Journal of King Saud University — Science 34 (2022) 102057

Contents lists available at ScienceDirect

] Journal of King Saud University — Science =
journal homepage: www.sciencedirect.com
Original article
A new integral version of generalized Ostrowski-Griiss type inequality )

with applications

Check for
updates

Sever S. Dragomir ¢, Asif R. Khan®, Maria Khan "¢, Faraz Mehmood “*, Muhammad Awais Shaikh ¢

2 Department of Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
b Department of Mathematics, University of Karachi, University Road, Karachi 75270, Pakistan

¢ Department of Mathematics, Dawood University of Engineering and Technology, New M. A Jinnah Road, Karachi 74800, Pakistan

4 Department of Mathematics, Nabi Bagh Z. M. Govt. Science College, Saddar, Karachi 74400, Pakistan

ARTICLE INFO ABSTRACT

Article history:

Received 25 July 2021

Revised 10 April 2022
Accepted 22 April 2022
Available online 28 April 2022

2010 Mathematics Subject Classifications:
26D15
26D20
26D99

Keywords:

Ostrowski-Griiss inequality
Ceby3ev functional
Korkine’s identity
Cauchy-Schwartz inequality
numerical integration
Special means

Our aim is to improve and further generalize the result of integral Ostrowski-Griiss type inequalities
involving differentiable functions and then apply these obtained inequalities to probability theory, spe-
cial means and numerical integration.

© 2022 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In Ostrowski (1938), Ostrowski presented an inequality which
is now known as “Ostrowski’s inequality” stated below:
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where ( : [m,n] — R is a differentiable function such that |{'(z)| < M,
for every z € [m,n].

In present era, a large number of papers has been written about
generalizations of Ostrowski’s inequality see for example
(Anastassiou, 1997; Cheng, 2001; Dragomir and Wang, 1997,
Irshad and Khan, 2017; Liu, 2008; Matic et al., 2000; Milovanovic
and Pecaric, 1976; Shaikh et al., 2021; Zafar and Mir, 2010).
Ostrowski’s inequality has proven to be an important tool for
improvement of various branches of mathematical sciences. Very
well said (Zafar, 2010) “Inequalities involving integrals that create
bounds in the physical quantities are of great significance in the
sense that these kinds of inequalities are not only used in approx-
imation theory, operator theory, nonlinear analysis, numerical
integration, stochastic analysis, information theory, statistics and
probability theory but we may also see their uses in the various
fields of biological sciences, engineering and physics”.

In the history, an important inequality that “estimate for the
difference between the product of the integral of two functionals
and the integral of their product” is known as “Griiss inequality”.
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2022.102057&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksus.2022.102057
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sever.dragomir@vu.edu.au
mailto:asifrk@uok.edu.pk
mailto:maria.khan@duet.edu.pk
mailto:faraz.mehmood@duet.edu.pk
https://doi.org/10.1016/j.jksus.2022.102057
http://www.sciencedirect.com/science/journal/10183647
http://www.sciencedirect.com

S.S. Dragomir, A.R. Khan, M. Khan et al.

This celebrated integral inequality was proved by Griiss (1935) in
1935, is stated below (see also Mitrinovic et al. (1994) [p. 296]),

it fn{@N(2)dz - (45 [ (@) d2) (5 [nn(2)dz)|
1My —my)(Ny — )

:

(1.2)

N

provided that { and # are integrable functions on [m,n] such that
my <{(2) <My, m <n(z) <Ny,

Vz € [m,n], where my, My, n;,N; are real constants.

By using Griiss inequality, Dragomir and Wang proved an
inequality, in the year 1997, which we would refer as
“Ostrowski-Griiss inequality” (Dragomir and Wang, 1997) which
is stated as follows:

Proposition 1.1. Suppose { : I — R be a function differentiable in the
interior I° of I, where I CR, and let mnel’° and n>m. If
y < {(z) < T,z € [m,n] for real constants ), T, then

'((z) - _1 — /m ¢(t)dt — i("r)l - fr(l"ﬂ (z_ m;”)
<q(n-m)(T ) (13)

holds, Vz € [m, n.

Above inequality gives a relationship between Ostrowski
inequality (1.1) and Griiss inequality (1.2).

If ¢ and g belong to L,[m, n), then the Ceby3ev functional T(, 1) is
defined as

T(C

7

n m

(n—m /m {(z )dz) (ﬁ ./m”n(z)dz).

From Matic et al. (2000) pre-Griiss inequality is given below.

Proposition 1.2. Let {,n:[m,n] — R be integrable such that
(n eLim,n).If

y<niz) < for ze[m,n,

then

TEn <5 (T = DVTET.

In the article (Matic et al., 2000) of year 2000, Matic, Pecari¢ and
Ujevi¢ improved inequality (1.1), by using pre-Griiss inequality,
which is as follows:

Proposition 1.3. Suppose { : I — R be a function differentiable in the
interior I° of I, where ICR, and let mnel® and n>m. If
y < {(z) < T,z € [m,n] for real constants y, T, then

'C(z) - 1 - /m (e - S

1
< m(n -m)(I' =)

holds, Vz € [m,n.

e

In the article (Barnett et al., 2000), by using Ceby3ev functional,
improved the Mati¢-Pecari¢-Ujevic result (1.3) in terms of “Eucli-
dean norm” as under:
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Proposition 1.4. Let function { : [m,n] — R be an absolutely contin-
uous and derivative ' € Ly[m,n]. If y <{'(t) < T almost everywhere
for T € [m,n], thenV z € [m,n]

— il Jn (DT

1
212
_ o 12 {(n)—{
< TZI\/%’l |:n—]m HQ/HZ (g(nr)l—fr(lm)) :|

<zam-m)I =)

e ;g

holds.

This article is divided into six sections: the 1st section totally
based on introduction and preliminaries. In the 2nd section, we
would give our main result about generalization of integral
Ostrowski-Griiss type inequalities and would discuss its different
special cases. In the 3rd, 4th and 5th sections, using the obtained
result we would give some applications to probability theory, spe-
cial means and numerical integration respectively and the 6th con-
cludes the article.

2. New generalization of integral Ostrowski-Griiss type
inequality

Our main theorem of this section is given in the following:
Theorem 2.1. Let { : [m,n] — R be a differentiable function whose 1st

derivative belongs to Ly(m,n). If y <{'(t) < T almost everywhere for
Te[m,n|, thenV ze [m+ 2550 4 and / € [0,1]

’(] _)) 2)+{( m+n Z) _,’_) zy(n) _ 1 fn gV(T)dT’
% (372~ 304+ 1) + (2— =) (1 - 4)

52 1 , (-t 2 %
+oma? (g may - (2|
<Lr-vy) [m;g”z 32 -32+1)+ (z-=2)*(1- )

2.1)

holds.

Proof. We begin the proof of this theorem by defining the piece-
wise continuous function K : [m,n]* — R for / € [0,1] as:

T-m-2%" i 1e[m,zZ,
K(z,T;2) = T-mnif te(zm+n-2,
T—n+25" 0 if Te(m+n-zn],

by Korkine’s identity

1 /n '/m"(C(r) —{(5))(g(T) — g(s))drds,

2n—m)? Jm
dr—%/ dt/(

//sz K(z,5:2))(C'(T) — ())drds,

T 8) = (22)

we obtain
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Since
#m fn'; K(z,t; )¢ (t)dt = (1 - ))

— it Jm (DT
[rK(z,T;2)dt =0

2)+{( m+n Z) +} 2 +{(n)

then by (2.3) we get the following identity

(l _ })C(z)ﬂf(mm—z) +A:(m)+ _W f;C
mz S Jm(K(z,T;2) — K(z,5;2))('(T) = {'(5))dds,

(24)

ﬂ

Vze [m+ 225", ™ and 4 € [0, 1].
By applying Cauchy-Schwartz inequality for double integrals,

we can write

S L | [0 Jn(K(z, T 2) — K(z,5:2))({ (1) = {'(5))dTds]

< (‘zrfm)z I Jm K(z,7:2) = K(z,5; /l))zd‘fds)% (255)
( S ol () =) d‘cds)i.

However

—K(z,s;2))*dtds

st dm I (K (2
= il I K3 (z,T; 2)de - (m fn';K(z,r;;.)dr)z (2.6)

=t [f (2 —m = am5m)” — (z - mp2)?) 2],

Consider above terms in the following and simplifying:

2 n—m\3 3

)T = (2=

om? (1 )2 +3 (z - mm)* (n— m)(1 — 4) 2.7)

2
+3n—-m*(1 - )% (z - m51),

(z-m-

and

1 " ren s ideds — — e (S0 = Cm)?
2(n—m)2/m/m(S(T)ié(s))deS_(nfm)Hg‘bf( n—m )
(2.8)

Using (2.4), (2.6), (2.7) and (2.8), we get the 1st inequality of
(2.1). Since y <{'(t) <I' almost everywhere for t € [m, n], by apply-
ing Griiss inequality (1.2) we get

Ydt — (ﬁ /m ' c’mdr)z <A
29)

n—m

which completes the proof of last inequality of (2.1). O

Following remark (Remark 1 of Barnett et al. (2000)) is also
valid for our main result.

Remark 2.2. Since L.,[m,n] C L,[m,n] (and the inclusion is strict),
then we remark that the inequality (2.1) can be applied also for the
mappings { whose derivatives are unbounded on (m,n), but
¢ € Ly[m,n.
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Remark 2.3. Since 34> —3/.+1<1,Y 2€[0,1] and this is mini-
mum when / = 1. Therefore, (2.1) captures various special cases
of main result which is obtained by authors of article (Barnett
et al., 2000) as can be seen in remark given below.

Remark 2.4. We can get different special cases of (2.1) by using
several values of A by fixing z="2 Under the assumptions of
Theorem 2.1 following results (special cases) are valid:

Special Case I: For /. =1 (2.1) gives trapezoid inequality

¢ { n
M L [ c(t)d|

<l [ = m)I15 - ()~ cm)y’]
<=9 m-m),

which is Remark 3.2 (i) of Zafar (2010).
Special Case II: For 1 = 0 (2.1) gives mid-point ineqality

657 55 L]
<5 [(n=m)IZ15 — (Em) = c(m)y’]
75 (T =) —m).

which is Corollary 1 of Barnett et al. (2000) and Remark 3.2 (ii) of
Zafar (2010).

Special Case III: For A =
trapezoid inequality

[N

1
2
<
1(2.1) gives averaged mid-point and

{(m)+2¢(3) +L(n)
AEGEIA g tde

n—

[N

< b5 (= m) 5 — (&) — c(m)?]
< (T =p)(n—m).
which is Remark 3.2 (iii) of Zafar (2010).
Special Case IV: For /=1 (2.1) gives a variant of Simpson’s
inequality for differentiable function ¢

{(m)+4 "‘*" +{(n
5(6 _ 1 f

n-m

NI

<d[m-mc)3 - ) - z(m))z]
<z T =p)n—m).
which is Remark 3.2 (i») of Zafar (2010).

3. Application to probability theory

be continuous with PDF
[0,1] is defined as

Suppose random variable ‘Z’
{:[m,n] — R, and CDF @ : [m,n] —

o) = [ uwr,

m

e [m+2 50 B,

and

n
E(Z) = / t{(7)dt
m
is expectation of random variable ‘Z’ on [m, n]. Then we have follow-
ing result:

Theorem 3.1. Let the suppositions of Theorem 2.1 be valid and if PDF
{ € Ly[m,n], then
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’(1 _;v)(I)(z)+<I>(g1+n—z)+§_ =
<nlm{m12) B2 -31+1)+( m;”fu 2)
_ — )2 ik 1
A OEMAZA G N i my )} 1]
gmzthTTLBﬁ 3#H)+@—m+”fa—@
(n—m)(1 - 1) m+m
+ 2 (- )’
(3.1)
where h < @'(1) <H, V T € [m,n.

Proof. Put { = ® in (2.1) we obtain (3.2), by applying the identity

/11 ®(t)dt =n—E(Z) where ®(m)=0, ®(n)=1.

Corollary 3.2. Under the assumptions as stated in Theorem 3.1, if we
put z ="51 then

|1 o) +4 - 2B

n-m
1 2 % / %
<2372 34+ 1) [ umm—l]
<Um (372 354 DHH - h)

hold for h <®'(t) < H V1 € [m,n].

Remark 3.3. The Corollary 3.2 is in fact Corollary 3.1 of Zafar
(2010).

4. Application to special means

Before we proceed further we need here some definitions of
special means.
Special Means: These means can be found in Zafar (2010).

(a) Arithmetic Mean
m+n.

A= 5 m,n > 0.
(b) Geometric Mean
G=G(m,n)=vmn; mnz=0
(c) Harmonic Mean
H:H(m,n):%i%; m,n > 0.

(d) Logarithmic Mean

m, if m=n

L=L(m,n)= o if m#nmn>0.

Inn-Inm>
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(e) Identric Mean
m, if m=n

if msnmn>0

(f) p-Logarithmic Mean
m, if m=n

1
_ _ 1_pt1 \ P .
L, =Ly,(m,n) = ((I}jjl)(nm—p:n)) , if m=n,

where p € R\ {-1,0},m,n > 0. It is known that “L, is monotoni-
cally increasing over p € R”, “Lo =I" and “L_; = L".

Example 4.1. Consider {(z) =zF, p € R\ {-1,0}, thenforn > m

n_lm /m" {(rydt = Ly(m,n),
w:/\(mp,n")
m;n:A
and oo - [
=L,

where z € [m + A%5m, m20),

Therefore, (2.1) becomes

((1 — ) Rmenz? A (mP,nP) —L‘;‘

) 1 1
=324 1) + (2= AP (1 - 2) + P g )] (30 - 0]

< lpl[532 i
(1)

Choose z=A in (4.1), get

1
‘(1—1)A”+M(mp,np) ( lplim (342 3z+1)%[L§$ R rienl

which is minimum for 2 = 1. Moreover for 2 =1

1
2(p-1)|2
= Lo ] :

‘A(nﬁ nP) LP]\\ ZV/_|p|[L2

Example 4.2. Consider {(z) =1, z#0, then

n
1 P _ -1
i [ dmde= Lmn),
m
m-tm 1
n-m G2’
m+tm . A
2 - G

n
1 / 2 o 2 2
=N /m 0(r)Pdt = miem

tn 2 2 2
R e I &
C

where z € [m 4 2551, 241
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Therefore, (2.1) becomes

a-» (1 1
‘ 2 (E+(m+n z>+/L L‘

) 1
BR3P = 324 1) + (2 - A (1 - )+ R - p)] e

(42)

If we choose z = A in (4.2), we get

1A 1 _m-m)P L, b
For i=1
A 1] _ (n-m)
o .
Gt L 6G

Example 4.3. Consider {(z) =Inz, z > 0, then

N / ryde = In(i(m,n))
(m-tm) _ 1
n-m ~ L?
() p g,

II

=5}
=]
a

ﬁ/m
o [ par - ()=

¢'(v)*dt
{(m 2-¢?
m LZGZ ?
where z € [m + 2551, 21 © (0, 00)

Therefore, (2.1) becomes

a-s .
(z(m+n-2))"2 G
In <7I )

< [P 32 - 304 1) + (- AP(1 - 2) + I 7 A)]% g
Forz=A
AlAGH (n—m) 3
In < 322 -3+ 1)(I* -G
( I > 2fLG<( . )>
For 2 =1
G (n-m) » 2
In{—)| < L — G
‘ (1>‘ 2\/§LG( )

5. Application to numerical integration

To get the composite quadrature rules, we have to let

lj:m=2zy <2z <...<Zz_ <z =n be the partision of the interval
N » hi Zi+Z; .
m,n], hj =21 -z, 2€[0,1], zi + 25 <n; <5, j €10,

i — 1}, then the following results hold:

Theorem 5.1.If y < ((1) <
TE [z + ).%,zjﬂ] (j €{0,...,i—1}), then under the assumptions of
Theorem 2.1 the following quadrature formula holds

I' almost everywhere for

/ (0T = QLTG0 2) + RE T, ),

m

(5.1)

where

i-1 ¢ HZitZio 1 —1 {2+ (z;
Q(QV, €/71j7 177 /L) _ Zh] {(1 _ 2) s(ﬂj)Jrs(Zj;Zjﬂ ;) + ;Lg(Z])Jr;(ZHl)] (52)
j=0

and remainder R satisfies the estimate
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—1
REC oA < 5 [B37 304 1)+ (- 252 (1= )

j=0
0227 (53 P - () - L)) 63

i-1 2 R 1
<%(rfy>le]hj[’l’i(3zz =30 1)+ (= 25) (1 - ) B0 () )
P

Proof. By using (2.4), (2.5) and (2.9) on
zi+ A% <y < 2P and summing over j from 0 to i — 1, then we
get required result. O

inequalities

By putting several values of /. and by fixing #; = 271, under the

assumptions of Theorem 5.1 following results (spec1al cases) are
valid.
Special Casel: Put 1 =1 in (5.2) and (5.3), we have

Qe 1) -

j=0

(&(z)) + (zj11))

and
R(¢.¢05, 252 1))
i-1 1 i—
3
<o [BICE - (@)~ (@) ] < T -nX k.
Jj= Jj=
Special Casell: Put 4 =0 in (5.2) and (5.3), we have

-1

Zj + Z, Z Zj
Q(Qé//yljv ]+ j+1) Z j+ ]+1

j=0

and
R(c. 1 23]

1 i1 o2 o 2
< a3 LI BICIE - (@) - 0z)°]

1
2

i-1
. 2
<asT-n5h.

Special Caselll: Put /. =1in (5.2) and (5.3), we have

o Zi+z 1) 18 Zi+z )
Q(C,g,lj, i 21 7> ZZ (4@ + 20 B2 + (@)
j=0

R(5¢,1, 550

\Mzh[hu I3 - (6(z) - «(z,))]

\
1
2

i1
2
<gHET-nTh.
Jj=0
Special CaselV: Put 2 =1in (5.2) and (5.3), we have

Zi+zig 1 1 Zi+ 74
Q(c,c’,l,’ 1 )f— (e + 4EEE 1 ()
! 3 6; < 1) 2 f“)

and
Zi+Z;.
R(c.C.5. 55 3))
i-1

<& ZhilBICIE ~ ()~ 1@)] < HT =D X h.

j=0

N
‘.ﬂ

6. Conclusion

Using three step kernel, we have obtained new generalized
Ostrowski-Griiss type inequalities (2.1) which is a variant of (1.4)
which was obtained in article (Barnett et al., 2000). By fixing
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z =" and by choosing different values of parameter 2 we cap-
tured many results stated in Barnett et al. (2000) and Zafar
(2010). We also got different important results from our main
results as special cases such as trapezoidal inequality, mid-point
inequality, averaged mid-point and trapezoidal inequality and
Simpson’s inequality. Moreover, applications are deduced for prob-
ability theory, special means and numerical integration.
Conflict of Interest: Authors declared: No conflict of interest.
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