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In this article the numerical solution of thin plates problem is introduced by using the differential quadra-
ture method together with Chebyshev Gauss Lobatto sampling points for modeling the vibration of a

The explicit formula of the weighting coefficients for approximation of derivatives is utilized with the
aid of the G-spline interpolation function.

A numerical example is presented and the results that have been obtained are compared with the exist-
ing methods in order to illustrate the validity and accuracy of the proposed approach.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bellman and Casti was proposed a numerical method which is
so called differential quadrature (DQ) for evaluating the derivatives
of sufficiently smooth function, (Bellman and Casti, 1971). Their
basic idea came from the well-known approach Gauss Quadrature
for calculating the integral numerically.

Evaluating the derivatives of different orders of a sufficiently
smooth function can be considered as an extension which is give
rise to DQ (Bellman and Casti, 1971; Jalaal et al., 2011), where
the derivatives of a smooth function are approximated with
weighting sum of function values at a group of so called sampling
points or nodes (Zong and Zhang, 2009).

Bellman and his co-authors presented two methods for calcu-
lating the weighting coefficients which is the key procedure in
the DQ applications (Shu, 2000).

Differential Quadrature (DQ) aroused many authors and
because of that, its applications rapidly developed, (Quan and
Chang, 1989; Shu and Richards, 1992; Shu and Xue, 1997; Shu
and Wu, 2007; Korkmaz and Dag, 2008; Jiwari et al., 2012;
Pekmen and Tezer-Sezgin, 2012; Ragb et al., 2014; Jiwari, 2015;
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Eftekhari, 2015; Shamani et al., 2015; Ghasemi et al., 2016;
Mittal and Dahiyah, 2016, 2017; Ghasemi, 2017; Thoudam, 2017;
Shamani and Aghdam, 2017a,b; Shamani and Aghdam, 2018).

A comprehensive review of the differential quadrature method
has been given by Bert and Malik (1996). This paper employs func-
tion approximation theory using G-spline interpolation to formu-
late DQ.

Nearly 71 years ago, L.J. Schoenberg (1968) introduced the sub-
ject of “spline function” since that time splines may be considered
as an important tool in different branches of mathematics such as
approximation theory, numerical analysis, numerical treatment of
ordinary, integral, partial differential equations, statistics, etc.
There are several types of splines appeared in literature given by
Deboor (1978), Powell (1981) and Stephen (2002).

Among these types of spline the so called G-spline interpolation
which is necessary to the work of this paper, was initially pre-
sented by Schoenberg (1968). Schoenberg used the term “G-
spline” instead of generalized splines because the natural spline
term “generalized spline” describes an extension of another type
of spline.

The G-spline is used to interpolate the HB-data (problem), the
data in this problem are the values of the function and its deriva-
tives but without Hermite’s condition that the only consecutives
be used at each node. Further, Schoenberg (1968) define G-spline
as smooth piecewise polynomials, where the smoothness is
governed by the incidence matrix, and then he proved that
G-splines, satisfies the "minimum norm property”, which is used
for the optimality of the G-spline function, that is defined mathe-
matically by the following inequality:
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/[f dx>/[5 (x)2dx, (1)

where the function S is called a G-spline and it’s a polynomial spline
of degree 2 m-1 over the interval I.

2. The G-spline interpolation function:

L. Schoenberg (1968) proposed a tool in order to specify the
HB-problem or the interpolatory condition:

FOx) =yl for (ij) e (2)

where e is a certain set of ordered pairs, and called a G-spline inter-
polation. It is convenient in this section to discuss the HB-problem,
before we give the tractable formal definition of the natural G-
spline interpolation as follows: Consider the node points

X1 < Xy < ... < xgand let o be the maximum order of the deriva-
tives to be specified at the nodes. Define an incidence matrix E, by:

E=aj],i=1,2...,kj=0,1...,a, (3)
where:
aij:{l, (‘i,?')ee,

0, (ij) ¢ e

ande={(i,j):i=1,2...,K;j=0,1,...a}.
Let yi“') be prescribed real numbers for each (i,j) € e, then the
HB-problem is to find f(x) € C*,such that:

fPx) =yY for (i.j) ee. (4)

The matrix E will likewise describes the set of Eq. (4) if we define
the set e by:

e={(ij)lay =1} C)

Then the integer n = },;.ay, is the number of interpolatory condi-
tions required to constitute the system (4).

The G-spline interpolant of order mto f can be given in terms of
the fundamental G-spline functions L;(x), which is described in
detail in Schoenberg (1968) by:

= > Ly, (6)

(ij)ee

where

ey JOIf (r,s) # (i,]
ng)(XT) - {1,if (r,s) = (i,j

).
).

2.1. Approximation of linear functional with the sense of G-spline
formula

Let 1=[a, b] be a finite interval containing the node points
X1,X2,...X, and let us consider a linear functional:
£f : C*[a,b]—R of the form:

- Z [ oo+ 5 s ), )
j=0 i=1
where ag;(x)are piecewise continuous functions in I, x; € I and b;; are

real constants. we can approximate the functional in Eq. (7) using
the formula:

£f = > pf (%) + RS, (8)
(ij)ee

where Rf represents the remainder see Schoenberg (1968). There-

fore, in order to find the approximation of £f given by (8), which

is best in some sense, we propose to determine the real’s f;.

Schoenberg (1968) states two procedures to determine f; one
of them is Sard procedure, which can be summarized by the fol-
lowing theorem:

2.1.1. Theorem (Schoenberg, 1968)

If o <m <n and the HB-problem (4) is m-poised, then Sard’s
best approximation (8) to £f of order m is obtained by operating
with £ on both sides of the G-spline interpolation formula (6) of
order m.

In other words, the coefficients f; are given by:

Bij = £L;j(x), where L; are the fundamental functions of (6).

Details can be found in Schoenberg (1968) for the generation of
these fundamentals G-splines.

3. The G-spline interpolation-based differential quadrature
method

Suppose that the function f(x) is sufficiently smooth on the
interval [x1,xy], and consider an m-poised HB- problem:

9 ) :y,@, (i,j) € e, on the N distinct nodes:

X1,X2...,XN.

Based on differential Quadrature, we have

d
d—{( Zaklf k=1,2,...N, 9)
(ij)ee
df
™ Zb k=1,2,...N, (10)
X=X}, (ij)ee

where a) and by are the weighting coefficients of the first and sec-
ond order derivatives.

3.1. Computation of the weighting coefficients for the first and second
order derivatives using G-spline interpolation formula

To find the weights a’ and bY”,we need to consider an m-poised
HB-problem to approximate the function. Our purpose is to con-
struct a polynomial of x, which is of the form

= > (11)

(ij)ee

Then the derivatives of order one and two at any grid points may be
approximated as:

dfl  _ dLi)| )

a _ - Z dX _ f i (1 2)
X=X (ij)ee X=Xy

and

d&’f CLi®)|

it S — b 13

dXZ X=Xy (;ﬁ de x:xkf' ’ ( )

with a,(j',.) are the coefficients for the first order derivative, obtained
by the following formula

a0 — L)

g=== (14)

X=X}

and b,(fi) are the coefficients of the second order derivative, given by

d*Lij(x)

dX2 ‘x:xk :

by = (15)

In the same manner, we may obtain formulae for higher order
derivatives by using the higher order weighting coefficients, which
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are expressed as e,“ ) to avoid confusion. They are characterized by
the following recurrence formulation.

(l m) _ dmLU(X)
i ax"

L N-1. (16)

X=X

Here we assume that a = el and b)) — e/

ki
4. Analysis of differential quadrature of thin plates

In this section, the implementation of the G-spline
interpolation-based DQM will be illustrated for thin plates
problem.

4.1. The controlling equations and boundary conditions

The non-dimensional controlling equations for the deflection,
free vibration and buckling for a plate may be written as Shu
(2000):

Plate deflection

rw ., W W atq(X,Y
- + /LZ 5 2 + L4 . _ q( ) )7 (17)
ox 0X°9Y oY D
transverse vibration of thin, isotropic plates
o'w 'w orw
2,2 2 ='W 18
o +aa oX2oy? + ay* ) (18)
buckling of a plate under uniaxial compression
4 4 4 2 o2
oFwW 2,2 oIWwW 4 OW  Nyaz O°W (19)

T aay  ayt T D X
where W is the dimensionless mode shape function, q(X,Y) is the
external distributed load, Q is the dimensionless fre-
quency, X = x/a,Y = y/bare dimensionless coordinates, a and b
are the lengths of the plate edges,.2 = a/b is the aspect ratio, and
N, is the uniaxial load. Furthermore, Q = wa?./p/D, where  is

the dimensionless circular frequency, D = Eh*/[12(1 — 2?)] is the
flexural rigidity, E, v, p and h are Young’s modulus, Poisson’s ratio,
the density of the plate material, and the plate thickness, respec-
tively. It should be mentioned that the above equations do not cover
all the cases. For example, for free vibration of the anisotropic
plates, Eq. (17) has to be changed to include more terms. Eq. (18)
can be modified to consider buckling under different compressions.

There are three basic boundary conditions, for free vibration
analysis, these boundary conditions are:

Simply supported edge (SS)

’PW
Wi o=0, ——| =0, (20)
x|,
Wl,_,=0 oW 0 (21)
Y=0 — Y% a2 =Y,
v,
Clamped edge (C)
oW
Wixo=0, 5 L 0, (22)
ow
Wiy o=0, T 0, (23)
Free edge (F)
2 vj 3 3
0 % 022 ‘2/ =0, g VZ+(27 )2 0 Wz =0, (24
X v, X oXoY?|, |

FW W PW >PwW

Pt vr—| =0, P——+Q2-v-—5—| =0, (25
oY x|, , oY ox*oy|,

and

Fw

oXoY (26)

at the corner of two adjacent free edges.

4.2. Numerical discretization of the problem

The domain of computation for a rectangular plate is
0<X<1,0<Y<1 and for a numerical calculation, the mesh
generation will be given as:

1 i1 .

Xi:§|:1 — COS (ﬁﬂ:>:|’ 1:1’27"'71\]’ (27)
1 r—1

Yr:§|:] — COS (mn>:|7 r:1727---7M7 (28>

where N and M refers to the number of the grid points in the X and
Y directions respectively. Egs. (17)-(19) can be discretizing by using
G-spline-based DQ weighting coefficients. Let eu ™ be the DQ
weighting coefficients of the n — th order derivative in the X direc-
tion, and e, "™ be the DQ weighting coefficients of the m-th order

derivative in the Y direction. Using the DQM, Eq. (17) may be dis-
cretized as

Z( Jee ekl WUS +2)‘ Z Z ekl ehr WOS
(ij)eeq (r.5)eey
+;4 Z eh (s.4) W(/s
(r.s)ee;y
_ qi.r
- D
k=1,2,....Nh=1,2,....M; (29)

7(i7j) € 6y, (r7s) € 6y,

and Eq. (18)is discretized as

> el WIS 1272 >y el?e, SPwWp

(ij)eeq (ij)eeq (r.8)eey

+ Z e, W(’S

(rs)eey

=PWY (i.j) € er, (1,5) € e,
k=1,2,..

LNh=1,2,... M (30)

Hence, Eq. (19) is discretized as

Ze““w(’s +223° Z elle, CAW)

(ij)ee; (ij)eeq (r.s)ee;
+0y e, YWl
(rs)ee;
a’N, .
= x Uzwl(lrsv(la.’)6617(r7s)682~,
(ij)ee
k=1,2,....Nh=1,2,....M, (31)

) . o L _
where W/ = 220 s (j 4 5)™ derivative at the net point (X, Y;)

Egs. (29)-(31) can be put in matrix form and the solution of
these matrix forms can be calculated using standard solvers such

as QR-algorithm.
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4.3. Direct substitution of boundary conditions into discrete controlling
equation

The derivatives that appeared in the boundary conditions must
also discretize by the DQM and as follows:

WY =0, Wi Wiy = o, Wi =0 (32)
> elPWiY =0atXx=0 (33)
(ij)eey
Sediwi =0at X =1 (34)
(ij)ee
> e Wi —0ar Y =0 (35)
(r,s)eey
S esmwE =0aty =1 (36)
(rs)eey

where ng,ny,my and m, are possessed as either 1 or 2, where 1 is
used for the clamped edge condition and 2 is used for the simply
supported edge condition.ng, n,,mg and m; correspond to the edges
of X=0,X=1,Y=0,Y =1, respectively.

Obviously, Eq. (32) can be easily substituted into Eq. (30). How-
ever, Egs. (33)-(36) cannot be directly substituted into Eq. (30).

Using the direct approach given in Shu (2000), Egs. (33) and
(34) can be coupled to give two solutions WJ* and W%, where
Jj1 and j, represent the minimum partial order derivatives of Wwith
respect to X at X, and Xy_; respectively, which are located at the
grid points shown by the symbol o in Fig. 1

Wi = Z AXK1.WE), (37)
z] €e;

wirs) = Z AXKN.W?), (38)
(ij)ee;

forr= 3~,47 s 7M - 2761 = 61/{(2aj1)1 (N - lij)}Where

(.m) ,(i.n0) (.no) ,0.n1)
AXN = eyy el — €13 eyn-y
XL — el el
AXKN = eff0ey) — edivel )

For (i,j) € ;

In a similar way, Egs. (35) and (36) can be coupled to give the
solutions W,?’;” and W2 where s; and s, represent the minimum

M
M-1 Interior Points
M-2 7
/ Boundary
Adjacent Points
3
2
R=1|
I=1 23 N-2 N-IN

Fig. 1. Description of the points for a rectangular plate.

partial order derivatives of W with respect to Y at Y, and Yy_;
respectively, which are located at the net points shown by the
symbol O in Fig. 1,

Gs1) _
Wi AYM r;e AYK1.W (39)
(s2) _
Wi, = AYM rs});ﬁAYKM wi, (40)
fori=3,4,....N—2,e5 =e5\ {(2,51),(M —1,s,) }where

AYN = eM(szml)el E\ilmi)) — € (S mU)eM(fwmll)
(e (s my)  o-(smg) o (smy)
AYKT = e, ey y-y — €y euy |

AYKM = ¢, ) — e, e, 5

For (r,s) € e

For the points near the four corners shown by the symbol B in
Fig. 1, the four Eqgs. (33)-(36) have to be coupled in order to give
the following four solutions:

Wi = A;(N Vi ;@](rézﬂxm AYKT.WE 41)

= A;Nﬁ(memr;z/\XKN.AYKl.ngr's)’ (42)
WY = A% Aﬁ@w;@f)('“ AYKM. WU, 43)
Wk, A;(N A;M ; (rgeezAXKN.AYKM.Wff), (44)

The reason for writing W35, W2, WYy, and W2, in this
form is to make them also as in the Eqs. (37)-(40) in terms of the
points that we will get later form the Eq. (45). with Egs. (32),
(37)-(43) and (44), the boundary conditions are all directly substi-
tuted into Eq. (30). Hence, the final eigenvalue system of Eq. (30)
may be given as:

STOWE 42223 N (rs) ee, W + 1 Z GWY =Q*wi?),
(ij)eeq (ij)eeq (rs)eey

(45)
(i,j) € e, (r,s) € e;where

(.4
el4AXK1 + el'¥) | AXKN

j4
C] = egi ) AXN s

| (AXK1el + AXKN.eY ) (o)

r AXN hr

(AY1<1 o+ AYKM €,
- AYM
(AXK1.AYK1e[3) €,5% + AXKN.AYK1 e 1,57 )

AXN.AYM

(AXKl.AYKM.e,YZ e’y + AXKNAYKM.el? e, 2 ’1)
AXN.AYM ’

_ pU2)
G = e eh

(.2)
C.i

+

+

. e, VAYK1 + e, ") AYKM
3 =€,

hr AYM
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Eq. (45) gives a system of(N — 4) x (M — 4) algebraic equations
with (N —4) x (M — 4) unknowns.

5. The free vibration analysis of square plates via G-spline based
differential quadrature method

In this section the free vibration analysis of square plates as
given in Eq. (30) with 4 =1 will be solved numerically using the
proposed approach given in section four. Two different sets of
HB- problems have been considered in order to find the solution
of such problems as follows:

Casel:

To construct the approximate solution via G-spline-based dif-
ferential quadrature method an m-poised HB-problem must be
chosen.

In this case we shall take a 5-poised HB- problem given for
X and Y respectively by the sets

e; = {(1,0),(2,0),(3,0),(4,0),(5,0),(6,0)},

e: = {(1,0),(2,0),(3,0),(4,0),(5,0),(6,0)},
with the node points given by Egs. (27) and (28) taking N = 6 and
M = 6. First,apply the G-spline interpolation-based DQM for the
simply supported simply supported simply supported simply sup-
ported (SS-SS-SS-SS) boundary conditions, and secondly for the
clamped clamped clamped clamped (C-C-C-C) boundary conditions.
The natural low of frequency of the (SS-SS-SS-SS) and (C-C-C-C)
boundary conditions will be given in Table 1.

The fundamental G-spline functions Lio(X), Lyo(x), L30(X), Lao, Lso
and Lgo(x) are given in Appendix A.

Case 2:
In this case we shall consider another 5-poised HB sets for X and
Y respectively given by:

er = {(1,0),(2,0),(3,0),(4,1),(5,1),(6,0)},

e; = {(1,0),(2,0),(3,0),(4,1),(5,1),(6,0)},

with the node points given by Eqgs. (27) and (28) with N =6 and
M =6, first, apply the G-spline interpolation-based DQM for the
(SS-SS-SS-SS) boundary conditions and (C-C-C-C) boundary condi-
tions. The natural low frequency for (SS-SS-SS-SS) and (C-C-C-C)
boundary conditions will be given in Table 2.

The fundamental G-spline functions Lio(x), Lao(x), L3o(x), La1, L5
and Leo(x) are given in Appendix B.

Table 1

Comparison of natural low frequency (Q) of a square plate using G-spline interpo-
lation-based differential quadrature with the approximate solution given by Shu
(2000) using casel.

Boundary conditions Q (DQM), M=N=6 Q (Shu, 2000), M=N=6

SS-SS-SS-SS 19.0665 19.0970
C-C-C-C 36.4037 36.4441
Table 2

Comparison of natural low frequency (Q) of a square plate using G-spline interpo-
lation-based differential quadrature with the approximate solution given by Shu
(2000)] using case 2.

Boundary conditions

SS-SS-SS-SS
C-C-C-C

Q (DQM), M=N=6

19.1797
36.9222

Q (Shu, 2000), M=N=6

19.0970
36.4441

6. Conclusions

It is clear that the G-spline-based differential quadrature can be
considered as a generalization to the usual differential quadrature
method. Also, from Tables 1 and 2 one can conclude that G-spline
based differential quadrature gave accurate results, although a
small number of node points have been introduced.
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Appendix A

Lig=1—16.713x + 78.399x2 — 143.193x> + 93.468x* — 55.423
(x—0)° +110.86(x — 0.0955)7 — 110.985(x — 0.3456)° + 111.195
(x —0.6546)° — 111.41(x — 0.9046)° +55.763(x — 1)

Lyo = 20.379x — 127.056x2 + 257.962x3 — 177.142x* + 177.142
(x —0)° —221.75(x — 0.0955)° +221.999(x — 0.3456)° —222.419
(x —0.6546)° +222.85(x — 0.9046)° — 111.541(x — 1)°

Lsp = —5.24x + 72.038x2 — 192.538x3 + 151.627x* — 110.985
(x — 0)° +221.999(x — 0.0955)° — 222.249(x — 0.3456)°
+222.669(x — 0.6546)° — 223.101(x — 0.9046)° + 111.666(x — 1)°

Lag = 2.519x — 37.745x2 + 129.453x% — 120.173x* + 111.195
(x — 0)° —222.419(x — 0.0955)° + 222.669(x — 0.3456)°
—223.091(x — 0.6546)7 +223.523(x — 0.9046)° — 111.877(x — 1)°

Lso = —1.681x + 25.66x> — 92.759x* + 94.766x* — 111.41
(x — 0)° +222.85(x — 0.0955)° — 223.101(x — 0.3456)° +223.523
(x — 0.6546)° — 223.956(x — 0.09046)7 + 112.094(x — 1)°

Lgo = 0.737x — 11.273x% + 41.076x3 — 42.545x* + 55.763
(x—0)° —111.541(x — 0.0955)° + 111.666(x — 0.3456)°
—111.877(x — 0.6546)° + 112.094(x — 0.9046)° — 56.105(x — 1) -

ey =0T x> C
where (x g)+—{ 0. if x< ¢

Appendix B

Lio =1 —17.597x + 90.409x* — 174.268x3 + 116.155x*
—42.812(x — 0)7 + 68.302(x — 0.0955)° — 25.613(x — 0.3458)°
~26.239(x — 0.6546)% + 6.394(x — 0.9046)° + 0.122(x — 1)°

Lyo = 22.056x — 150.009x% + 318.05x3 — 221.722x* + 86.24
(x —0)7 —137.588(x — 0.0955)7 + 51.595(x — 0.3458)°
+52.856(x — 0.6546)% — 12.881(x — 0.9046)° —2.221(x — 1)

Ly = —7.198x 4+ 99.57x2 — 271.589x% + 216.346x4 — 101.248
(x —0)7 +161.532(x — 0.0955)° — 60.573(x — 0.3458)° — 62.054
(x —0.6546)% + 15.123(x — 0.9046)% +0.29(x — 1)°

Ly = —0.752x 4+ 11.049x% — 36.161x> + 32.963x4 — 19.359
(x—0)° +30.886(x — 0.0955)° — 11.582(x — 0.3458)°
~11.865(x — 0.6546)° + 2.892(x — 0.9046)® + 0.055(x — 1)°

Ls; = —0.606x + 8.835x2 — 28.158x% + 24.221x* — 11.705
(x — 0)° + 18.674(x — 0.0955)° — 7.002(x — 0.3458)° — 7.174
(x — 0.6546)° + 1.748(x — 0.9045)® +0.033(x — 1)7

Lgo = 2.739x — 39.97x* + 127.807x3 — 110.779x* + 57.82
(x — 0)° —92.246(x — 0.0955)° +34.591(x — 0.3458)7 + 35.437
(x —0.6546)° — 8.636(x — 0.9046)° — 0.165(x — 1)°
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