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The secured soliton erections are newfangled and unreservedly invigorating for investigators. The graph-
ically comprehensive report of some specific solutions is embellished with the well-judged values of
parameters to illustrate their propagation. Then a planer dynamical system is introduced and the bifur-
cation analysis has been executed to figure out the bifurcation structures of the non-linear and super
non-linear traveling wave solutions of the heeded model. All possible phase portraits are exhibited with
specific values of parameters. Furthermore, a precise class of non-trivial and first-order conserved quan-
tities is enumerated by the intervention of the multiplier approach.
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1. Introduction

The non-linear Schrédinger’s equation (NLSE) has an imperative
influence and pivotal significance in different branches of science.
Quantum mechanics, non-linear optics, fluid dynamics, and plasma
physics are some of the fields where NLSE has appeared. The R-
NLSE has availed oneself of the study of Madelung fluids and soli-
tonic dynamics in various non-linear processes (Baleanua et al.,
2017 and references therein):

ifl)[+ocd>xx+ﬁ9(|fb|2)d>+y<%><b:0, i=v-1. (1)

The independent variables x and ¢t depicts the non-dimensional
distance in Eq. (1), along the fiber and temporal variables, respec-
tively. The complex valued dependent variable ®(t,x) represents
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wave profile, while, the constants parameters o, and ) are the
coefficients of group-velocity dispersion, non-Kerr non-linearity
and resonant non-linearity respectively. In the Eq. (1), real valued
and n-times differentiable function Q is defined as:

QOP)P:C — C.

where the two-dimensional linear space of R? represents by Argand
plane C. Here we are assuming Q(y) =y, which arises in water
waves and the non-linear fiber optics when the refractive index is
directly proportional to intensity (Biswas and Konat, 2006).

The R-NLSE equation has been discussed by many means in lit-
erature. Over the last few years, scientists have been quantified the
exact solutions of Eq. (1) by utilizing numerous distinct
approaches. The Jacobi elliptic tool has been exploited to quantify-
ing the exact structures of Eq. (1) and also simplest equation
approach took under consideration (Eslami et al., 2013). To extract
the exact solitary wave solutions of Eq. (1), D. Baleanu has been
prosecuted the Ricatti-Bernoulli sub-ODE technique (Baleanua
et al,, 2017). One of the aspirations of this exploration is to delib-
erate a futuristic class of exact solutions. On that account, a new
direct extended algebraic approach is maneuvered to come across
the exact solutions of Eq. (1). Some of the classical contributions on
numerical aspects of the PDEs are reported in Cattani et al. (2013),
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Cattani et al. (2012), Heydari et al. (2015), Kumar et al. (2018),
Kumar et al. (2020), Rushchitsky et al. (2004), Singh and
Srivastava (2020), Singh (xxxxx), Singh (2020), Singh et al.
(2019), Singh et al. (2020) and Yadav et al. (2019). In recent years,
the study of differential equations employing bifurcation analysis
is a hot topic of research. Dubinov et. al. in Dubinov et al. (2012)
characterized a new class of nonlinear and super-nonlinear waves.
In Zhang et al. (2013), a class of solutions is obtained for Klein-Gor
don-Zakharov equations by using bifurcation theory. More
recently, Sharma-Tasso-Olver equation is dealt with utilizing bifur-
cation theory (Ali et al., 2018) and the complete classification of
waves is presented. By the best of our knowledge, any study
related to the behavior of nonlinear and super-nonlinear traveling
waves for R-NLSE equation is not done before. Consequently, a pro-
fundity anatomy of Eq. (1) along with these trajectories is fascinat-
ing and is propounded here.

Conservation laws have miraculous contributions to unfold
the partial differential equations and in various applications.
The suggestion about conservation laws ejaculated by the
perception of physical laws like mass, energy, and momentum.
Initially, The ideology and exploitation of the Noether’s theorem
was authenticated by German mathematician Emmy Noether
and also certified as a well-ordered approach for uncovering
the conservation laws Bessel-Hagen, 1921. Noether theorem
states that each Euler - Lagrange equation’s Noether symmetry
corresponds to a difference equation’s conservation law.
Noether’s theorem works only for a variational differential
equation, yet there are differential equations which have no
Lagrangian equations which can be dealt with different
approaches available in the literature, some of them are (Anco
and Bluman, 2002; Ibragimov, 2007; Kara and Mahomed,
2006) while computer package for construction of conserved
quantities by using (Anco and Bluman, 2002) is also developed
(Cheviakov, 2007) and utilized in this research. Here we search
out the first order nontrivial conserved quantities of Eq. (1) by
using a multiplier approach (Anco and Bluman, 2002). Some lat-
est works related to exact solutions and conservation laws are
given in Baskonus et al. (2019), Eskitaolu et al. (2019),
Khalique et al. (2018), Khalique and Mhlanga (2018) and
Moleleki et al. (2018).

This report is designated as segment 2 is customized for the
exact solutions of Eq. (1) by using the new direct extended alge-
braic technique. Bifurcation analysis of Eq. (1) is presented in Sec-
tion 3. Section 4 is devoted to conserved quantities while
concluding remarks are asserted at the termination.

2. Travelling wave solutions
2.1. Specification of the lodged approach

Suppose that the non-linear partial differential equation:
Q((I)7(D[7(I)X7q)y7q)tt7q)x)ﬁ"') = 07 (2)

remoulded into non-linear ordinary differential equation:

G(u,u',u",...)=0, (3)
operating the complex transformation
O(t,x) = u(é)e”t, (4)

where, ¢ = K(x +st) and »(t,x) = —kx + wt + 0 and here prime in
Eq. (3) demonstrates the notation of differentiation concerning to ¢&.
Assume Eq. (3) has solution of the such pattern:

u(©) = ap + > [aW ()], (5)
i=1
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where,
W'(&) = In(p) (1 + W (&) + W), p#0.1, (6)
where u, v and ( are the real constants.

Eq. (6) has general solutions in respect of parameters &, v and ¢
are prescribed as Rezazadeh, 2018:

1): When v? — 4u¢ < 0 with { # 0,
AP o Uik S 90 <¢—(v2 —4ul) 5) o

2¢ 2¢

Wy =L VoA o (wvz 24 f) )

2L 2 2
Wi(e) = -5
_(v2 _
+ w <tanp ( _(Vz - 4“05)
+ v/mnsec, (m&)), 9)
Wa(e) = -5
_(y2 _
+ w <COtﬂ ( —(v? - 4u) é)
+ \/ﬁcscp< —(v2 - 4#{)5)), (10)
Ws(¢) = _2%
(2 _4 (2 —4ut
ELELI (tanp <<V4Me>g>
— cot, (Mf» (11)

2): When v? — 4u{ > 0 with { # 0,

4 imsechp< v _ 4#4“5)), (14)
I _4u
Wo(é) = — 2% + % (—cothp (\/v2 - 4#&5)

i\/ﬁcschp<./v2 74,114"5)), (15)
Wio(¢) = v 7\/‘)274'“4“ (tanhp (Vv244'u€ 5)

2 4
+ coth, <7‘ v2;4,uéé>)' (16)
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3): When u{ > 0 with v=0,

Win(&) = Bran, (V). (17)
Wia(&) = — cot, (V). (18)
Wis (o) = \/%<tanp (2/ze) + vimsec, (2 /4ie) ). (19)
Wia(é) = \/?( cot, (2y/jile) + vimnese, (24/pk) ),

Wis(8) %\/%<tanp <@g> —cot, (@é)) (21)

4): When p{ < 0 with v=0,

Wie(&) = \/itanh( L),

":
—
N
N
-

Wi (&) = —\/icoth (Mg) (23)
Wig(é) = \/—v%<—tanh,, (2\/——#(5) +i

x y/mnsech, (2@5)), (24)
Wis(é) = \/T%(—Cothp (2\/—7@)

+ /mnesch,, (2 mf)), (25)
Wy (é) = —%

x ?(tanhp (@é) +cothp< 2”%)).

(26)

5): When v =0 with u=¢,

W21 (¢) = tan, (ug), (27)
W3 (&) = —cot, (1), (28)
Was(8) = tan, (2ué) + vmnsec, (2u), (29)
W24(€) = —cot, (2ué) = vmnese, (2ué), (30)
e - (45) -, (49) "
6): When v — 0 with ¢ = —,
W26 (¢) = —tanh, (ué), (32)
W27 (&) = —coth, (u¢), (33)
Was(¢) = —tanh, (2ué) + iv/mnsech, (24¢), (34)
We(&) = —cot,(2u) + v/mncsch, (24¢), (35)
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N B, B
Wao(¢) = — 5 tanh, (5 g) +cot, (Eg) (36)
7): When v? = 4u¢,
_ —2u(vélnp +2)
W31 (é) - W (37)
8): Whenv=pand u=pq,(q+#0)but{=0,
Wi (&) = p™ —q. (38)
9): Whenv={=0,
W) = uéln p. (39)
10): When v =0 and p =0,
-1
Wiy () = —. 40
34(.) Cé lnp ( )
11): When p =0 but v # 0,
my
Wis (&) - {(cosh,(vé) — sinh, (ve) +m)’ (1)
) v(sinh, (v¢) + cosh, (v¢))
%% =—— . 42
3(0) {(sinh, (v¢) + cosh, (vE) +n) (42)
12): When v =p and { = pq, (q # 0 but u = 0),
b mp”
Wan(6) =~ e (43)
sinh, (¢) = M, cosh, (&) = w
o _Mmps—np—* o _ Mp°+np=*
tanh, (¢) = mpT Tnp e’ coth, (¢) = o=’
o 2 o 2
sech,(¢) = W, csch,(¢) = W7
... mp¥ —np mp¥ +np~«
sin, (&) = ’724ip, oS, (&) = %,
o _.mpt—npE _.mp“+npE
tan,(¢) = limpii o cot,(¢) = l—mpii "o
o 2 o 2i
Secp(g) - mp:+np,§7 cscp(g) - mpi _np,5;7

where, m and n are deformation parameters, which are arbitrary
positive constants.

2.2. Applications to Eq. (1)

The R-NLSE with the Kerr law nonlinearity is considered for
estimation of exact solutions via method purposed in Rezazadeh
(2018). For this let us substitute a complex envelope (4) into Eq.
(1) and splitting into the real and imaginary portion, respectively.

We will attain:
K*(y + au” — (Ko + w)u+ pu =0, s =2ko. (44)

After stabilizing the highest order derivative expressions with
contact to the highest power of non-linear expressions in Eq.
(44), one can take the solution of such type:

u=ay+a; W), (45)
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where W(¢) satisfies Eq. (6). On exchange Eq. (45) into Eq. (44) and Case 3. If u{ > 0 with v =0, then

equating the coefficients of non-identical powers of W(¢), leads to a N

system of an algebraic equations. Oy (t,X) =+ —— ( +2 /_tanp< /—5)> (—kxtoot+0)

(W(&)° : —kPaay — wao + pad + K* pvaa, log (p)? + K pvya, log (p)? = 0, vl

W) —Kaa; — oa; + 3paia; + K*v2aa, log (p)* + 2K ulaa; log (p)? NG A
v / / ).

+K*v2ya; log (p)* + 2K*ulya; log (p)* = 0, Dia(t%) =+ BVTI ( -2 COtp( ))
(W) :3paga? + 3K*v(aa log (p)* + 3K*v{ya, log (p)* = 0,
3 . pa3 242 2 2.2, 2

(W(&)* : pai +2K*Coa; log (p)* + 2K*yay log (p)” = 0. Brs(t.%) = & /fﬁ { L2V {tanp (2 m@

To extricate the solution of an algebraic equations by means of - ,
Mathematica, following set of solution is achieved: + vmnsec, (2\/ HCf) Jelarero),
Go=2VO g _L2VO v—20 (46) NG

0= 1= =] - D B P
/3\/— BVIT (o +7) log (p)? Dy4(t, X) :iﬁ— {v+2«/,u{{—cot,, (2\/ugg>
where +v/m CSCp (2 / f) ch+wt+())
0 =Koa+w, T=1>—4u
Case 1. If IT < 0 with { # 0, then. Di5(t,x) = £ Vo v+ 2\/u§{tanﬂ (‘zm é)
By mentioning the values of ay and a; from (46) into Eq. (45) we 2pVTI
t:
ge ~cot, (\/ j1ie 5) JJefl-xrors),
. V-0 v-I1 2
(&) = HFTtan,, ¢

where, along with complex transformation (4), u;.(¢) capitulates as
solutions of Eq. (1):

\/— /__ /_ 1(—KX+mt+
Q. (t,x) ==+ \/ﬂ_etanﬂ (\/2_ E) e Prelt:) = iﬂT {V -2 tanh”( >}e( e,

Thus working on the same line following solutions are obtained.

Case 4. If u{ < 0 with v =0, then

Dy7(t,X) = %{V - Zﬁcoth <ﬁ6>} (~kx+ort+0)

®2i(t7x) — \/ﬁ_GCOtp (\/_ 5) I<x+wr+0)
- rg (£, %) — iﬂ% [v-+ 2] ~tanh, (2/5E2) £
D3 (t,X) = i% (tan,, <\/ﬁg) + vmnsec, (mé»e"(*"”‘”t*“). x Vimmsech, (2 e é) ekt

Dy (t,X) =+ ? (cotp (\fnz) + v/mncesc, (\/ﬁg“))e“*"’”w”“l Dqq(t, ) = iﬁ% {V + 2\/FTC{—COthp (2 —Mii)
+ v/mncsch,, (2 —ul 5) }eitheroto),

O, (t,x) = £ \/;_9 (tanﬂ (m £> _cot (C f)) kit ort+0)

4 VO . e
Dy (t,x) = izﬁ\/ﬁ {v - 2\/—/,cg{tar1hp< 2“ if)
Case 2. If TT > 0 with { # 0, then
+ coth ) V HC C) H I(x+(ur+{))
(I)Gi(tyx) _ :thanhp <\/2ﬁ é) ei(*kxﬂut#r()). / ( 2
Case 5. If When v = 0 with p = ¢{, then
VO VI o ©)
®7:(.X) = ¥ —g-coth, < é) S, Dy (t,%) = :i:—[;\//—ﬁ [v -+ 2¢tan,, (ué) el kxroro,
g, (t,X) = Ve (—tanh (\/ﬁf) + iv/mnsech (\/ﬁf»e"(*""*“”“’) Vo t
8+ (L, + [ p p C . DOy (t,X) = ii{ chotp(,uf)] XHOU+H0)
pVII
Do (t,X) = 1? (fcothp (\/ﬁg> + v/mncsch,, (\/—E)> kot o (t,x) = %[wﬂc{tanp £) + v/mnsec, (2ué) Y] elkron).
0 I ,
(Dmi(f,X) = :F§ (tanh <\/4—— ) + coth <\/4_ é’))ei(kXHUHO). @24“ X) % [V+2g{ COtp zluz) +vm CSC,,(Z,ug) H kx+(ot+9)_
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\/@ M. U i(—kx+wt+0) \/@
@5 (t, X) :i2ﬁ\/ﬁ [v-i-ZC{tanp(jg) —cotp(jé)}]e . D35(t, X) :iZﬁ\/ﬁ[V
Case 6. If v = 0 with { = —y, then R v(sinh,(v¢) + cosh, (v¢)) Jei(-kxrort),
NG ‘ {(sinh,(v¢) + cosh, (vE) +n)
Oy (t,x) = + [v — 2¢tanh, (u¢)]ei-kret0,
2pVIT Case 12.If v=p and { = pq, (q # 0 but y = 0) then
Ve mpke ;
(€] — 4= e S i(—kx+wt+0)
Calti) =+ 25€ﬁ [v = 2Lcothy (1)), PorltX) =25 [V i 2(:{ m — qnp* H ¢ ’
3D-graphics, 2D-graphics and contour plots of different
VO . solutions |®;| of Eq. (1) with n=3,m=2,p=3,T1=1,0=0.5,
a5 (t,%) :izﬂ\/ﬁ [v+2¢{~tanh, (2u0) i y=05,0=1,=1ands=0.2 are presented to describe their

" \/ﬁsechp(2#5)}}6“"‘“‘*’“’”. behaviour in Fig. 1-6.

®
Dyo(t,x) =+ Vo [v+ 2¢{—coth,(2p¢)
2pVIL According to ideology of the planar dynamical systems, equilib-

+ \/mncsch,,(2;15)}}:3"(*’“‘*“’”"). rium point (uq,zq) is exclaimed as the saddle point if ] < 0, if ] > 0,
then center and T; = 0, a node if ] > 0 and T? — 4] > 0 while, when

3. Bifurcations behavior and phase portraits

VO i u . J = 0 then zero point and Poincaré index of (uq,z,) is zero. Where, J

— L D¢ (—kx+rt+0) L . a=q .

D3o(6,X) = F 48T [V + ZC{tanhp (2 é) +coth, (2 g) }] el e, and T, exhibits the trace of coefficients matrix and also Jacobian
matrix for any linearized system of (47). For the categorization of

Case 7. If v? = 4u¢, then non-identical orbits in phase portraits of dynamical system (47),
some symbols will be practised:
\/@ _zlu(vélnp—’—z) i(—kx+mt+0
@3 (t,%) = + 2810 [V + ZC{ v2Elnp H el o), Super non-linear periodic orbit is manifested by SNPO(e,s),

(1):
(2): Non-linear homoclinic orbit is manifested by NHO(e,s),
Case 8.If v=p and u = pq, (q # 0) but { = 0, then (3): Non-linear heteroclinic orbit is manifested by NHTO(e,s),
(4): Non-linear periodic orbit is manifested by NPO(e,s),
\/@ pé i(—kx+wt+0)
[v+20{p> —q}]e .

2pVT1 where ‘e’ exemplifies the equilibrium points and ‘s’ exhibits the
seperatix layers enveloped by an orbit. Every one phase orbit is
the closed non-self-intersecting curve on the phase plane. Phase

D5y (t,x) =+

Case 9.If v={=0, then

VO Ceonted portrait of dynamical systems is a certain class of such nested
D33(t, %) = i2/£\/ﬁ [V 4 2{uéIn plel-lcretto), phase directions. Eq. (44) can be demonstrated as a system of
non-linear dynamical equations:
Case 10. If v =0 and al =0, th
‘\)/@ N aso#l K {%27 (47)
— — i(—kx-+t+0) dz _ (Kotou pu3
Pa(t,X) i2/3\/ﬁ {erzg{Célane ’ &= o TG
The system (47) delineates the planar Hamiltonian kind. Hamil-
Case 11. If ;= 0 but v # 0 then tonian functions prevailed by integrating (47):
Hwz) -2 - (Coron?  put 48)
D35(t,%) = + ve [v T2 20+ 4K+ o)
35\, e —]
2V From (48), validity can be attested as:
my ;
420 - i Jei-kxrorso), du oH dz  9H
{ ¢(cosh, (vé) — sinh, (vé) + m)} ai 5z 2nd I TR (49)

]
= 10

-4 -2 2 4 4 - [] 2 - 4
(a) 3D-Graphics (b) 2D-Graphics (c) Contour Plot

Fig. 1. Different graphical representations of | ®; |withn=3, m=2, p=3, II=1, =05, y=05, ®=1, f=1ands=0.2.
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-4

(a) 3D-Graphics

(b) 2D-Graphics

2 4 4 pc 0 2 4

(¢) Contour Plot

Fig. 2. Different graphical representations of | @s | withn=3, m=2, p=3, II=1, «=0.5, y=05, 0=1, f=1and s=0.2.

(a) 3D-Graphics

(b) 2D-Graphics

(c) Contour Plot

Fig. 3. Different graphical representations of | @y | withn=3, m=2, p=3, II=1, x=0.5, y=05, 0=1, f=1and s=0.2.

(a) 3D-Graphics

Fig. 4. Different graphical representations of | @5 | withn =3, m =

(b) 2D-Graphics

15 ) P} 0 2 4
(c) Contour Plot

2, p=3,1I=1, 00=05,7y=05 6=1, f=1ands=0.2.

-4

(a) 3D-Graphics

Fig. 5. Different graphical representations of | @3, | withn =3, m=

As a system (47) is a planar Hamiltonian system and from (49),
it can be concluded that system (47) is conservative and thus phase
orbits expressed by the vector field of (47) will posses each travel-
ing waves solution of Eq. (44) (for detail see Li et al., 2015 and ref-
erences therein).

Level curves L;(u,z) in respect of energy level h can be defined
in the following fashion:

(b) 2D-Graphics

(¢) Contour Plot

2, p=3,1I=1, 0=05,7y=05 06=1, f=1ands=0.2.

Ly ={(u,z) e RxR:H(u,z) = h},

where, H(u,z) is expounded in (48) and h is known as the
energy level. In phase portraits against every energy level, h
one can have an orbit. To investigate the relations between
closed orbit and the energy level of the system (47), let us
define:
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12

(a) 3D-Graphics

(b) 2D-Graphics

(c) Contour Plot

Fig. 6. Different graphical representations of | @33 | withn=3, m=2, p=3, [1=1, «=0.5, =05, ®=1, f=1ands=0.2.

NHO(1,0)

SNPO(3,1)

exo

NPO(1,0)

[
u

(a) K*(y+a) >0, — (KPa+w)<0, >0,
(ai) K2(y+a) <0, — (K?a+w) >0, 8<0.

20

0
u

(b) K2(y+a) <0, — (kK2a+w) >0, 8>0.

Fig. 7. Phase portraits of nonlinear dynamical system.

2 2 4
Ey(u) = hy K2TOM,Ar (50)
2K (y+o) 4K (y+ o)
From (48), one can easily find the following relation:
2 2 4
=g fony KXTOWput (51)
K(y+a) 2K (y+o)

which means % = Eu(u). Graphical illustration of (50) is given in
Fig. 9(a-b). Here, all feasible phase trajectories for dynamical system
(47) are presented and categorized.

System (47) has three equilibrium points:

2 2
U = (0,0), = (,/W,O), Us = (—,/(ko‘iﬁ*“’),oy

The linearized system (47) reported as coefficient matrix at an
equilibrium point (ug,zq):

0 1
M= (kzzx+a)) 0) (52)
K2 (+0)
while Jacobian for the system (47) is:
J ( ° : > (33)
= | KPatw) 3pu? .
o) TG 0

It yields the following cases:

3.0.1. K*(y + ) > 0, (=Ko — w) <0,C >0 or
K(y+o) <0, (-Ko—w)>0,<0

There are three equilibrium points of system (47) uy, u,, and us
for this type. For this J(u1) <O, J(uz) >0, J(us) >0 while

T1(M(uy)) = 0 and T, (M(us)) = 0. Above information helps to claim
that u; is the saddle point and u,, us are the center points (see Fig. 7
(a)).

For this case, the phase portraits of the nonlinear dynamical
system (47) is presented in Fig. 7(a). This phase portrait encom-
passes a class of SNPO(3,1), where the family of SNPO(3,1) carries
all included equilibrium points of the considered dynamical model.
It also carries two families of NPO(1,0), which accommodates u;,
and us. There is also a pair of NHO(1,0) at u; which carries u,
and us.

3.02. K2(y+a) < 0,(-Ka—w)>0>0

A single equilibrium point u; incorporated in the system (47),
where J(u;) < 0 thus u; is a saddle point. (see Fig. 7(b)).

3.03. K2(y + ) > 0,(—k*a— w) > 0,C < 0. or
K(y+a) <0, (-Ko—w)<0,>0

There are three equilibrium points of system (47) uq, u,, and us
for this type. For this J(u;) > 0 and T;(M(uy)) = 0, so u; is the cen-
ter point, while J(u;) > 0 and J(u3) > 0 with Poincaré index is zero
thus u,, us are cusp points, (see Fig. 8(a)). The phase portraits of the
carried system of non-linear ODEs (47) is given in Fig. 8(a). This
phase portrait carries a family of NPO(1,0) which envelops u;.

3.04. K2(y+ o) > 0, (—ka— ) > 0,> 0

Only single equilibrium point u; is assimilated in (47). For
which J(u;) > 0 and T;(M(uy)) = 0, thus u; is a center point. The
phase portraits for this case is presented in Fig. 8(b), which shows
that there is a family of NPO(1,0) which carries u;.
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3
NHTO(1,0)
2

NPO(1,0)

(a) K2(y+ a) > 0, —(K2a +w) >0, B <0,
(ai) K2(y+a) <0, — (Ka+w) <0, 8>0.
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NPO(1,0)

NPO(1,0)

(b) K2(vy+a) >0, —(Ka+w) >0, 8>0.

Fig. 8. Phase portraits of nonlinear dynamical system.

N\

u
h=0
)

h>0 h<0

(a

(b)

Fig. 9. Phase portraits of nonlinear dynamical system with different energy levels.

4. Conserved quantities

In this section, nontrivial conserved quantities (Nother et al.
(1918) and Olver (1986)) are enumerated by using the method
given by Anco and Bluman Anco and Bluman, 2002. They advo-
cated a systematic approach to built non-trivial conservation laws.

4.1. Multiplier approach

A system containing two partial differential equations of second
order with three independent y = (t,x) and two dependent vari-
ables ¥ = (u, v) and is denoted by

Ril¥] =F(0 ¥, Yy W),

54
Ro[¥] =Fa(, ¥, ¥y,.... ¥yy)s >

where ¥, and ¥,, stand for the first and second order partial
derivatives of the dependent variables in connection with indepen-
dent variables, respectively. Let U = (U', U?) represents the stream
of arbitrary functions of independent variable y,U, and U,, etc. A
set of multipliers (factors, characteristics) A = (A1,A;) yields a
divergence expression for the system given in Eq. (54) if the identity

AUIRI[¥) + Ao [UIR;[¥] = D, C/{U] (55)

holds for arbitrary function U(y). In Eq. (55), T* are called the con-
served densities (fluxes) while D, is the total derivative:

0 0

(56)

If U = (U, U?) is the solution of Eq. (54), form Eq. (55), one can
derive the local conserved quantity by using the following
equation

D,T/[¥] = 0. (57)

System (54) contains the set of multipliers for the conserved
quantities if and only if following identity holds:

é
5 (M [UIR [¥] + A2 [U]R:[¥]) = 0, (58)

where 2; is said to be Euler operators and defined as:

0 0 0

o D (59)

Eq. (58) leads to a set of over-diagnosed system of determining
equations in expressions of multipliers A = (A1, A). The solution
of the obtained determining equations with some computation
further gives the conserved quantities. In this section, first-order
nontrivial conserved quantities are computed by using the method
given by Anco and Bluman Anco and Bluman, 2002. They advo-
cated a systematic approach to built non-trivial conservation laws.
In this method, multipliers A of precise order for undertook prob-
lem is required, additionally, which is used to get their analogous
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fluxes Y. Each class of multipliers and fluxes fabricates a local con-
servation law DY = 0 holding for all solutions of considered differ-
ential equations.

4.2. Conserved quantities

In this section, conserved quantities of Eq. (1) are computed
(Anco and Bluman, 2002; Cheviakov, 2007).
Eq. (44) with complex envelope:

O(t,x) = u(t,x)e”t (60)

converts into a complex partial differential equation, after splitting
into real and imaginary parts it yields:

ﬁu3 — Uy, — o(u(z/,()2 + (0 + YU =0, U+ 20U ¥y + UV = 0.

(61)
Substituting system (61) in Eq. (58) gives:
5% A (fu—uwv, — ocu(z/x)2 + (004 ) Uyx)+Ag (Ur + 200Uy Uy + 0U Vxx )
=0.

(62)

Equating the coefficients of derivatives of dependent variables
concerning independent variables in Eq. (62), we get a linear
homogeneous over-determined system of partial differential equa-
tions. After solving the obtained system of partial differential equa-
tions for

Ay = Aq(t,x,u, v, up, v, Uy, ;) and
AZ = AZ(t7 X, U, U, Ug, Vg, Uy, UX)

with the assistance of Maple, we will secure the following
consequences:

A1 = (Gt + C3)uy + Coly,
c1x
Ay = <C1ﬂxt—21—a+C2Ut+C3Ux+C4)u. (63)
The next step is to find the fluxes by using the multiplier given
in (63). For instance, the multipliers A; and A, for the constants c;
give the following conservation laws:

(i): /\} = tuy, A; =(wt—Lu

u?

T, = 1 (20t = ),
T, = % (Btu* — 2tv? + 20tu® v2 + 20ty + 2ptul — 2v,xu?).
(64)
(ii): A2 =u;, A2 =
T} = % (Bu* — 2om*v2 — 2uZor — 2u2Y),
T! = o v, vy + ol + YUy (65)
(iii): A3 =1y, A3 = vyu
uv
T, = 5
1
T = 1 (But = 2v® + 200 V2 + 2o + 2uly). (66)
(iv): A7 =0, A5=u
1w 1 2
Ti=5, To=vo’ (67)
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4.3. Conclusion

To be brief, the new direct extended algebraic method
(Rezazadeh, 2018) is applied to perceive the exact solutions of
the resonant non-linear Schroédinger equation with Kerr law non-
linearity. The proffered technique gave a class of solutions that
may be worthwhile for explaining certain physical phenomena
accurately. Moreover, the physical composition of these solutions
is described via their graphical presentation. Four portraits of a
dynamical system (47) are obtained and the existence of the trav-
eling wave solutions is discussed as well. It is observed that
obtained solutions are new and not available in the literature. Fur-
ther, all possible cases of the system parameters are considered by
using the phase portraits, and the effect of different situations are
shown in detail. Moreover, nontrivial, first order and new con-
served quantities are given by using the multiplier approach.

In the future, the perturbed dynamical structure of the consid-
ered model can be investigated in light of chaos and sensitivity
analysis.

5. Ethical standards

The authors state that this research complies with ethical stan-
dards. This research does not involve either human participants or
animals.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Ali, M.N., Husnine, S.M., Saha, A., Bhowmik, S.K., Dhawan, S., Ak, T., 2018. Exact
solutions, conservation laws, bifurcation of nonlinear and super nonlinear
traveling waves for Sharma-Tasso-Olver equation. Nonlinear Dyn. 94, 1791-
1801.

Anco, S.C., Bluman, G., 2002. Direct construction method for conservation laws of
partial differential equations Part II: General treatment. Eur. J. Appl. math. 41,
567-585.

Baleanua, D., Incc, M., Aliyuc, A, Yusuf, A, 2017. Dark optical solitons and
conservation laws to the resonance nonlinear Schrodingers equation with Kerr
law nonlinearity. Optik 147, 248-255.

Baskonus, H.M., Bulut, H., Sulaiman, T.A., 2019. New Complex Hyperbolic Structures
to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method. Appl.
Math. Nonlinear Sci. 4 (1), 141-150.

Bessel-Hagen, E., 1921. Uber die Erhaltumgsatzeder Elektrodynamik. Math. Ann. 84,
258-276.

Biswas, A., Konat, S., 2006. Introduction to Non-Kerr Law Optical Solitons. CRC Press,
Boca Raton, FL, USA.

Cattani, C., scalia, M., Laserra, E., Bochicchio, I, Nandi, KK., 2013. Correct light
deflection in Weyl conformal gravity. Phys. Rev. D 87 (4), 047503..

Cattani, C., Chen, S., Aldashev, G., 2012. Information and modeling in complexity.
Math. Prob. Eng. 2012. 868413.

Cheviakov, A.F., 2007. GeM software package for computation of symmetries and
conservation laws of differential equations. Comput. Phys. Commun. 176, 48—
61.

Dubinov, A.E., Kolotkov, D. Yu, Sazonkin, M.A., 2012. Supernonlinear waves in
plasma. Plasma Phys. Rept., 38 (10), 833-844..

Eskitaolu, E., Akta, M.B., Baskonus, H.M., 2019. New Complex and Hyperbolic Forms
for Ablowitz-Kaup-Newell-Segur Wave Equation with Fourth Order. Appl.
Math. Nonlinear Sci. 4 (1), 105-112.

Eslami, M., Mirzazadeh, M., Biswas, A., 2013. Soliton solutions of the resonant
nonlinear Schrddingers equation in optical fibers with time dependent
coefficients by simplest equation approach. J. Mod. Opt. 60 (19), 1627-1636.

Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Ghain, F.M.M., 2015. An efficient
computational method for solving nonlinear stochastic It integral equations:
application for stochastic problems in physics. ]. Comput. Phys. 283, 148-168.

Ibragimov, N.H., 2007. A new conservation theorem. J. Math. Anal. Appl. 333, 311-
328.

Kara, A.H., Mahomed, F.M., 2006. Noether-type symmetries and conservation laws
via partial Lagrangian. Nonlinear Dyn. 45, 367-383.


http://refhub.elsevier.com/S1018-3647(20)30274-3/h0005
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0005
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0005
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0005
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0010
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0010
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0010
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0015
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0015
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0015
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0020
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0020
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0020
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0025
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0025
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0030
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0030
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0040
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0040
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0045
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0045
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0045
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0055
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0055
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0055
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0060
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0060
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0060
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0065
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0065
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0065
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0070
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0070
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0075
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0075

A. Jhangeer et al.

Khalique, C.M., Adeyemo, 0.D., Simbanefayi, I., 2018. On optimal system, exact
solutions and conservation laws of the modified equal-width equation. Appl.
Math. Nonlinear Sci. 3 (2), 409-418.

Khalique, C.M., Mhlanga, LE., 2018. Travelling waves and conservation laws of a (2
+1)-dimensional coupling system with Korteweg-de Vries equation. Appl. Math.
Nonlinear Sci. 3 (1), 241-254.

Kumar, D., Singh, AK.,, Kumar, D., 2018. Effect of Hall current on the magneto
hydrodynamic free convective flow between vertical walls with induced
magnetic field. Eur. Phys. J. Plus 133, 207.

Kumar, D., Singh, A.K., Kumar, D., 2020. Influence of heat source/sink on MHD flow
between vertical alternate conducting walls with Hall effect. Physica A 544.
123562.

Li, Y., Shan, W,, Shuai, T., Rao, K., 2015. Bifurcation analysis and solutions of a higher
order nonlinear Schrédinger’s equation. Math. Prob. Eng. 2015. 408586-408585.

Moleleki, L.D., Motsepa, T., Khalique, C.M., 2018. Solutions and conservation laws of
a generalized second extended (3+1)-dimensional Jimbo-Miwa equation. Appl.
Math. Nonlinear Sci. 3 (2), 459-474.

Nother, E., 1918. Invariante Variationsprobleme, Nacr. Konig. Gesell. Wissen.,
Gottingen, Math.-phys. Kl. Heft, 2, 235-257 (English translation in Transport
Theory and Statistical Physics, 1(3), (1971) 186-207..

Olver, P.J., 1986. Applications of Lie Groups to Differential Equations. Springer-
Verlag, New York.

10

Journal of King Saud University — Science 33 (2021) 101180

Rezazadeh, H., 2018. New soliton solutions of the complex Ginzburg-Landau
equation with Kerr law nonlinearity. Optik 167, 218-227.

Rushchitsky, J.J., Cattani, C. Terletskaya, E.V., 2004. Wavelet analysis of the
evolution of a solitary wave in a composite material. Int. Appl. Mech. 40,
311-318.

Singh, H., Srivastava, H.M., 2020. Numerical simulation for fractional-order Bloch
equation arising in nuclear magnetic resonance by using the Jacobi
polynomials. Appl. Sci. 10 (8), 2850.

Singh, H. Numerical simulation for fractional delay differential equations. Int. J. Dyn.
Control doi: 10.1007/s40435-020-00671-6..

Singh, H., 2020. Analysis for fractional dynamics of Ebola virus models. Chaos
Solitons Fract. 138. 109992.

Singh, H., Pandey, RK., Srivastava, H.M., 2019. Solving Non-Linear Fractional
Variational Problems Using Jacobi Polynomials. Mathematics 7 (3), 224.

Singh, H., Ghassabzadeh, F.A., Tohidi, E., Cattani, C., 2020. Legendre spectral method
for the fractional Bratu problem. Math. Meth. Appl. Sci. 43 (9), 5941-5952.
Yadav, S.L., Kumar, D., Singh, A.K.,, 2019. Magnetohydrodynamic flow in horizontal

concentric cylinders. Inter. J. Indus. Math. 11, 89-98.

Zhang, Z., Xia, F.L, Li, X.P., 2013. Bifurcation analysis and the travelling wave
solutions of the Klein-Gordon-Zakharov equations. Pramana J. Phys. 80 (1), 41—
59.


http://refhub.elsevier.com/S1018-3647(20)30274-3/h0080
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0080
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0080
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0085
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0085
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0085
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0090
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0090
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0090
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0095
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0095
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0095
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0100
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0100
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0105
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0105
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0105
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0115
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0115
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0120
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0120
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0125
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0125
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0125
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0130
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0130
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0130
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0140
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0140
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0145
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0145
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0150
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0150
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0155
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0155
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0160
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0160
http://refhub.elsevier.com/S1018-3647(20)30274-3/h0160

	New exact solitary wave solutions, bifurcation analysis and first order conserved quantities of resonance nonlinear Schrödinger’s equation with Kerr law nonlinearity
	1 Introduction
	2 Travelling wave solutions
	2.1 Specification of the lodged approach
	2.2 Applications to Eq. (1)

	3 Bifurcations behavior and phase portraits
	3.0.1 [$] {K}^{2}( \gamma + \alpha )&#62;0,(- {k}^{2} \alpha - \omega )&#60;0,C&#62;0[$] or [$] {K}^{2}( \gamma + \alpha )&#60;0,(- {k}^{2} \alpha - \omega )&#62;0, \beta &#60;0[$]
	3.0.2 [$] {K}^{2}( \gamma + \alpha )&#60;0,(- {k}^{2} \alpha - \omega )&#62;0, \beta &#62;0[$]
	3.0.3 [$] {K}^{2}( \gamma + \alpha )&#62;0,(- {k}^{2} \alpha - \omega )&#62;0,C&#60;0[$]. or [$] {K}^{2}( \gamma + \alpha )&#60;0,(- {k}^{2} \alpha - \omega )&#60;0, \beta &#62;0[$]
	3.0.4 [$] {K}^{2}( \gamma + \alpha )&#62;0,(- {k}^{2} \alpha - \omega )&#62;0, \beta &#62;0[$]

	4 Conserved quantities
	4.1 Multiplier approach
	4.2 Conserved quantities
	4.3 Conclusion

	5 Ethical standards
	Declaration of Competing Interest
	References


