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1. Introduction

The main theme of this paper is the following discrete Hardy
inequalities.

Let 0 < p 6 1. There exists a constant C > 0 such that for any
sequence a ¼ aðnÞf gn2Z with að�nÞ ¼ 0;n 2 N [ f0g, we have
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The family of Hardy inequalities, which consists of the discrete
form and the integral form, is one of the most important inequal-
ities in analysis. For the history of the Hardy inequalities, the
reader is referred to Kufner et al. (2006, 2007). For the applications
and further developments of this famous inequality, the reader
may consult (Kufner et al., 2007; Kufner and Persson, 2003; Opic
and Kufner, 1990).

Recently, the integral form Hardy inequality had been extended
to Hardy spaces on R. In Ho (2016), the Hardy inequalities in Hardy
spaces are established by using the atomic decompositions of
Hardy spaces. This method is also used in Ho (2016, 2017a,b) to
study the Hardy inequalities on Hardy-Morrey spaces with variable
exponents and weak Hardy-Morrey spaces.

In this paper, we use the idea from Ho (2016) to obtain the
above generalization (1) of Hardy’s inequality to 0 < p 6 1.

To apply the method in Ho (2016), we need to consider the dis-
crete analogue of the classical Hardy spaces on R. The discrete
Hardy spaces had been introduced in Boza and Carro (1998,
2002). Moreover, the atomic decompositions of the discrete Hardy
spaces were also obtained in Boza and Carro (1998, 2002). These
atomic decomposition are precisely what we need to establish
the discrete Hardy inequality with 0 < p 6 1.

Thus, on one hand, we extend the classical discrete Hardy
inequalities to 0 < p 6 1, on the other hand, the main result of this
paper gives an application of the atomic decompositions estab-
lished in Boza and Carro (1998, 2002).

This paper is organized as follows. In Section 2, we recall the
definition of the discrete Hardy spaces. The atomic decompositions
for the discrete Hardy spaces are also presented in this section. The
discrete Hardy inequalities with 0 < p 6 1 are established in
Section 3.

2. Discrete Hardy spaces

In this section, we first recall the definition of the discrete Hardy
spaces by discrete Hilbert transform on Z.

For any sequence a ¼ aðnÞf gn2Z, the discrete Hilbert transform
of a is defined by

ðHdaÞðmÞ ¼
X
n–m

aðnÞ
m� n

:

For any B � Z, let jBj denote the cardinality of B.
We use the definition of discrete Hardy spaces from (Boza and

Carro, 1998, Definition 3.1).

Definition 2.1. Let 0 < p 6 1. The discrete Hardy spaces HpðZÞ
consists of those sequence a ¼ aðnÞf gn2Z satisfying
kakHpðZÞ ¼ kaklpðZÞ þ kHdaklpðZÞ < 1:

In view of the above definition, we see the reason why the sec-
ond summation on the left hand side of (1) is taking over Z.

We now present the atomic characterization of HpðZÞ, we begin
with the definition of HpðZÞ-atom (Boza and Carro, 1998, Definition
3.9).
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Definition 2.2. Let 0 < p 6 1. A sequence a ¼ aðkÞf gk2Z is an
HpðZÞ-atom if it satisfies

(1) supp a is contained in a ball in Z of cardinality 2nþ 1;n P 1.

(2) kakl1ðZÞ 6 2nþ 1ð Þ�1=p.

(3)
P

n2Zn
aaðnÞ ¼ 0 for every a 2 N with a 6 1

p � 1.

To present the atomic decomposition of HpðZÞ, we recall the
atomic version of HpðZÞ from (Boza and Carro, 1998, p.43).

Definition 2.3. Let 0 < p 6 1. The atomic discrete Hardy space
Hp

atðZÞ consists of those sequence a ¼ aðnÞf gn2Z such that

a ¼
X
j2N

kjaj

where aj are HpðZÞ-atoms and

kakHp
atðZÞ ¼ inf
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jkjjp
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p

8<
:
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;

where the infimum is taken over all possible representations of a in
terms of HpðZÞ-atoms.

The following result gives the atomic decomposition of HpðZÞ.

Theorem 1. Let 0 < p 6 1. Then, there exist constants B;C > 0 such
that for any sequence a ¼ aðnÞf gn2Z, we have

BkakHpðZÞ 6 kakHp
atðZÞ 6 CkakHpðZÞ:

The reader is referred to (Boza and Carro, 1998, Theorems 3.10
and 3.14) for the proof of the above theorem.

We can also characterize discrete Hardy spaces by using Poisson
integral and area functions, see (Boza and Carro, 1998, Theorems
3.4 and 3.8). The reader is also referred to Boza (2012) and
Kanjin and Satake (2000), Komori (2002) for the factorization the-
orem and the molecular characterizations of discrete Hardy spaces,
respectively.

The reader is also referred to Herz (1973), Ho (2009, 2012), Jiao
et al. (2017), Weisz (1994) for some other applications of the
atomic decompositions such as the characterizations of BMO and
martingale BMO.

3. Hardy’s inequalities

We establish the main result of this paper in this section. We
first introduce the Hardy operators in order to simplify our presen-
tation. For any a 2 N [ f0g and l > 0, define

ðTa;laÞðmÞ ¼ 1
ma�lþ1

Xm
j¼1

jaaðjÞ; m 2 N:

Notice that when a ¼ l ¼ 0, we have

ðT0;0aÞðmÞ ¼ 1
m

Xm
j¼1

aðjÞ: ð2Þ

It is precisely the Hardy-Littlewood average for the sequence
a ¼ aðkÞf g1k¼1.

We are now ready to present the main result of this paper, the
mapping properties of Ta;l on discrete Hardy spaces HpðZÞ.

Theorem 2. Let 0 < p 6 1 and 0 6 l < 1. Suppose that a 2 N [ f0g
satisfies a 6 1

p � 1. If
1
p
¼ 1

r
þ l; ð3Þ

then there exists a constant C > 0 such that for any sequence a 2 HpðZÞ
with support contained in N, we have

kTa;laklrðNÞ 6 CkakHpðZÞ:

When 0 < p 6 1 and a ¼ l ¼ 0, we have p ¼ r and the above
theorem yields

kT0;0aklpðNÞ 6 CkakHpðZÞ:

In view of (2), it establishes the discrete Hardy inequality (1).
We need several supporting results to obtain the proof of The-

orem 2. We start with the mapping property of Ta;l on HpðZÞ-
atoms.

Lemma 3. Let 0 < p 6 1, 0 6 l < 1 and a 2 N [ f0g with a 6 1
p � 1.

Suppose that

1
q
� 1

r
< l 6 1

q

for some q > 1. If a ¼ aðnÞf gn2Z satisfies

(1) suppa is contained in a ball B in N n f0g of cardinality
2nþ 1;n P 1,

(2) kakl1ðNÞ 6 2nþ 1ð Þ�1=p,
(3)

P1
n¼0n

aaðnÞ ¼ 0,

then, we have

kTa;laklrðNÞ 6 CjBjlþ1
r�1

p:
Proof. Let B ¼ fi 2 N : M 6 i 6 Ng;M;N 2 N. We have
jBj ¼ N �M þ 1. For any i < M, we have

ðTa;laÞðiÞ ¼ 1

ia�lþ1

Xi

j¼1
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Similarly, for any i > N, Items (1) and (3) assure that

ðTa;laÞðiÞ ¼ 1

ia�lþ1

Xi
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jaaðjÞ ¼ 1
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X
j2N
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Therefore, we find that suppðTa;laÞ#B.
The Hölder inequality yields
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for some C > 0. Therefore,

jðTa;laÞðmÞj 6 C
1

ma�lþ1 kaklqmaþ1
q0 ¼ Cml�1
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Furthermore, as suppðTa;laÞ#B and l 6 1
q, we obtain
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Hence,

kTa;laklr 6 Ckaklq jBjl�
r
qþ1

r 6 Ckakl1 jBj
1
qjBjl�1

qþ1
r 6 CjBjlþ1

r�1
p

for some C > 0. h

Lemma 3 applies to those HpðZÞ-atom a ¼ aðnÞf gn2Z with sup-
port in N n f0g. On the other hand, for any a 2 HpðZÞ with support
in N n f0g; a does not necessarily possess an atomic decomposition
with all the HpðZÞ-atoms supported in N n f0g. To tackle this diffi-
culty, we consider the odd and the even extensions of a 2 HpðZÞ.

For any sequence a ¼ aðnÞf gn2Z, the even part of a and the odd
part of a, denoted by ae and ao, are defined by

ae ¼ aðnÞ þ að�nÞ
2

� �
n2Z

and ao ¼ aðnÞ � að�nÞ
2

� �
n2Z

;

respectively.
As the even part is a ‘‘reflection” about k ¼ 0, the term að0Þ will

be counted twice in the even part. Thus, for the case when a equals
to zero, we need some further modifications. The details of these
modifications and the uses of the even and odd parts are given in
the subsequent results.

Lemma 4. Let 0 < p 6 1 and a 2 N [ f0gwith a 6 1
p � 1. If a 2 HpðZÞ

with suppa � N n f0g, then there exist a sequence of scalars kj
� �

j2N
and sequences aj

� �
j2N satisfying

(1) supp aj is contained in a ball in N n f0g of cardinality
2nþ 1;n P 1,

(2) kajkl1ðZÞ 6 2 2nþ 1ð Þ�1=p,
(3)

P1
n¼0n

aajðnÞ ¼ 0,

such that a ¼Pj2Nkjaj and

X
j2N

jkjjp
 !1=p

6 CkakHpðZÞ:
Proof. In view of Theorem 1, we have a sequence of scalars kj
� �

j2N
and HpðZÞ-atoms aj

� �
j2N such that a ¼Pj2Nkjaj andP

j2Njkjjp
�1=p

6 CkakHpðZÞ.

We split the proof into three cases, a is a positive even integer, a
is a positive odd integer and a equals zero.

(i) a is a positive even integer. We consider the even part of a,
aeðkÞ ¼
X
j2N

kj
ajðkÞ þ ajð�kÞ

2

� 	
:

Since suppa � N n f0g, we have a ¼ 2aevNnf0g. That is,

aðkÞ ¼
X
j2N

kjðajðkÞ þ ajð�kÞÞvNnf0gðkÞ:

Write Aj ¼ AjðkÞ
� �

k2Z where AjðkÞ ¼ ðajðkÞ þ ajð�kÞÞvNnf0gðkÞ.
We are going to show that Aj fulfills Item (1)–(3).
As a is even, we find thatX
k2Z

kaajðkÞ ¼
X
k2Z

kaajð�kÞ ¼ 0:

If suppaj � N n f0g;Aj ¼ aj satisfies Item (1)–(3). If
suppaj � Z n ðN [ f0gÞ, then Ajð�Þ ¼ ajð��Þ also satisfies Item
(1)–(3).
If 0 2 suppaj, we find that
X1
n¼0

naAjðnÞ ¼
X1
n¼0

naðajðnÞ þ ajð�nÞÞ ¼
X
n2Z

naajðnÞ ¼ 0

because a is a positive even integer.

We have kAjkl1ðNÞ 6 2kajkl1ðNÞ. Moreover, suppAj # ðsuppaj[
suppajð��ÞÞ \ ðN n f0gÞ. Hence, jsuppAjj 6 jsuppajj.
Consequently, Aj fulfills Item (1)–(3).
(ii) a is a positive odd integer. We consider the odd part of a,
aoðkÞ ¼
X
j2N

kj
ajðkÞ � ajð�kÞ

2

� 	
:

Since suppa � N n f0g, we have a ¼ 2aovNnf0g. That is,

aðkÞ ¼
X
j2N

kjðajðkÞ � ajð�kÞÞvNnf0gðkÞ:

Write Aj ¼ AjðkÞ
� �

k2Z where AjðkÞ ¼ ðajðkÞ � ajð�kÞÞvNnf0gðkÞ.
As a is odd, we find thatX
k2Z

kaajðkÞ ¼ �
X
k2Z

kaajð�kÞ ¼ 0:

If suppaj � N n f0g;Aj ¼ aj satisfies Item (1)–(3). If
suppaj � Z n ðN [ f0gÞ, then Ajð�Þ ¼ ajð��Þ also satisfies Item
(1)–(3).
If 0 2 suppaj, we find that

X1
n¼0

naAjðnÞ ¼
X1
n¼0

naðajðnÞ � ajð�nÞÞ ¼
X
n2Z

naajðnÞ ¼ 0

because a is a positive odd integer.
Therefore, Aj fulfills Item (1)–(3).
(ii) a equals to zero. In this case, we also consider the even part
of a,
aeðkÞ ¼
X
j2N

kj
ajðkÞ þ ajð�kÞ

2

� 	
:

Write

bjðkÞ ¼
ajðkÞ; k– 0;
ajð0Þ
2 ; k ¼ 0:

(

When k– 0, we obviously have

aeðkÞ ¼
X
j2N

kj
ajðkÞ þ ajð�kÞ

2

� 	
¼
X
j2N

kj
bjðkÞ þ bjð�kÞ

2

� 	
:

Since suppa � N n f0g, we have

að0Þ ¼
X
j2N

kjajð0Þ ¼ 0:

Therefore, for k ¼ 0, we have

aeð0Þ ¼ að0Þ ¼ 0 ¼
X
j2N

kjajð0Þ ¼
X
j2N

kj
bjð0Þ þ bjð0Þ

2

� 	
:

As suppa � N n f0g, we have a ¼ 2aevNnf0g. That is,

aðkÞ ¼
X
j2N

kjðbjðkÞ þ bjð�kÞÞvNnf0gðkÞ:

Write Bj ¼ BjðkÞ
� �

k2Z where BjðkÞ ¼ ðbjðkÞ þ bjð�kÞÞvNnf0gðkÞ.
It remains to show that Bj satisfies Item (1)–(3).
When suppaj � N n f0g;Bj ¼ aj satisfies Item (1)–(3). When
suppaj � Z n ðN [ f0gÞ, then Bjð�Þ ¼ ajð��Þ also satisfies Item
(1)–(3).
If 0 2 suppaj, we find that
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X1
n¼0

BjðnÞ ¼
X1

n¼0
ðbjðnÞ þ bjð�nÞÞ ¼
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ajðnÞ þ
X�1

n¼�1
ajðnÞ

 !

þ 2bjð0Þ ¼
X

n2ZajðnÞ ¼ 0:

Thus, Bj fulfills Item (1)–(3). h
Proof of Theorem 2.
In view of Lemma 4, for any a 2 HpðZÞ with suppa � N n f0g,

there exist a sequence of scalars kj
� �

j2N and aj
� �

j2N satisfying.

(1) supp aj is contained in a ball in N n f0g of cardinality
2nþ 1; n P 1,

(2) kajkl1ðZÞ 6 2 2nþ 1ð Þ�1=p,
(3)

P1
n¼0n

aajðnÞ ¼ 0,

such that a ¼Pj2Nkjaj and

X
j2N

jkjjp
 !1=p

6 CkakHpðZÞ: ð4Þ

When 0 < r 6 1, Lemma 3 and (3) assure that

kTa;lakrlr ðNÞ 6
X
j2N

jkjjrkTa;lajkrlrðNÞ 6 C
X
j2N

jkjjr

for some C > 0. Furthermore, (3) also guarantees that r > p. Thus,
(4) yields

kTa;laklr ðNÞ 6 C
X
j2N

jkjjr
 !1=r

6 C
X
j2N

jkjjp
 !1=p

¼ CkakHpðZÞ

for some C > 0.
When r > 1, we have

kTa;laklrðNÞ 6
X

j2NjkjjkTa;lajklrðNÞ 6 C
X
j2N

jkjj

6C
X
j2N

jkjjp
 !1=p

¼ CkakHpðZÞ

because 0 < p 6 1. h
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