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1. Introduction

In (Siwiec, 1974), the author introduced the notions of weak
neighborhoods and weak base in a topological space. We intro-
duced the weak neighborhood systems defined by using the notion
of weak neighborhoods in (Min, 2008). The weak neighborhood
system induces a weak neighborhood space which is independent
of neighborhood spaces (Kent and Min, 2002) and general topolog-
ical spaces (Csázár, 2002). The notions of weak structure and w-
space were investigated in (Kim and Min, 2015). In fact, the set
of all g-closed subsets (Levine, 1970) in a topological space is a
kind of weak structure. We introduced the notion of gw-closed
set in (Min and Kim, 2016a) and some its basic properties. In
(Min, 2017), we introduced and studied the notion of weakly
gw-closed sets for the sake of extending the notion of gw-closed
sets in w-spaces. The purpose of this note is to extend the
notion of gw-closed sets in w-spaces in a different way than the
notion of weakly gw-closed sets. So, we introduce the new notion
of s-weakly gw-closed sets in weak spaces, and investigate its
properties. In particular, the relationships among weakly
wg-closed sets, w-semi-closed sets and s-weakly g-closed sets are
investigated.
2. Preliminaries

Let S be a subset of a topological space X. The closure (resp.,
interior) of S will be denoted by clS (resp., intS). A subset S of X is
called a pre-open (Mashhour et al., 1982) (resp., a-open (Njastad,
1964), semi-open (Levine, 1963)) set if S � intðclðSÞÞ (resp.,
S � intðclðintðSÞÞÞ; S � clðintðSÞÞÞ. The complement of a pre-open
(resp., a-open, semi-open) set is called a pre-closed (resp., a-
closed, semi-closed) set. The family of all pre-open (resp., a-open,
semi-open) sets in X will be denoted by POðXÞ (resp., aðXÞ; SOðXÞ).
The d-interior of a subset A of X is the union of all regular open sets
of X contained in A and it is denoted by d� intðAÞ (Velicko, 1968). A
subset A is called d� open if A ¼ d� intðAÞ. The complement of a
d� openset is called d� closed. The d� closure of a set A in a space
ðX; sÞ is defined by fx 2 X : A \ intðclðBÞÞ– ;B 2 sandx 2 Bg and it is
denoted by d� clðAÞ. A subset A of a space ðX; dÞ is said a� open
(Ekici, 2008) if A# intðclðd� intðAÞÞÞ and a� closed if
A# clðintðd� clðAÞÞÞ. And A is said x�-open (Ekici and Jafari, 2010)
if for every x 2 V , there exists an open subset U#X containing x
such that U � d� intðAÞ is countable. The family of all a-open
(resp., x�-open) sets in X will be denoted by aOðXÞ (resp., x�OðXÞ).

A subset A of a topological space ðX; sÞ is said to be:

(a) g-closed (Levine, 1970) if clðAÞ#U whenever A#U and U is
open in X;

(b) gp-closed (Noiri et al., 1998) if pclðAÞ#U whenever A#U
and U is open in X;

(c) gs-closed (Arya and Nori, 1990) if sclðAÞ#U whenever A#U
and U is open in X;

(d) ga-closed (Maki et al., 1994) if saclðAÞ#U whenever A#U
and U is a-open in X where sa ¼ aðXÞ;
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And the complement of a g-closed (resp., gp-closed, gs-closed,
ga-closed) set is called a g-open (resp., gp-open, gs-open, ga-
open) set. The family of all g-open (resp., gp-open sets, gs-open,
ga-open) sets in X will be denoted by GOðXÞ (resp.,
GPOðXÞ; GSOðXÞ; GaOðXÞ).

Let X be a nonempty set. A subfamilywX of the power set PðXÞ is
called a weak structure (Kim and Min, 2015) on X if it satisfies the
following:

(1) £ 2 wX and X 2 wX .
(2) For U1; U2 2 wX ; U1 \ U2 2 wX .

Then the pair ðX;wXÞ is called a w-space on X. Then V 2 wX is
called a w-open set and the complement of a w-open set is a w-
closed set.

Then the family s; aðXÞ; GOðXÞ; aOðXÞ; x�OðXÞ and gaOðXÞ are
all weak structures on X. But POðXÞ; SOðXÞ; GPOðXÞ and GSOðXÞ
are not weak structures on X.

Let ðX;wXÞ be a w-space. For a subset A of X, the w-closure of A
and the w-interior (Kim and Min, 2015) of A are defined as follows:

(1) wCðAÞ ¼ \fF : A# F; X � F 2 wXg.
(2) wIðAÞ ¼ [fU : U#A; U 2 wXg.
Theorem 2.1. [Kim and Min, 2015] Let ðX;wXÞ be a w-space and
A#X.

(1) x 2 wIðAÞ if and only if there exists an element U 2 WðxÞ such
that U#A.

(2) x 2 wCðAÞ if and only if A \ V –£ for all V 2 WðxÞ.
(3) If A#B, then wIðAÞ#wIðBÞ; wCðAÞ#wCðBÞ.
(4) wCðX � AÞ ¼ X �wIðAÞ; wIðX � AÞ ¼ X �wCðAÞ.
(5) If A is w-closed (resp., w-open), then wCðAÞ ¼ A (resp.,

wIðAÞ ¼ A).

Let ðX;wXÞ be a w-space and A#X. Then A is called a generalized
w-closed set (simply, gw-closed set) (Min and Kim, 2016a) if
wCðAÞ#U, whenever A#U and U is w-open. If the wX-structure
is a topology, the generalized w-closed set is exactly a generalized
closed set in sense of Levine in (Levine, 1970). Obviously, every w-
closed set is generalized w-closed, but in general, the converse is
not true.

And A is called a weakly generalized w-closed set (simply, weakly
gw-closed set) (Min, 2017) if wCðwIðAÞÞ#U whenever A#U and U
is w-open. Obviously, every gw-closed set is weakly gw-closed. In
(Min, 2017), we showed that every w-pre-closed set (Min and
Kim, 2016b) is weakly gw-closed.

3. Main results

Now, we introduce an extended notion of gw-closed sets in w-
spaces as the following:

Definition 3.1. Let ðX;wXÞ be aw-space and A#X. Then A is said to
be s-weakly generalized w-closed (simply, s-weakly gw-closed) if
wIðwCðAÞÞ#U whenever A#U and U is w-open.

Obviously, the next theorem is obtained:

Theorem 3.2. Every gw-closed set is s-weakly g-closed.
Remark 3.3. In general, the converse of the above theorem is not
true. Furthermore, there is no any relation between s-weakly gw-
closed sets and weakly gw-closed sets as shown in the examples
below:
Example 3.4. Let X ¼ fa; b; cg and w ¼ f£; fag; fbg;Xg be a weak
structure in X. For a w-open set A ¼ fbg, note that
wIðAÞ ¼ A; wCðAÞ ¼ fb; cg and wIðwCðAÞÞ ¼ wIðfb; cgÞ ¼ A. So A is
s-weakly gw-closed but not gw-closed. And since
wCðwIðAÞÞ ¼ fb; cg;A is also not weakly gw-closed.
Example 3.5. For X ¼ fa; b; c; dg, let w ¼ f£; fdg; fa; bg; fa; b; cg;Xg
be a structure in X. Consider A ¼ fag. Then since wIðAÞ ¼ £, obvi-
ously A is weakly gw-closed. For a w-open set U ¼ fa; bg with
A#U;wIðwCðAÞÞ ¼ wIðfa; b; cgÞ ¼ fa; b; cg:#U. So A is not s-
weakly gw-closed.

In general, the intersection as well as the union of two s-weakly
gw-closed sets is not s-weakly gw-closed as shown in the next
examples:

Example 3.6. For X ¼ fa; b; c; dg, let w ¼ f£; fag; fbg; fcg;
fa; cg; fa; c; dg;Xg be a weak structure in X.
(1) Let us consider A ¼ fag and B ¼ fcg. Note that
wIðwCðAÞÞ ¼ wIðfa; dgÞ ¼ A;wIðwCðBÞÞ ¼ wIðfc; dgÞ ¼ B and
wIðwCðA [ BÞÞ ¼ wIðfa; c; dgÞ ¼ fa; c; dg. Then we know that
A and B are all s-weakly gw-closed sets but the union A [ B
is not s-weakly gw-closed.

(2) Consider two s-weakly gw-closed sets A ¼ fa; b; cg and
B ¼ fa; c; dg. Then A \ B ¼ fa; cg is not s-weakly gw-closed
in the above (1).
Theorem 3.7. Let ðX;wXÞ be a w-space. Then every w-semi-closed set
is s-weakly gw-closed.
Proof. Let A be a w-semi-closed set and U be a w-open set contain-
ing A. Since wIðwCðAÞÞ#A, obviously it satisfies wIðwCðAÞÞ#U. It
implies that A is s-weakly gw-closed. h
Remark 3.8. In (2) of Example 3.6, the s-weakly gw-closed set
A ¼ fa; b; cg is not w-semi-closed. So, the converse of the above
theorem is not always true.

From the above theorems and examples, the following relations
are obtained:

Let X be a nonempty set. Then a familymð# PðXÞÞ of subsets of X
is called a minimal structure (Maki, 1996) if £;X 2 m.
Theorem 3.9. Let ðX;wXÞ be a w-space. Then the family of all s-
weakly gw-closed sets is a minimal structure in X.
Lemma 3.10. [Kim and Min, 2015] Let ðX;wsÞ be a w-space and
A;B#X. Then the following things hold:
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(1) wIðAÞ \wIðBÞ ¼ wIðA \ BÞ.
(2) wCðAÞ [wCðBÞ ¼ wCðA [ BÞ.

Let X be a w-space and A#X. Then A is said to be w-semi-open
(resp., w-semi-closed) (Min and Kim, 2016c) if A#wCðwIðAÞÞ (resp.,
wIðwCðAÞÞ#A).

Lemma 3.11. Let ðX;wXÞ be a w-space. Then for A#X;A [wIðwCðAÞÞ
is w-semi-closed.
Proof. From Lemma 3.10 and Theorem 2.1,
wIðwCðA [wIðwCðAÞÞÞÞ ¼ wIðwCðAÞ [wCðwIðwCðAÞÞÞÞ
¼ wIðwCðAÞÞ#A [wIðwCðAÞÞ.

So, A [wIðwCðAÞÞ is w-semi-closed. h
Lemma 3.12. Let ðX;wXÞ be a w-space and A#X. If F is any w-semi-
closed set such that A# F, then A [wIðwCðAÞÞ# F.
Proof. Let F be a w-semi-closed set with A# F. Then
wIðwCðAÞÞ#wIðwCðFÞÞ# F, and so A [wIðwCðAÞÞ# F. h

Let ðX;wXÞ be a w-space. For A#X, the w-semi-closure (Min and
Kim, 2016c) of A, denoted by wsCðAÞ, is defined as:

wsCðAÞ ¼ \fF#X : A# F; F is w� semi� closed in Xg.

Theorem 3.13. Let ðX;wXÞ be a w-space. Then for
A#X; wsCðAÞ ¼ A [wIðwCðAÞÞ.
Proof. It is obtained from Lemma 3.11 and Lemma 3.12. h

Finally, we have the following theorem:

Theorem 3.14. Let ðX;wXÞ be a w-space and A#X. Then A is s-
weakly wg-closed if and only if wsCðAÞ#U whenever A#U and U is
w-open.
Proof. Let A be an s-weakly gw-closed subset of X and let U be any
w-open set such that A#U. Then wIðwCðAÞÞ#U and
A [wIðwCðAÞÞ#U. So, by Theorem 3.13, wsCðAÞ#U.

For A#X, suppose that wsCðAÞ#U whenever A#U and U is w-
open. Let U be any w-open set with A#U. Then from hypothesis
and Theorem 3.13, wIðwCðAÞÞ#A [wIðwCðAÞÞ ¼ wsCðAÞ#U.
Hence, A is s-weakly gw-closed. h

Recall that: Let X be a topological space and A#X. Then A is call
a gs-closed set (Arya and Nori, 1990) if sclðAÞ#U whenever A#U
and U is open.

Theorem 3.15. Let ðX;wXÞ be a w-space and A#X. If wX is a
topology, then the following thing hold: A is gs-closed if and only if
intðclðAÞÞ#U whenever A#U and U is open.
Proof. From sclðAÞ ¼ A \ intðclðAÞÞ, sclðAÞ#U whenever A#U and
U is open if and only if intðclðAÞÞ#U whenever A#U and U is open.
So, this theorem is obtained. h
Theorem 3.16. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
closed set, then wIðwCðAÞÞ � A contains no any non-empty w-closed
set.
Proof. For an s-weakly gw-closed set A, let F be a w-closed subset
such that F#wIðwCðAÞÞ � A. Then A#X � F and X � F is w-open.
Since A is s-weakly gw-closed, wIðwCðAÞÞ#X � F. From the facts,
F#X �wIðwCðAÞÞ and F#wIðwCðAÞÞ � A, and so F ¼ £. h

In general, the converse in Theorem 3.16 is not true as shown in
the next example.

Example 3.17. Let X ¼ fa; b; c; dg and a weak structure
w ¼ f£; fag; fbg;fa; cg; fa; b; cg;Xg in X. For A ¼ fag; wIðwCðAÞÞ ¼
intðfa; c; dgÞ ¼ fa; cg and wIðwCðAÞÞ � A ¼ fcg. So, we know that
there is no any nonempty w-closed set contained in wIðwCðAÞÞ � A.
But A is not s-weakly gw-closed.
Corollary 3.18. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
closed set, then wsCðAÞ � A contains no any non-empty w-closed set.
Proof. Since wIðwCðAÞÞ � A ¼ ðA [wIðwCðAÞÞÞ � A ¼ wsCðAÞ � A,
by Theorem 3.16, the statement is satisfied. h
Theorem 3.19. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
closed set and A#B#wsCðAÞ, then B is s-weakly gw-closed.
Proof. Let U be any w-open set such that B#U. By hypothesis,
obviously wsCðBÞ ¼ wsCðAÞ. Since A is s-weakly gw-closed and
A#U;wsCðBÞ ¼ wsCðAÞ#U. So B is s-weakly gw-closed. h
Corollary 3.20. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
closed set and A#B#wIðwCðAÞÞ, then B is s-weakly gw-closed.
Proof. From A#B#wIðwCðAÞÞ; A#B#A [wIðwCðAÞÞ ¼ wsCðAÞ.
By Theorem 3.19, the corollary is obtained. h

From now on, we introduce the notion of s-weakly gw-open sets
and study its basic properties.

Definition 3.21. Let ðX;wXÞ be a w-space and A#X. Then A is
called an s-weakly generalized open set (simply, s-weakly gw-open
set) if X � A is s-weakly gw-closed.
Theorem 3.22. Let ðX;wXÞ be a w-space and A#X. Then A is s-
weakly gw-open if and only if F#wCðwIðAÞÞ whenever F#A and F
is w-closed.
Proof. Obvious. h

From Theorem 3.13, the following is easily obtained:

Theorem 3.23. Let ðX;wXÞ be a w-space. Then for A#X,
wsIðAÞ ¼ A \wCðwIðAÞÞ.
Theorem 3.24. Let ðX;wXÞ be a w-space and A#X. Then A is s-
weakly gw-open if and only if F#wsIðAÞ whenever F#A and F is
w-closed.
Proof. For an s-weakly gw-open subset A of X, let F be a w-closed
set such that F#A. Then F#wCðwIðAÞÞ. Since F#A \wCðwIðAÞÞ, by
Theorem 3.23, F#wsIðAÞ.

For A#X, suppose that F#wsIðAÞ whenever F#A and F is w-
closed. If F is any w-closed set and F#A, then by hypothesis and
Theorem 3.23, F#wsIðAÞ ¼ A \wCðwIðAÞÞ, and so F#wCðwIðAÞÞ.
Hence, A is s-weakly gw-open. h
Theorem 3.25. Let ðX;wXÞ be a w-space and A#X. Then if A is s-
weakly gw-open, then U ¼ X, whenever wCðwIðAÞÞ [ ðX � AÞ#U
and U is w-open.
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Proof. Let U be any w-open set and wCðwIðAÞÞ [ ðX � AÞ#U. Then
X � U# ðX �wCðwIðAÞÞÞ \ A
¼ wIðwCðX � AÞÞ \ A ¼ wIðwCðX � AÞÞ � ðX � AÞ. Since X � A is s-
weakly gw-closed, by Theorem 3.16, the w-closed set X � U must
be empty. Hence, U ¼ X. h
Corollary 3.26. Let ðX;wXÞ be a w-space and A#X. Then if A is s-
weakly gw-open, then U ¼ X, whenever wsIðAÞ [ ðX � AÞ#U and U
is w-open.
Proof. Since wsIðAÞ [ ðX � AÞ ¼ ðA \wCðwIðAÞÞÞ [ ðX � AÞ, by the
above theorem, it is obtained. h
Theorem 3.27. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
open set and wCðwIðAÞÞ#B#A, then B is s-weakly gw-open.
Proof. It is similar to the proof of Theorem 3.19 and Corollary
3.20. h
Theorem 3.28. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
closed set, then wIðwCðAÞÞ � A is s-weakly gw-open.
Proof. If A is an s-weakly gw-closed set, then by Theorem 3.12, £
is the only one w-closed subset of wIðwCðAÞÞ � A. So,
£#wCðwIðwIðwCðAÞÞ � AÞÞ. Hence, wIðwCðAÞÞ � A is s-weakly
gw-open. h
Corollary 3.29. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
closed set, then wsCðAÞ � A is s-weakly gw-open.
Proof. From wsCðAÞ � A ¼ ðA [wIðwCðAÞÞÞ � A ¼ wIðwCðAÞÞ � A, it
is obtained. h
Theorem 3.30. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
open set, then wCðwIðAÞÞ [ ðX � AÞ is s-weakly gw-closed.
Proof. If A is an s-weakly gw-open set, then by Theorem 3.25, X is
the only one w-open set containing wCðwIðAÞÞ [ ðX � AÞ. So, obvi-
ously, wCðwIðAÞÞ [ ðX � AÞ is s-weakly gw-closed. h
Corollary 3.31. Let ðX;wXÞ be a w-space. Then if A is an s-weakly gw-
open set, then wsIðAÞ [ ðX � AÞ is s-weakly gw-closed.
Proof. It follows from wsIðAÞ [ ðX � AÞ ¼ ðA \wCðwIðAÞÞÞ[
ðX � AÞ ¼ wCðwIðAÞÞ [ ðX � AÞ and Theorem 3.30. h
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