r5 + A7W£23r5 "

+ (ﬁ — 1)A5A7W5rs —AAA; =0 (30)
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Table 1
Input data.
Item Cors Cors Chr D,
1 Source 1 50 20.12 0.27
Source 2 65.35 30.10
Source 3 — —
2 Source 1 85 16.30 0.17 6
Source 2 — —
Source 3 40.12 18.50
3 Source 1 15 14.20 0.24 4
Source 2 15.35 11.08
Source 3 19.30 9.2
The blank cells denote that the item is not available from the source indicated.
Table 2
Model I for different values of § with varying order cost when v=11; y=1.3.
B Source Item 1 Item 2 Item 3
N; Qrars min E(TC) Nj, Qrors min E(TC) [\ Qrars min E(TC)
0.1 1 2.349 77.529 103.521 2.669 176.122 161.518 1.152 50.684 81.619
2 2.695 88.928 139.997 - - - 1.166 51.291 69.442
3 - - - 1.830 120.787 153.888 1.312 57.723 65.14
0.2 1 2.306 76.105 105.599 2.635 173.888 165.177 1.088 47.88 81.788
2 2.665 87.932 142.798 - - - 1.102 48.485 69.631
3 - - - 1.772 116.966 155.364 1.248 54915 65.545
0.3 1 2.238 73.863 107.843 2.573 169.842 169.221 1.012 44,529 81.876
2 2.607 86.033 145.888 - - - 1.026 45.124 69.739
3 - - - 1.694 111.821 156.884 1.170 51.473 65.885
0.4 1 2.137 70.514 110.237 2474 163.299 173.657 0.921 40.532 81.843
2 2.511 82.876 149.269 - - - 0.938 41.284 69.726
3 - - - 1.591 104.979 158.404 1.074 47.265 66.117
0.5 1 1.990 65.677 112.729 2.323 153.327 178.448 0.813 45.788 81.631
2 2.363 77.977 152.91 - - - 0.826 36.327 69.536
3 - - - 1.454 95.972 159.844 0.958 42.143 66.175
0.6 1 1.783 58.852 115.199 2.101 138.68 183.462 0.686 30.203 81.156
2 2.142 70.678 156.703 - - - 0.697 30.690 69.080
3 - - - 1.276 84.237 161.059 0.817 35.959 65.961
0.7 1 1.497 49.417 117.392 1.784 117.754 188.356 0.539 23.735 80.289
2 1.822 60.122 160.382 - - - 0.549 24.143 68.229
3 - - - 1.048 69.154 161.784 0.650 28.597 65.315
0.8 1 1.112 36.710 118.767 1.344 88.709 192314 0375 16.485 78.831
2 1.373 45.310 163.131 - - - 0.381 16.785 66.778
3 - - - 0.761 50.229 161.523 0.457 20.089 63.979
0.9 1 0.6196 20.448 118.081 0.7632 50.368 193.302 0.204 8.992 76.441
2 0.774 25.549 163.929 - - - 0.208 9.155 64.377
3 - - - 0.422 27.833 159.255 0.249 10.958 61.489
= I
- D, - ’ . d - 29 —1)CpirDr (1 +Wsaps — Waps +Wsis) )
N:*'s _ (2’)) ‘I)ChrDr(‘l + W3rs — Wys + WSrs) (3.1) min E(TC) = Z CprsDr + Cors ( 'J;C )1hr (14 Wspg 4rs + Wss)
2C0r5(1 — ﬁ — Waps + Waps — WSrs) T ors(1 = — Waps + Wars — Weys)
N = 2
Then, the maximum inventory level Q7. . is given by: CwDr(2y=1) {2y = 1)CuDr(1+ W35 —Wars+Wss) ™ =
mrs + +CpDrv (33)
N 2 2Cors(1 = B — Wars + Wars — Wsy)
* N (2')) — ‘I)Chrﬁr(‘l + Waps — Waps + W5rs) "
ers =D, V+7y (32)

2Cors(1 = B — Waps + Wars — Wsps)

Substituting the value of N;; from Eq. (31) into Eq. (25) after
adding the constant term to get the minimum expected total cost
as follows:

5. Special cases

5.1. Case 1

Substituting from v = 0;y > J in Egs. (31)-(33) respectively we
get the optimal policy variables for the model I
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Table 3
Model I for different values of  with varying order cost when v=11; y=1.3.
B Source Item 1 Item 2 Item 3
N, Qb min E(TC) N Qs min E(TC) N Qs E min(TC)
0.1 1 10.724 65.172 79.865 12.559 141.354 124.645 5.204 64.816 73.454
2 12.347 70.04 113.382 - - - 5.267 65.068 61.048
3 - - - 8.460 116.756 132.745 5.942 67.768 54318
0.2 1 11.366 67.097 81.457 13.428 146.568 126.19 5.298 65.192 73.855
2 13.189 72.566 113.21 - - - 5.366 65.460 61.459
3 - - - 8.848 119.088 133.745 6.094 68.376 55.122
0.3 1 11.984 68.951 83.550 14.298 151.788 129473 5.341 65.364 74.903
2 14.029 75.086 115.925 - - - 5414 65.656 62.526
3 - - - 9.193 121.157 135.399 6.195 68.780 56.108
0.4 1 12.502 70.505 86.257 15.081 156.480 133.323 5.297 65.188 75.891
2 14.779 77.336 119.291 - - - 5.374 65.497 63.534
3 - - - 9.433 122.598 138.36 6.201 68.804 57.346
0.5 1 12.771 71.312 89.937 15.599 159.594 140.809 5.110 64.440 77.161
2 15.266 78.797 123915 - - - 5.189 64.756 64.833
3 - - - 9.456 122.739 140.089 6.045 68.180 58.955
0.6 1 12.508 70.524 95.324 15.499 158.994 145.323 4.688 62.752 78.934
2 15.145 78.435 130.755 - - - 4.766 63.064 66.646
3 - - - 9.065 120.389 143.455 5.613 66.452 61.217
0.7 1 11.189 66.566 98.030 14.094 150.564 154.641 3.888 59.552 79.207
2 137.748 74.243 144.09 - - - 3.958 59.832 66.939
3 - - - 7911 113.466 147.827 4.721 62.884 61.742
0.8 1 7.830 56.489 105.571 10.055 126.330 167.721 2.492 53.968 81.053
2 9.787 62.361 152.532 - - - 2.540 54.160 68.838
3 - - - 5.378 98.268 153.620 3.074 56.296 64.253
0.9 1 0.575 34.724 122.348 0.756 70.530 196.062 0.165 44.660 85.727
2 0.734 35.202 167.119 - - 0.168 44.672 73.638
3 - - - 0.382 68.292 167.015 0.207 44.828 70.410
Table 4
Model III for different values of g with varying order cost when v=11;y =1.3.
B Source Item 1 Item 2 Item 3
N Qs min E(TC) Ni Qs min E(TC) N Qs min E(TC)
0.1 1 6.215 69.358 86.227 7.278 151.157 134.027 3.016 67.523 77.112
2 7.155 74.859 118.733 - - - 3.053 67.811 64.751
3 - - - 4.903 123.36 139.064 3.444 70.860 58.496
0.2 1 6.398 70.429 88.112 7.559 154.439 137.052 2.982 67.263 77.770
2 7.424 76.432 121.074 - - - 3.021 67.563 65.424
3 - - - 4,981 124.278 140.692 3.431 70.760 59.334
0.3 1 6.533 71.221 90.383 7.795 157.201 140.739 2912 66.712 78.512
2 7.648 77.740 123.924 - - - 2.952 67.023 66.184
3 - - - 5.012 124.641 142.615 3.378 70.342 60.294
04 1 6.579 71.488 93.143 7.937 158.857 145.285 2.788 65.745 79.349
2 7.778 78.499 127.432 - - - 2.828 66.060 67.043
3 - - - 4.964 124.08 144.903 3.263 69.455 61.395
0.5 1 6.465 70.823 96.528 7.897 158.40 150.014 2.587 64.180 80.287
2 7.729 78.214 131.794 - - - 2.627 64.492 68.007
3 - - - 4.788 122.014 147.637 3.061 67.872 62.652
0.6 1 6.076 68.547 100.701 7.529 154.091 158.063 2.278 61.765 81.322
2 7.357 76.039 137.266 - - - 2.315 62.060 69.074
3 - - - 4.404 117.527 150.906 2.727 65.269 64.077
0.7 1 5.221 63.542 105.856 6.577 142.945 167.055 1.815 58.153 82.431
2 6.415 70.527 144.163 - - - 1.847 58.407 70.220
3 - - - 3.691 109.189 154.794 2.203 61.182 65.655
0.8 1 3.591 54.009 112.207 4.612 119.956 178.451 1.143 52.915 83.556
2 4.489 59.260 152.879 - - - 1.165 53.088 71.390
3 - - - 2.467 94.862 159.36 1.410 54.999 67.341
0.9 1 0.726 37.249 121.748 0.954 77.164 195.831 0.208 45.625 85.198
2 0.926 38.420 166.149 - - - 0.213 45.659 73.096
3 - - - 0.482 71.641 166.089 0.262 46.043 69.791
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5.2. Case 2

Substituting from y = 1 in Egs. (31)—(33) respectively we get:

< )> ; Q
_Erv+< )>ﬁ_2

Y Chrﬁr(l + W3 — Wars + WSrs)
C T Dr + C T
prs s <2Cors(1 - ﬁ — W3ps + Wars — Wspg

These are the optimal policy variables for the model II.

ChrDr(4l + W3ps — Wys + W5rs)
2Cors(1 - ﬁ — W3y + Wys — Wsyg

s

*
mrs

s
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6. Numerical application and analysis

A manager of probabilistic restricted MIMS inventory system
considers the consequence of the minimum procurement cost
and inventory policy of system involving three items and three
vendors (sources). Source 1 and source 2 are manufacturing or
remanufacturing alternatives while sources 3 are either vendors
or intra firm transfer possibilities. The item dependent parameter
of demand of the item is holding cost

parameters that depend upon the item as well as the source,
Cprs, and also, the demand has uniform distribution with expected
value for each item are given in Table 1. Addition parameters val-
ues needed are:

Ky =3200 ; K,=1100 ; Ks;=5000 ;
S=60m* ; y=13 ; v=11
Table 5

The optimal policy variables of the three models.
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By applying Eqs. (11)-(13) for the model I, Egs. (21)-(23) for the
model II and Egs. (31)-(33) for the model III to each item
and source, the minimum expected total cost as given in the
Tables 2-4.

We can determine the optimal policy variables of the minimum
total cost as Table 5:

For the model I, the number of periods and the maximum
inventory level for each item each source are decreasing whenever
p increased as Table 2, but the expected order cost is increasing

Item 1
200 -
180 -
(=)
= 160 - /
e
=
£ 140 - et sOUTCE 1
£
= / —=—source 2
100 T T T T T T T T T !
0 010203040506070809 1 peta
Item 2
200
190 -
%)
= 180 -
N
=
£ 170 4 ==source 1
]
160 .’./'_‘\ —==source 3
150 T T T T T T T T T 1
0 010203040506070809 1  peta
Item 3
90 ~
85
80 - By
=
N
=75 A =t source 1
=
'E 70 - —ea—source 2
65 - \ source 3
60 T T T T T T T T T 1
0 0.10203040506070809 1 peta

Fig. 1. Expected total cost for Model I at different values of g.

Ny Qs min E(TC) Item source
Model I p=0.1 2.349 77.529 103.521 1 1
1.830 120.787 153.888 2 3
1.312 57.723 65.14 3 3
Model 1T p=0.1 10.724 65.172 79.865 1 1
12.559 141.354 124.645 2 1
5.942 67.768 54.318 3 3
Model 111 p=01 6.215 69.358 86.227 1 1
7.278 151.157 134.027 2 1
3.444 70.860 58.496 3 3
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whenever f increased. The minimum expected total cost for item 1
is increasing whenever the value of the g increased for each source.
The minimum expected total cost for item 2 source 1 is increasing
whenever the value of the increased and the minimum expected
total cost for item 2 source 2 is increasing in g € [0.1,0.7] but it
is decreasing in g € [0.8,0.9] .The expected total cost for item 3 is
decreasing whenever the value of the g increased for each source
as show Fig. 1 and Table 2. In general, for the
model I, the number of periods and the maximum inventory level
are decreasing whenever g increased but the expected order cost
and the optimal minimum expected total cost for the three items
are increasing whenever the value of the g increased, also, we
deduced the optimal policy variables of the model I when g = 0.1.

For the model II, the minimum expected total cost for each
items each source is increasing whenever the value of the g
increased as show Fig. 2 and Table 3.

The expected number of periods and the maximum inventory
level for item1 and item 2 are increasing in 8 € [0.1,0.5] but they
are decreasing in 8 € [0.6,0.9] for each source. For item 3 (sourcel
-source2) the expected number of periods and the maximum
inventory level are increasing in 8 € [0.1,0.3] but they are decreas-
ing in € [0.4,0.9], also for item 3 (source3) the expected number of
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g. 2. Expected total cost for Model II at different values of .

periods and the maximum inventory level are increasing in
B €[0.1,0.4] but they are decreasing in € [0.5,0.9]. In general,
for the model II, B the expected number of periods and the maxi-
mum inventory level are varying whenever B increased. The
expected order cost and the minimum expected total cost are
increasing whenever g increased for each item each source, we
obtained the optimal policy variables of the model Il when g = 0.1.

For the model III, the expected number of periods and the max-
imum inventory level for item 1 are increasing g inf € [0.1,0.4] but
they are decreasing in 8 € [0.5,0.9] for each source as Table 5. For
item2 (source 1), the expected number of periods and the maxi-
mum inventory level are increasing in g € [0.1,0.4] but they are
decreasing in B€[0.5,0.9], also, they are increasing in
p €]0.1,0.3] but they are decreasing in f € [0.4,0.9] for source3
as Table 5. For item 3 each source, the expected number of periods
and the maximum inventory level are decreasing whenever the
value of the increased as Table 5. The minimum expected total cost
for each items each source is increasing whenever the value of the
p increased as show in Fig. 3 and Table 4, also, the optimal
expected total cost for each items obtained when g=0.1. In
general, for the model III, the expected number of periods and
the maximum inventory level are varying whenever B increased
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Fig. 3. Expected total cost for Model III at different values of .
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but the expected order cost and the minimum expected total cost
are y increasing whenever the value of the increased for each item
each source. Also the expected number of periods is decreasing
whenever y increased but the maximum inventory level, the
expected order cost and the minimum expected total cost are
increasing whenever increased. We deduced the optimal policy
variables of the IIl model IIl when g = 0.1.

Finally, the minimum expected total cost of the model is equal
to the summation of the minimum expected total cost for each
item. Thus, Min E(TC), = 322.549, Min E(TC),, = 258.828 and
Min E(TC),, = 278.75. From these results we can say that the
model (II) is the best model of the three models because it has
the optimal minimum expected total cost for the three items.

Furthermore, we can compare the optimal results of the three
probabilistic MIMS inventory models without varying order
cost(denoted crisp models) and the three probabilistic MIMS
inventory models with varying order cost. For the crisp models:
Min E(TC) ;= 319.784, Min E(TC) iy moder n = 261432 and
Min E(TC)C,iSp model ;1 = 261.534. One can deduce that the optimal
expected total cost of the crisp model I and crisp model are better
than models I and III with varying order cost, but the optimal
expected total cost of the model Il with varying order cost is better
than the crisp model 1. Now, we can conclude that the variation on
the order cost increases the minimum expected total cost for the
model I and model Il but it reduces the minimum expected total
cost for the model II. Also, the increasing values of the parameters
v and 7 lead to increase the expected total cost of the three prob-
abilistic MIMS inventory models.

Crisp model

7. Conclusion

In this paper we assumed three probabilistic multi-item
multi-vender inventory models with varying order cost and zero
lead-time under linear and nonlinear constraints for the number
of periods Ny, the first linear constraint on the holding cost, the sec-
ond nonlinear constraint on the buffer stock and the third linear
constraint on the storage space. Our objective is determining the
minimum expected total cost. Using geometric programming
approach (GPP), the exact solution of the optimal number of period
N;, and the optimal maximum inventory level Q. are obtained for
the three models. Next, we deduced some special simple SISS inven-
tory models had been discussed by Fabrycky and Banks (1967).

For model III, we solved it and we figured out that it is a gener-
alization of the models I and model II, and they can be special cases
from model IIl. Finally, applying a numerical application to the
three models, comparisons, analysis are done and as a result the
system manager can use model II to obtain the minimization of
the expected total cost for the given data of the items and vendors.
We tend to use new methods like fuzzy numbers, SWARM and etc.,
to discover and decide which the best model of them is.
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