
Journal of King Saud University – Science 31 (2019) 1064–1069
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
A Stefan problem with variable thermal coefficients and moving phase
change material
https://doi.org/10.1016/j.jksus.2018.09.009
1018-3647/� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: ajaykumar.rs.apm12@itbhu.ac.in (A. Kumar), rajeevbhu.

mac@gmail.com (Rajeev).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Abhishek Kumar Singh, Ajay Kumar, Rajeev ⇑
Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 July 2018
Accepted 13 September 2018
Available online 22 September 2018

Keywords:
Stefan problem
Phase-change material
Tau method
Exact solution
This article describes a one-phase Stefan problem in a semi-infinite domain that involves temperature-
dependent thermal coefficients and moving phase change material with a speed in the direction of the
positive x-axis. The convective boundary condition at a fixed boundary is also considered in the problem.
An approximate approach to the problem is discussed to solve the problem with the aid of spectral tau
method. The existence and uniqueness of the analytical solution to the problem are also established for a
particular case, and the obtained approximate solution is compared with this analytical solution which
shows that the approximate results are sufficiently accurate. The impact of a few parameters on the mov-
ing interface is also analysed.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
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1. Introduction

Phase-change problems or Stefan problems encounter in many
aspects of natural and industrial phenomena. These problems are
particular cases of the moving boundary problems, where prior
information about the location of the moving boundary is not
known, but one has to calculate it as a part of the solution. Due
to practical applications in the field of science, engineering and
technology, Stefan problems have been attracting the interest of
many researchers for over a century. The occurrence of Stefan
problems can be seen in many specific fields of physical science
such as melting or solidification process (Crank, 1987; Gupta,
2017), crystal growth process (Soni and Bharat, 1999), thermal
energy storage process (Dincer and Rosen, 2002), metal casting
(Poirier and Salcudean, 1988), shoreline problem (Trueba and
Voller, 2010; Swenson et al., 2000; Voller et al., 2004; Rajeev and
Kushwaha, 2013), and in many more areas.

In the classical Stefan problems, it has been assumed that the
thermal coefficients are constants with respect to the temperature
of the material. But it does not always happen with the many
materials. Taking this fact into account, the researchers modified
the Stefan problems in many ways to include new physical beha-
viour such as temperature-dependent thermo-physical property
of the materials (Kumar et al., 2018,2019; Singh et al., 2011).
Briozzo et al. (2007) considered the one-dimensional Stefan prob-
lem including temperature-dependent thermal coefficients and
established the exact solution of the problem. Ceretani et al.
(2018) assumed thermal conductivity as a function of temperature
and Robin type boundary condition in the study of a one-phase
Stefan problem and discussed the explicit solution to the problem.
Many authors also considered these modifications and constructed
the exact as well as numerical solutions of such type of problems
(Ramos et al., 1994; Rogers and Broadbridge, 1988; Olive and
Sunderland, 1987; Broadbridge and Pincombe, 1996; Briozzo and
Natale, 2015). Mazzeo et al. (2015) presented an analytical solution
of a Stefan problem in a finite PCM layer with time-dependent
boundary condition in the steady periodic regime. In a steady peri-
odic regime, Mazzeo and Oliveti (2017) discussed an approxima-
tion of the exact analytical solution to the Stefan problem in a
finite PCM layer and a parametric study is also presented. Potvin
and Gosselin (2009) discussed a numerical model to determine
the thermal shielding of multilayer walls containing layers of
phase change materials. In 2018, a numerical solution based on
the finite difference scheme to the problem associated with ther-
mal field and heat storage in a cyclic phase change process is pre-
sented by Mazzeo and Oliveti (2018).

In many physical processes, the phase change material is
allowed to move when the phase change occurs. In the literature,
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Nomenclature

T temperature [K]
T1 temperature [K] on the fixed face in the neighbourhood

of x ¼ 0
Tf phase change temperature [K]
c specific heat capacity ½kj kg�1K�1�
c0 specific heat capacity coefficients
k thermal conductivity ½Wm�1K�1�
k0 thermal conductivity coefficients
L latent heat ½kj kg�1�
s moving interface [m]
t time [s]
x distance [m]
Pe Peclet Number

u velocity [ms�1]
b heat flux coefficient
Bi generalized Biot Number
v thermal diffusivity ½m2 s�1�

Greek letters
a; b constants
c constants
g similarity variable
k moving boundary coefficients
h dimensionless temperature ðh ¼ ðT � T1Þ=ðTf � T1ÞÞ
Ste Stefan number ðSte ¼ c0ðTf � T1Þ=L Þ
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the phase change problem with moving material is not adequately
studied yet. Recently, Turkyilmazoglu (2018) presented some
Stefan problems involving moving phase change material and dis-
cussed analytical solutions of the problems. This modification
encourages us to explore a one dimensional Stefan problem which
includes temperature-dependent thermal conductivity and specific
heat, and movement of material during the phase change process
simultaneously. We have taken thermal conductivity and specific
heat, respectively in the following form:

kðTÞ ¼ k0 1þ b
T � T1
Tf � T1

� �
ð1Þ

and

cðTÞ ¼ c0 1þ a
T � T1
Tf � T1

� �
ð2Þ

where Tf denotes freezing temperature, T1 is a known constant
temperature; k0; c0 are positive constants and aP 0, b P 0.

In this paper, we have explored a one phase Stefan problem
with variable thermal coefficients as mentioned in Eqs. (1) and
(2) and it is also assumed that the phase change material is moving
with unidirectional speed. The section wise description of this arti-
cle is given below:

Section 2 presents some basic definitions of the Chebyshev
polynomials and its properties. The mathematical model of the
problem has been elaborated in detail in the section 3. Section 4
contains an approximate approach to the problem for all a and b
using spectral tau scheme. In the next section, the exact solution
to the problem has been constructed for the case a ¼ b and its
uniqueness has also been established. Results and discussion sec-
tion describes the findings of the study in detail and the outcomes
have been presented by tables and figures. The last section, conclu-
sion summarises the work a very lucid and concise manner.

2. Some basic definitions and properties

First, we define the first kind Chebyshev polynomials TnðtÞ
recursively on the interval [�1,1] which is given below

T0ðtÞ ¼ 1; T1ðtÞ ¼ t; Tnþ1ðtÞ ¼ 2tTnðtÞ � Tn�1ðtÞ for everyn P 1

ð3Þ
Now we substitute t ¼ 2x

k � 1 in the Chebyshev polynomials to
use these polynomials on the interval 0; k½ �. This substitution
changes the Chebyshev polynomials to the polynomials Tið2xk � 1Þ
which are known as the shifted Chebyshev polynomial denoted
by Tk;iðxÞ. From the recurrence relation (3), we can find the desired
number of shifted Chebyshev polynomials explicitly.
According to Doha et al. (2011), any square integrable function
f ðxÞ on the interval 0; k½ � can be written as

f ðxÞ ¼
X1
j¼0

cjTk;jðxÞ ð4Þ

where cj are given by

cj ¼ 1
hj

Z k

0
f ðxÞTk;jðxÞwkðxÞdx; j ¼ 0; 1; 2; ::: ð5Þ

where hjand wkðxÞare defined by

h0 ¼ p; hj ¼ p
2 ; j ¼ 1; 2; :::

and
wkðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi

kx�x2
p ;

respectively.
To approximate the functionf ðxÞ, we can take first N þ 1 terms

of the series (4) and f ðxÞmay be denoted by f NðxÞ that is given by

f NðxÞ ¼
XN
j¼0

cjTk;jðxÞ ¼ CuðxÞ ð6Þ

where the vector C and the shifted Chebyshev vector uðxÞ are
given by

C ¼ ½c0; c1; :::; cN � ;
and

uðxÞ ¼ ½Tk;0ðxÞ; Tk;1ðxÞ; :::; Tk;NðxÞ�T :
Now, the relation of u0ðxÞ and the vector uðxÞ is given by

duðxÞ
dx

¼ DuðxÞ ð7Þ

where the matrix D is a square matrix of order ðN þ 1Þ defined by
(Atabakzadeh et al. 2013)

D ¼ ðdijÞ ¼
4i
djk

; for j ¼ i� k

0; otherwise:

(
ð8Þ

where k ¼ 1; 3; :::; N if Nis odd or k ¼ 1; 3; :::; N � 1 if Nis even and
d0 ¼ 2, dk ¼ 1; k P 1:

The operational matrix of higher order derivatives can be given
by

dn/ðxÞ
dxn

¼ Dn/ðxÞ ð9Þ

where Dn represents the n-fold multiplication of the matrix D.
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3. Mathematical model and its solution

Wehave considered a one phase Stefan problemwith convective
boundary condition (Ceretani et al. (2018)) in a semi-infinitedomain
governing the freezing process. Initially, it is assumed that themate-
rial is at its freezing temperature Tf and the density does not change
when phase change occurs. Apart from the classical Stefan problem,
it is also considered that the phase changematerial is moving in the
positive direction of x-axis with a speed u which depends on time
and the considered Stefan problem (Turkyilmazoglu (2018)). The
mentioned problem can be modelled as:

qcðTÞ @T
@t

þ u
@T
@x

� �
¼ @

@x
kðTÞ @T

@x

� �
; 0 < x < sðtÞ ; t > 0; ð10Þ

kðTð0; tÞÞ @T
@x

ð0; tÞ ¼ bffiffi
t

p ðTð0; tÞ � T1Þ ; t > 0; ð11Þ

TðsðtÞ; tÞ ¼ Tf ; t > 0; ð12Þ

kðTf Þ @T
@x

ðsðtÞ; tÞ ¼ q L
ds
dt

; t > 0; ð13Þ

sð0Þ ¼ 0; ð14Þ
where Tðx; tÞ denotes the temperature description in solid region at
the location x and at time t, sðtÞ denotes the location of the moving
interface, b is positive constant, q is the density of the material and
L is the latent heat of solidification, T1 < Tf is a constant temperature
applied at the neighbourhood of the fixed boundary x ¼ 0 and Pe is
the Peclet number (a dimensionless quantity which is defined as
the heat transported by convection to the heat transported by con-
duction). The variable thermal-coefficients cðTÞ and kðTÞ are respec-
tively temperature-dependent specific heat capacity and thermal
conductivity given in Eq. (1). The unidirectional speed u is given by
Pe

ffiffiffiv
t

p
, where v is the diffusive coefficient defined as m ¼ k0

q c0
.

To solve the problem (10)–(14), we first use the following sim-
ilarity transformation:

hðgÞ ¼ Tðx; tÞ � T1
Tf � T1

whereg ¼ x
2

ffiffiffiffiffi
vt

p : ð15Þ

With the help of (15), the above Eq. (10) becomes the following
ordinary differential equation (ODE):

h00ðgÞ þ bhðgÞh00ðgÞ þ b h0ðgÞð Þ2 þ 2ðg� PeÞh0ðgÞ
þ 2aðg� PeÞhðgÞh0ðgÞ ¼ 0 ð16Þ
From (12), (13) and (15), it can be found that the position of

moving interface must be proportional to
ffiffiffiffiffiffi
m t

p
; and hence can be

presented as follows:

sðtÞ ¼ 2k
ffiffiffiffiffi
vt

p
ð17Þ

where k is an unknown constant to be found.
The similarity transformation (15) converts the boundary con-

ditions (11), (12) and (13) respectively into the following forms:

h0ð0Þ þ b hð0Þh0ð0Þ � c hð0Þ ¼ 0 ð18Þ

hðkÞ ¼ 1 ð19Þ

h0ðkÞ ¼ 2k
1þ bð ÞSte ð20Þ

where Ste ¼ c0 Tf�T1ð Þ
L is the Stefan number, c ¼ 2Bi; Bi ¼ b

ffiffiffi
v

p
k0
,

Bidenotes the Biot number.
To solve the Eq. (16) for the unknown function hðgÞ along with
the prescribed boundary conditions (18) and (19), we first approx-
imate the unknown function hðgÞ as given in (6) by

hðgÞ ¼ C/ðgÞ ð21Þ
where the coefficient vector C and the shifted Chebyshev vector
uðgÞ are given by

C ¼ ½c0; c1; :::; cN � ð22Þ

uðgÞ ¼ ½Tk;0ðgÞ; Tk;1ðgÞ; :::; Tk;NðgÞ�T ð23Þ
According to Eq. (9), the approximations of derivatives of hðgÞ is

considered as

h0ðgÞ ¼ CD/ðgÞ; h00ðgÞ ¼ CD2/ðgÞ ð24Þ
Substituting the value hðgÞ and its derivatives into the Eq. (16),

we get the residual denoted by RNðgÞ of the differential Eq. (16)
that is given below

RNðgÞ ¼ CD2/ðgÞ þ bCD/ðgÞCD2/ðgÞ þ b CD/ðgÞð Þ2
þ 2ðg� PeÞCD/ðgÞ þ 2aðg� PeÞC/ðgÞCD/ðgÞ: ð25Þ

As in tau method (Doha et al. (2011)), we can generate ðN � 1Þ
algebraic equations with ðN þ 2Þ unknowns from the following
equation:

hRNðgÞ; Tk;jðgÞi ¼
Z k

0
RNðgÞTk;jðgÞdg ¼ 0; j ¼ 0; 1; :::; N � 2 ð26Þ

To complete the system of algebraic equations, we can find the
remaining two equations from the boundary conditions (18) and
(19), which are

CD/ð0Þ þ bC/ð0Þ � cC/ð0Þ ¼ 0 ð27Þ

C/ð0Þ ¼ 1 ð28Þ
In spite of above N þ 1 algebraic equations, one more algebraic

equation can be found from the Eqs. (20) and (24) which is given
below:

CD/ðkÞ ¼ 2k
ð1þ bÞ Ste ð29Þ

Eqs. (26) and (29) generate N þ 2 algebraic equations involving
N þ 2 unknowns c0; c1; :::; cN; kð Þ. These obtained equations can be
easily solved by Newton-Raphson method or any mathematical
software for the unknowns and these results are required to get
the solution to the problem.

4. Exact solution

In this section, we have constructed the exact solution of the
problem (10)–(14) for the case a ¼ b : With the help of similarity
variable given in (15), the partial differential Eq. (10) becomes

h00 gð Þ þ ah gð Þh00 gð Þ þ a h0 gð Þð Þ2 þ 2 g� Peð Þh0 gð Þ
þ 2a g� Peð Þh gð Þh0 gð Þ
¼ 0 ð30Þ
Like the previous section, we assume again the location of the

moving boundary sðtÞ as
sðtÞ ¼ 2k

ffiffiffiffiffi
vt

p
ð31Þ

where k is the moving interface factor and it is an unknown.
The general solution of the Eq. (30) can be given as

hðgÞ ¼ 1
a

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C1ePe

2
ffiffiffiffi
p

p
a erf Pe� gð Þ þ 2C2a

q� �
ð32Þ
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where erf ð:Þ denotes the well-known error function, C1 and C2 are
arbitrary constants to be determined.

The similarity transformation (6) converts the boundary condi-
tions (2), (3) and (4), respectively into following form:

h0ð0Þ þ ahð0Þh0ð0Þ � chð0Þ ¼ 0 ð33Þ
hðkÞ ¼ 1 ð34Þ
h0ðkÞ ¼ 2k
1þ að ÞSte ð35Þ

where Ste ¼ c0 Tf�T1ð Þ
L is the Stefan number.

With the help of Eq. (32), the conditions (33) and (34) deter-
mine the unknown constants C1 and C2 in terms of unknown k as

C1 ¼ �2 k e�Pe2þ Pe�kð Þ2

Ste
; ð36Þ
C2 ¼ k e�2Pe2þ Pe�kð Þ2gðkÞ
Ste2 c2

; ð37Þ

where

gðkÞ ¼ 2Ste c ePe2 þ 2a k e Pe�kð Þ2 þ ffiffiffiffi
p

p
Ste c2 erf ðPeÞ e2 Pe2 ð38Þ

The Eqs. (32), (36) and (37) gives the solution of the Eq. (30).
Table 2
Comparison of the exact values of temperature hE and approximate values of temperature

x hE hA

c ¼ 0:5 0.0 0.9548005034 0.
0.1 0.9675900928 0.
0.2 0.9815584318 0.
0.3 0.9967297117 0.
0.4 1.0131163703 1.
0.5 1.0307180386 1.

c ¼ 2 0.0 0.4961239282 0.
0.1 0.5305728829 0.
0.2 0.5675798029 0.
0.3 0.6070943335 0.
0.4 0.6490367792 0.
0.5 0.6932991451 0.

c ¼ 5 0.0 0.2187442189 0.
0.1 0.2650165756 0.
0.2 0.3140186985 0.
0.3 0.3656206415 0.
0.4 0.419667679 0.
0.5 0.4759827976 0.

Table 1
Comparison of the exact values of moving boundary sEðtÞ and approximate values of mov

Time ðtÞ sðtÞE
c ¼ 0:5 0.2 0.1433605391

0.4 0.2027424187
0.6 0.2483077376
0.8 0.2867210782
1.0 0.3205639108

c ¼ 2 0.2 0.4931638371
0.4 0.6974389870
0.6 0.8541848224
0.8 0.9863276743
1.0 1.1027478639

c ¼ 5 0.2 0.5937586335
0.4 0.8397015123
0.6 1.0284201207
0.8 1.1875172671
1.0 1.3276846668
Now, we consider the Eqs. (8), (14) and (15) that give rise to the
following transcendental equation:

2 a k e�2 Pe2þ Pe�kð Þ2gðkÞ
Ste2 c2

� 2
ffiffiffiffi
p

p
a k erf ðPe� kÞ e Pe�kð Þ2

Ste
� a ð2þ aÞ ¼ 0:

ð39Þ
From Eq. (39), we can find the unknown k ; if it exists, to get the

solution. In the next section, we will show the existence and
uniqueness of k which satisfies the transcendental Eq. (39).

5. Existence and uniqueness

To show the existence and uniqueness of solution constructed
in the previous section, it is sufficient to show that there is a
unique value of k in 0;1ð Þwhich satisfies the Eq. (29). To show this
fact, we consider the following function:

f ðkÞ¼2ak e�2 Pe2þ Pe�kð Þ2gðkÞ
Ste2 c2

�2
ffiffiffiffi
p

p
ak erf ðPe�kÞ e Pe�kð Þ2

Ste
�a ð2þaÞ:

ð40Þ
The function f ðkÞ is continuous and differentiable on the inter-

val ð0;1Þ and Limk!0þ f ðkÞ is a negative real number for all the
involved positive parameters. Moreover, Lim

k!1
f ðkÞ ¼ 1 which

shows that f ðkÞ has a root in the interval ð0;1Þ that proves the
existence of the solution the considered problem.
hA at a ¼ b ¼ 1; a0 ¼ 1; t ¼ 1; Pe ¼ 1 and Ste ¼ 0:5:

jN¼2 hAjN¼3 hAjN¼4

9547076824 0.9547996239 0.9548005047
9675143648 0.9675915860 0.9675900619
9815136842 0.9815606731 0.9815584546
9967056405 0.9967295828 0.9967297173
0130902339 1.0131210125 1.0131166024
0306674643 1.0307576599 1.0307205811

5097058904 0.4956112248 0.4961167249
5444372577 0.5301504261 0.5305745821
5811074936 0.5673887916 0.5675969635
6197165982 0.6071705763 0.6071212021
6602645714 0.6493400352 0.6490622735
7027514132 0.6937414235 0.6933127959

2314886499 0.2184815959 0.2187344431
2792356550 0.2648185880 0.2650260142
3284893452 0.3140286441 0.3140653729
3792497200 0.3658902131 0.3656976470
4315167796 0.4201817439 0.4197554711
4852905239 0.4766816853 0.4760589875

ing boundary sAðtÞ at a ¼ b ¼ 1; a0 ¼ 1; Pe ¼ 1 and Ste ¼ 0:5:

sAðtÞjN¼2 sAðtÞjN¼3 sAðtÞjN¼4

0.1434231706 0.1433613581 0.1433605381
0.2028309930 0.2027435770 0.2027424173
0.2484162185 0.2483091561 0.2483077358
0.2868463413 0.2867227162 0.2867210762
0.3207039591 0.3205657421 0.3205639085

0.4932423228 0.4932255542 0.4931648450
0.6975499825 0.6975262681 0.6974404123
0.8543207636 0.8542917196 0.8541865681
0.9864846457 0.9864511085 0.9863296901
1.1029233632 1.1028858676 1.1027501176

0.6016120367 0.5937787903 0.5937558057
0.8508079016 0.8397300183 0.8396975131
1.0420226141 1.0284550333 1.0284152227
1.2032240735 1.1875575807 1.1875116114
1.3452454102 1.3277297388 1.3276783436
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It can be seen that the derivative of f ðkÞ is on the interval ð0;1Þ
when we take the Peclet number Pe 6

ffiffiffi
2

p
. Hence, f ðkÞ is a strictly

increasing function on the interval ð0;1Þ and this observation
shows that f ðkÞ has a unique root. It is also observed that when
we take the value of the Peclet number Pe >

ffiffiffi
2

p
, the problem

may have multiple solutions which agree with the findings
explored in Turkyilmazoglu (2018).
6. Results and discussions

In this section, first, we discuss about the accuracy of the
approximate solution given in section 3. In order to show the accu-
racy of the obtained approximate solution, two tables have been
presented fora ¼ b. Table 1 depicts the comparison of the location
of interface for the exact solution sðtÞE and the approximate solu-
tion sAðtÞ by taking operational matrices of order 3, 4 and 5. The
numerical values in the Table 1 are given at
a ¼ b ¼ 1; a0 ¼ 1; Pe ¼ 1 and Ste ¼ 0:5 for different values of c
in which sAðtÞjN¼i denotes the approximate value of the location
of the interface for the operational matrix of order iþ 1. Table 2
represents the assessment for the accuracy of the approximate
value hA and the exact value hE of temperature profile for
a ¼ b ¼ 1; a0 ¼ 1; t ¼ 1; Pe ¼ 1 and Ste ¼ 0:5: In table second,
hAjN¼i ; i ¼ 2; 3; 4 represents the approximate values of tempera-
ture obtained by taking the operational matrices of order 3, 4
and 5, respectively. The Tables 1 and 2 clearly show that the
approximate values are sufficiently accurate and are in good agree-
ment with the exact solution fora ¼ b.

Fig. 1 represents the plot between sðtÞ and time t for the param-
eters a ¼ 0:2; b ¼ 0:5; c ¼ 0:5 and Ste ¼ 0:75. This figure clearly
Fig. 2. Effect of c on tracking of the moving interface sðtÞ at
a ¼ 0:5; b ¼ 0:2; Pe ¼ 1and Ste ¼ 0:75:

Fig. 1. Effect of Pe on tracking of the moving interface sðtÞ at
a ¼ 0:2; b ¼ 0:5; c ¼ 0:5 and Ste ¼ 0:75:
shows that the velocity of location of the interface increases
rapidly with the increment of the values of Peclet number Peð Þ. This
indicates that the material freezes fastly when we take the larger
values of Pe. The Fig. 2 shows the plot between the moving bound-
ary sðtÞ and time t for different values of c at
a ¼ 0:5; b ¼ 0:2; Pe ¼ 1:0 and Ste ¼ 0:75. This figure reveals that
the moving interface propagates fast as we increase the parameter
c and hence, the freezing process becomes fast.

7. Conclusion

In this article, a semi-analytical solution to a solidification
problem with temperature-dependent thermal coefficients and
moving phase change material is elaborated. The exact solution
to the problem is also constructed for a particular case, i.e.
a ¼ b and it is observed that there exists a unique solution of
the problem if we take Pe 6

ffiffiffi
2

p
. In this model, it is seen that

sðtÞ is proportion to
ffiffi
t

p
which is the similar result as we have

found in the literature for classical Stefan problems. Moreover,
it is clear that the solidification process is affected by Peclet num-
ber (Pe) and c, and the process becomes fast as the parameters Pe
and c increase. From this study, it is also observed that the pro-
posed semi-analytical approach is simple, accurate and efficient
and it will be helpful to the researchers of this area to handle
Stefan-like problems.
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