Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/10183647)

Journal of King Saud University – Science

journal homepage: www.sciencedirect.com

Original article Discrete Hardy's inequalities with $0 < p \le 1$

Kwok-Pun Ho

Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China

article info

ABSTRACT

Article history: Received 23 February 2017 Accepted 19 March 2017 Available online 22 March 2017 We generalize the famous discrete Hardy inequality to $0 < p \leq 1$. We obtain this generalization by using the atomic decompositions of the discrete Hardy spaces. 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

1. Introduction

The main theme of this paper is the following discrete Hardy inequalities.

Let $0 < p \leq 1$. There exists a constant $C > 0$ such that for any sequence $a = \{a(n)\}_{n \in \mathbb{Z}}$ with $a(-n) = 0, n \in \mathbb{N} \cup \{0\}$, we have

$$
\left(\sum_{m\in\mathbb{N}}\left(\frac{1}{m}\sum_{j=1}^{m}a(j)\right)^{p}\right)^{\frac{1}{p}}\leqslant C\left(\sum_{m\in\mathbb{N}}|a(m)|^{p}+\sum_{\substack{m\neq n}}\left|\sum_{j\neq m}\frac{a(j)}{m-j}\right|^{p}\right)^{\frac{1}{p}}.\tag{1}
$$

The family of Hardy inequalities, which consists of the discrete form and the integral form, is one of the most important inequalities in analysis. For the history of the Hardy inequalities, the reader is referred to [Kufner et al. \(2006, 2007\)](#page-3-0). For the applications and further developments of this famous inequality, the reader may consult [\(Kufner et al., 2007; Kufner and Persson, 2003; Opic](#page-3-0) [and Kufner, 1990\)](#page-3-0).

Recently, the integral form Hardy inequality had been extended to Hardy spaces on $\mathbb R$. In [Ho \(2016\)](#page-3-0), the Hardy inequalities in Hardy spaces are established by using the atomic decompositions of Hardy spaces. This method is also used in [Ho \(2016, 2017a,b\)](#page-3-0) to study the Hardy inequalities on Hardy-Morrey spaces with variable exponents and weak Hardy-Morrey spaces.

In this paper, we use the idea from $Ho(2016)$ to obtain the above generalization (1) of Hardy's inequality to $0 < p \leq 1$.

To apply the method in [Ho \(2016\)](#page-3-0), we need to consider the discrete analogue of the classical Hardy spaces on R. The discrete Hardy spaces had been introduced in [Boza and Carro \(1998,](#page-3-0) [2002\)](#page-3-0). Moreover, the atomic decompositions of the discrete Hardy

E-mail address: vkpho@eduhk.hk

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier ELSEVIER

spaces were also obtained in [Boza and Carro \(1998, 2002\).](#page-3-0) These atomic decomposition are precisely what we need to establish the discrete Hardy inequality with $0 < p \leq 1$.

Thus, on one hand, we extend the classical discrete Hardy inequalities to $0 < p \leq 1$, on the other hand, the main result of this paper gives an application of the atomic decompositions established in [Boza and Carro \(1998, 2002\).](#page-3-0)

This paper is organized as follows. In Section 2, we recall the definition of the discrete Hardy spaces. The atomic decompositions for the discrete Hardy spaces are also presented in this section. The discrete Hardy inequalities with $0 < p \le 1$ are established in Section [3](#page-1-0).

2. Discrete Hardy spaces

In this section, we first recall the definition of the discrete Hardy spaces by discrete Hilbert transform on \mathbb{Z} .

For any sequence $a = {a(n)}_{n \in \mathbb{Z}}$, the discrete Hilbert transform of a is defined by

$$
(H^d a)(m) = \sum_{n \neq m} \frac{a(n)}{m - n}.
$$

For any $B \subset \mathbb{Z}$, let |B| denote the cardinality of B.

We use the definition of discrete Hardy spaces from ([Boza and](#page-3-0) [Carro, 1998,](#page-3-0) Definition 3.1).

Definition 2.1. Let $0 < p \le 1$. The discrete Hardy spaces $H^p(\mathbb{Z})$ consists of those sequence $g = \{g(n)\}$ satisfying consists of those sequence $a = {a(n)}_{n \in \mathbb{Z}}$ satisfying

 $||a||_{H^p(\mathbb{Z})} = ||a||_{L^p(\mathbb{Z})} + ||H^da||_{L^p(\mathbb{Z})} < \infty.$

In view of the above definition, we see the reason why the second summation on the left hand side of (1) is taking over \mathbb{Z} .

We now present the atomic characterization of $H^p(\mathbb{Z})$, we begin
the definition of $H^p(\mathbb{Z})$, atom (Bozz and Carro, 1008, Definition with the definition of $H^p(\mathbb{Z})$ -atom ([Boza and Carro, 1998](#page-3-0), Definition
3.0) 3.9).

<http://dx.doi.org/10.1016/j.jksus.2017.03.007>

1018-3647/ 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University.

CrossMark

This is an open access article under the CC BY-NC-ND license ([http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

Definition 2.2. Let $0 < p \le 1$. A sequence $a = \{a(k)\}_{k \in \mathbb{Z}}$ is an $H^p(\mathbb{Z})$ -atom if it satisfies

(1) supp *a* is contained in a ball in $\mathbb Z$ of cardinality $2n + 1, n \ge 1$.

(2) $||a||_{l^{\infty}(\mathbb{Z})} \leq (2n+1)^{-1/p}$.

(3) $\sum_{n\in\mathbb{Z}} n^{\alpha}a(n) = 0$ for every $\alpha \in \mathbb{N}$ with $\alpha \leq \frac{1}{p} - 1$.

To present the atomic decomposition of $H^p(\mathbb{Z})$, we recall the mis version of $H^p(\mathbb{Z})$ from (Bozz and Carro 1008, p.42) atomic version of $H^p(\mathbb{Z})$ from [\(Boza and Carro, 1998,](#page-3-0) p.43).

Definition 2.3. Let $0 < p \le 1$. The atomic discrete Hardy space $H_{\text{at}}^p(\mathbb{Z})$ consists of those sequence $a = \{a(n)\}_{n \in \mathbb{Z}}$ such that

$$
a=\sum_{j\in\mathbb{N}}\lambda_j a_j
$$

where a_j are $H^p(\mathbb{Z})$ -atoms and

$$
\|a\|_{H^{p}_{\text{at}}(\mathbb{Z})}=\inf\left\{\left(\sum_{j\in\mathbb{N}}|\lambda_j|^p\right)^{\frac{1}{p}}\right\}
$$

where the infimum is taken over all possible representations of a in terms of $H^p(\mathbb{Z})$ -atoms.

The following result gives the atomic decomposition of $H^p(\mathbb{Z})$.

Theorem 1. Let $0 < p \le 1$. Then, there exist constants B, $C > 0$ such that for any sequence $a = \{a(n)\}_{n \in \mathbb{Z}}$, we have

$$
B||a||_{H^p(\mathbb{Z})}\leqslant ||a||_{H^p_{\rm at}(\mathbb{Z})}\leqslant C||a||_{H^p(\mathbb{Z})}.
$$

The reader is referred to [\(Boza and Carro, 1998](#page-3-0), Theorems 3.10 and 3.14) for the proof of the above theorem.

We can also characterize discrete Hardy spaces by using Poisson integral and area functions, see [\(Boza and Carro, 1998,](#page-3-0) Theorems 3.4 and 3.8). The reader is also referred to [Boza \(2012\)](#page-3-0) and [Kanjin and Satake \(2000\), Komori \(2002\)](#page-3-0) for the factorization theorem and the molecular characterizations of discrete Hardy spaces, respectively.

The reader is also referred to [Herz \(1973\), Ho \(2009, 2012\), Jiao](#page-3-0) [et al. \(2017\), Weisz \(1994\)](#page-3-0) for some other applications of the atomic decompositions such as the characterizations of BMO and martingale BMO.

3. Hardy's inequalities

We establish the main result of this paper in this section. We first introduce the Hardy operators in order to simplify our presentation. For any $\alpha \in \mathbb{N} \cup \{0\}$ and $\mu > 0$, define

$$
(T_{\alpha,\mu}a)(m)=\frac{1}{m^{\alpha-\mu+1}}\sum_{j=1}^m j^{\alpha}a(j),\quad m\in\mathbb{N}.
$$

Notice that when $\alpha = \mu = 0$, we have

$$
(T_{0,0}a)(m) = \frac{1}{m} \sum_{j=1}^{m} a(j).
$$
 (2)

It is precisely the Hardy-Littlewood average for the sequence $a = \{a(k)\}_{k=1}^{\infty}$.
Me are no

We are now ready to present the main result of this paper, the mapping properties of $T_{\alpha,\mu}$ on discrete Hardy spaces $H^p(\mathbb{Z})$.

Theorem 2. Let $0 < p \le 1$ and $0 \le \mu < 1$. Suppose that $\alpha \in \mathbb{N} \cup \{0\}$ satisfies $\alpha \leqslant \frac{1}{p}-1$. If

$$
\frac{1}{p} = \frac{1}{r} + \mu,\tag{3}
$$

then there exists a constant $C > 0$ such that for any sequence $a \in H^p(\mathbb{Z})$
with support contained in N, we have with support contained in \mathbb{N} , we have

$$
||T_{\alpha,\mu}a||_{l^r(\mathbb{N})}\leqslant C||a||_{H^p(\mathbb{Z})}.
$$

When $0 < p \le 1$ and $\alpha = \mu = 0$, we have $p = r$ and the above theorem yields

$$
||T_{0,0}a||_{l^p(\mathbb{N})}\leqslant C||a||_{H^p(\mathbb{Z})}.
$$

In view of (2) , it establishes the discrete Hardy inequality (1) . We need several supporting results to obtain the proof of Theorem 2. We start with the mapping property of $T_{\alpha,\mu}$ on $H^p(\mathbb{Z})$ atoms.

Lemma 3. Let $0 < p \leq 1$, $0 \leq \mu < 1$ and $\alpha \in \mathbb{N} \cup \{0\}$ with $\alpha \leq \frac{1}{p} - 1$. Suppose that

$$
\frac{1}{q}-\frac{1}{r}<\mu\leqslant\frac{1}{q}
$$

for some $q > 1$. If $a = \{a(n)\}_{n \in \mathbb{Z}}$ satisfies

(1) suppa is contained in a ball B in $\mathbb{N} \setminus \{0\}$ of cardinality $2n + 1, n \ge 1$,

(2)
$$
||a||_{l^{\infty}(\mathbb{N})} \leq (2n+1)^{-1/p}
$$
,

$$
(3) \sum_{n=0}^{\infty} n^{\alpha} a(n) = 0,
$$

then, we have

$$
||T_{\alpha,\mu}a||_{l^{r}(\mathbb{N})}\leqslant C|B|^{\mu+\frac{1}{r}-\frac{1}{p}}.
$$

Proof. Let $B = \{i \in \mathbb{N} : M \leq i \leq N\}$, $M, N \in \mathbb{N}$. We have $|B| = N - M + 1$. For any $i < M$, we have

$$
(T_{\alpha,\mu}a)(i) = \frac{1}{i^{\alpha-\mu+1}}\sum_{j=1}^i j^{\alpha}a(j) = 0.
$$

Similarly, for any $i > N$, Items (1) and (3) assure that

$$
(T_{\alpha,\mu}a)(i)=\frac{1}{i^{\alpha-\mu+1}}\sum_{j=1}^i j^\alpha a(j)=\frac{1}{i^{\alpha-\mu+1}}\sum_{j\in\mathbb{N}}j^\alpha a(j)=0.
$$

Therefore, we find that $supp(T_{\alpha,\mu}a) \subseteq B$. The Hölder inequality yields

$$
\left|\sum_{j=1}^m j^{\alpha}a(j)\right|\leqslant \left(\sum_{j=1}^m |a(j)|^q\right)^{1/q} \left(\sum_{j=1}^m j^{\alpha q}\right)^{1/q'}\leqslant C\|a\|_{l^q} m^{\alpha+\frac{1}{q}}
$$

for some $C > 0$. Therefore,

$$
|(T_{\alpha,\mu}a)(m)|\leqslant C\frac{1}{m^{\alpha-\mu+1}}\|a\|_{\ell^1}m^{\alpha+\frac{1}{q'}}=Cm^{\mu-\frac{1}{q}}\|a\|_{\ell^q}.
$$

Furthermore, as $\text{supp}(T_{\alpha,\mu}a) \subseteq B$ and $\mu \leq \frac{1}{q}$, we obtain

$$
||T_{\alpha,\mu}a||_{l^r}^r \leq C||a||_{l^q}^r \sum_{m=M}^N m^{r\mu-\frac{r}{q}} \leq C \int_M^{N+1} x^{r\mu-\frac{r}{q}} dx
$$

$$
\leq C||a||_{l^q}^r (N^{r\mu-\frac{r}{q}+1} - M^{r\mu-\frac{r}{q}+1}).
$$

Since $\frac{1}{q} - \frac{1}{r} < \mu \leq \frac{1}{q}$, we find that $0 < r\mu - \frac{r}{q} + 1 \leq 1$. Consequently,

:

$$
(N^{r\mu-\frac{r}{q}+1}-M^{r\mu-\frac{r}{q}+1})\leq (N-M)^{r\mu-\frac{r}{q}+1}\leq |B|^{r\mu-\frac{r}{q}+1}
$$

;

Hence,

$$
||T_{\alpha,\mu}a||_r \leq C||a||_r|B|^{\mu-\frac{r}{q}+\frac{1}{r}} \leq C||a||_{r^{\infty}}|B|^{\frac{1}{q}}|B|^{\mu-\frac{1}{q}+\frac{1}{r}} \leq C|B|^{\mu+\frac{1}{r}-\frac{1}{p}}
$$

for some $C > 0$. \square

[Lemma 3](#page-1-0) applies to those $H^p(\mathbb{Z})$ -atom $a = \{a(n)\}_{n \in \mathbb{Z}}$ with sup-
t in $\mathbb{N} \setminus \{0\}$. On the other hand, for any $a \in H^p(\mathbb{Z})$ with support port in $\mathbb{N} \setminus \{0\}$. On the other hand, for any $a \in H^p(\mathbb{Z})$ with support in $\mathbb{N} \setminus \{0\}$ a does not necessarily possess an atomic decomposition in $\mathbb{N} \setminus \{0\}$, a does not necessarily possess an atomic decomposition with all the $H^p(\mathbb{Z})$ -atoms supported in $\mathbb{N} \setminus \{0\}$. To tackle this diffi-
Gulty, we consider the odd and the over extensions of $g \in H^p(\mathbb{Z})$ culty, we consider the odd and the even extensions of $a \in H^p(\mathbb{Z})$.
For any sequence $a = \{a(n)\}$ the even part of g and the od

For any sequence $a = \{a(n)\}_{n \in \mathbb{Z}}$, the even part of a and the odd part of a, denoted by a_e and a_o , are defined by

$$
a_e = \left\{\frac{a(n) + a(-n)}{2}\right\}_{n \in \mathbb{Z}} \quad \text{and} \quad a_o = \left\{\frac{a(n) - a(-n)}{2}\right\}_{n \in \mathbb{Z}}
$$

respectively.

As the even part is a "reflection" about $k = 0$, the term $a(0)$ will be counted twice in the even part. Thus, for the case when α equals to zero, we need some further modifications. The details of these modifications and the uses of the even and odd parts are given in the subsequent results.

Lemma 4. Let $0 < p \le 1$ and $\alpha \in \mathbb{N} \cup \{0\}$ with $\alpha \le \frac{1}{p} - 1$. If $a \in H^p(\mathbb{Z})$ with suppa $\subset \mathbb{N} \setminus \{0\}$, then there exist a sequence of scalars $\{\lambda_j\}_{j\in\mathbb{N}}$ and sequences $\left\{a_{j}\right\}_{j\in\mathbb{N}}$ satisfying

- (1) supp a_i is contained in a ball in $\mathbb{N}\setminus\{0\}$ of cardinality $2n + 1, n \ge 1$,
- (2) $||a_j||_{l^{\infty}(\mathbb{Z})} \leq 2(2n+1)^{-1/p},$
- (3) $\sum_{n=0}^{\infty} n^{\alpha} a_j(n) = 0$,

such that $a = \sum_{j \in \mathbb{N}} \lambda_j a_j$ and

$$
\left(\sum_{j\in\mathbb{N}}|\lambda_j|^p\right)^{1/p}\leqslant C\|a\|_{H^p(\mathbb{Z})}.
$$

Proof. In view of [Theorem 1](#page-1-0), we have a sequence of scalars $\{\lambda_j\}_{j\in\mathbb{N}}$ and $H^p(\mathbb{Z})$ -atoms $\{a_j\}_{j \in \mathbb{N}}$ such that $a = \sum_{j \in \mathbb{N}} \lambda_j a_j$ and $\sum_{j\in\mathbb{N}}|\lambda_j|^p\bigg)^{1/p}\leqslant C\|a\|_{H^p(\mathbb{Z})}.$

We split the proof into three cases, α is a positive even integer, α is a positive odd integer and α equals zero.

(i) α is a positive even integer. We consider the even part of a ,

$$
a_e(k) = \sum_{j \in \mathbb{N}} \lambda_j \left(\frac{a_j(k) + a_j(-k)}{2} \right).
$$

Since suppa $\subset \mathbb{N} \setminus \{0\}$, we have $a = 2a_e\chi_{\mathbb{N}\setminus\{0\}}$. That is,

$$
a(k)=\sum_{j\in\mathbb{N}}\lambda_j(a_j(k)+a_j(-k))\chi_{\mathbb{N}\setminus\{0\}}(k).
$$

Write $A_j = \{A_j(k)\}_{k \in \mathbb{Z}}$ where $A_j(k) = (a_j(k) + a_j(-k))\chi_{\mathbb{N}\setminus\{0\}}(k)$. We are going to show that A_j fulfills Item (1)–(3). As α is even, we find that

$$
\sum_{k\in\mathbb{Z}}k^{\alpha}a_j(k)=\sum_{k\in\mathbb{Z}}k^{\alpha}a_j(-k)=0.
$$

If supp $a_i \subset \mathbb{N} \setminus \{0\}, A_i = a_j$ satisfies Item (1)–(3). If $\sup p a_j \subset \mathbb{Z} \setminus (\mathbb{N} \cup \{0\}),$ then $A_j(\cdot) = a_j(-\cdot)$ also satisfies Item $(1)-(3)$.

If $0 \in \text{supp}a_i$, we find that

$$
\sum_{n=0}^{\infty} n^{\alpha} A_j(n) = \sum_{n=0}^{\infty} n^{\alpha} (a_j(n) + a_j(-n)) = \sum_{n \in \mathbb{Z}} n^{\alpha} a_j(n) = 0
$$

because α is a positive even integer.

We have $||A_j||_{l^{\infty}(N)} \leq 2||a_j||_{l^{\infty}(N)}$. Moreover, supp $A_j \subseteq (suppa_j \cup$ $suppa_j(-\cdot) \cap (\mathbb{N} \setminus \{0\})$. Hence, $|suppA_j| \leq |supp a_j|$.
Consequently, 4 fulfills Item (1) (3) Consequently, A_i fulfills Item (1)–(3).

(ii) α is a positive odd integer. We consider the odd part of a ,

$$
a_o(k) = \sum_{j \in \mathbb{N}} \lambda_j \left(\frac{a_j(k) - a_j(-k)}{2} \right).
$$

Since suppa $\subset \mathbb{N} \setminus \{0\}$, we have $a = 2a_0 \chi_{\mathbb{N} \setminus \{0\}}$. That is,

$$
a(k)=\sum_{j\in\mathbb{N}}\lambda_j(a_j(k)-a_j(-k))\chi_{\mathbb{N}\setminus\{0\}}(k).
$$

Write $A_j = \{A_j(k)\}_{k \in \mathbb{Z}}$ where $A_j(k) = (a_j(k) - a_j(-k))\chi_{\mathbb{N}\setminus\{0\}}(k)$. As α is odd, we find that

$$
\sum_{k\in\mathbb{Z}}k^{\alpha}a_j(k)=-\sum_{k\in\mathbb{Z}}k^{\alpha}a_j(-k)=0.
$$

If supp $a_j \subset \mathbb{N} \setminus \{0\}$, $A_j = a_j$ satisfies Item (1)–(3). If supp $a_j \subset \mathbb{Z} \setminus (\mathbb{N} \cup \{0\})$, then $A_j(\cdot) = a_j(-\cdot)$ also satisfies Item $(1)–(3)$.

If $0 \in \text{supp}a_i$, we find that

$$
\sum_{n=0}^{\infty} n^{\alpha} A_j(n) = \sum_{n=0}^{\infty} n^{\alpha} (a_j(n) - a_j(-n)) = \sum_{n \in \mathbb{Z}} n^{\alpha} a_j(n) = 0
$$

because α is a positive odd integer. Therefore, A_i fulfills Item (1)–(3).

(ii) α equals to zero. In this case, we also consider the even part of a,

$$
a_e(k) = \sum_{j \in \mathbb{N}} \lambda_j \bigg(\frac{a_j(k) + a_j(-k)}{2} \bigg).
$$

Write

$$
b_j(k) = \begin{cases} a_j(k), & k \neq 0, \\ \frac{a_j(0)}{2}, & k = 0. \end{cases}
$$

When $k \neq 0$, we obviously have

$$
a_e(k) = \sum_{j \in \mathbb{N}} \lambda_j \left(\frac{a_j(k) + a_j(-k)}{2} \right) = \sum_{j \in \mathbb{N}} \lambda_j \left(\frac{b_j(k) + b_j(-k)}{2} \right).
$$

Since suppa $\subset \mathbb{N} \setminus \{0\}$, we have

$$
a(0)=\underset{j\in\mathbb{N}}{\sum}\lambda_j a_j(0)=0.
$$

Therefore, for $k = 0$, we have

$$
a_e(0) = a(0) = 0 = \sum_{j \in \mathbb{N}} \lambda_j a_j(0) = \sum_{j \in \mathbb{N}} \lambda_j \left(\frac{b_j(0) + b_j(0)}{2} \right).
$$

As suppa $\subset \mathbb{N} \setminus \{0\}$, we have $a = 2a_e\chi_{\mathbb{N}\setminus\{0\}}$. That is,

$$
a(k) = \sum_{j \in \mathbb{N}} \lambda_j(b_j(k) + b_j(-k)) \chi_{\mathbb{N} \setminus \{0\}}(k).
$$

Write $B_j = \{B_j(k)\}_{k \in \mathbb{Z}}$ where $B_j(k) = (b_j(k) + b_j(-k))\chi_{\mathbb{N}\setminus\{0\}}(k)$. It remains to show that B_i satisfies Item (1)–(3).

When supp $a_i \subset \mathbb{N} \setminus \{0\}$, $B_i = a_i$ satisfies Item (1)–(3). When supp $a_j \subset \mathbb{Z} \setminus (\mathbb{N} \cup \{0\})$, then $B_j(\cdot) = a_j(-\cdot)$ also satisfies Item $(1)–(3)$.

If $0 \in \text{supp}a_i$, we find that

$$
\sum_{n=0}^{\infty} B_j(n) = \sum_{n=0}^{\infty} (b_j(n) + b_j(-n)) = \left(\sum_{n=1}^{\infty} a_j(n) + \sum_{n=-\infty}^{-1} a_j(n)\right) + 2b_j(0) = \sum_{n \in \mathbb{Z}} a_j(n) = 0.
$$

Thus, B_i fulfills Item (1)–(3). \Box

Proof of [Theorem 2](#page-1-0).

In view of [Lemma 4](#page-2-0), for any $a \in H^p(\mathbb{Z})$ with suppa $\subset \mathbb{N} \setminus \{0\}$, require a sequence of scalars $\{1\}$, and $\{a\}$, extisting there exist a sequence of scalars $\left\{\lambda_j\right\}_{j\in\mathbb{N}}$ and $\left\{a_j\right\}_{j\in\mathbb{N}}$ satisfying.

- (1) supp a_i is contained in a ball in $\mathbb{N}\setminus\{0\}$ of cardinality $2n + 1, n \ge 1$,
- (2) $||a_j||_{l^{\infty}(\mathbb{Z})} \leq 2(2n+1)^{-1/p}$,
- (3) $\sum_{n=0}^{\infty} n^{\alpha} a_j(n) = 0$,

such that $a = \sum_{j \in \mathbb{N}} \lambda_j a_j$ and

$$
\left(\sum_{j\in\mathbb{N}}|\lambda_j|^p\right)^{1/p}\leqslant C\|a\|_{H^p(\mathbb{Z})}.\tag{4}
$$

When $0 < r \leq 1$, [Lemma 3](#page-1-0) and [\(3\)](#page-1-0) assure that

$$
\|T_{\alpha,\mu}a\|_{I(\mathbb{N})}^r\leqslant \sum\limits_{j\in\mathbb{N}}|\lambda_j|^r\|T_{\alpha,\mu}a_j\|_{I(\mathbb{N})}^r\leqslant C\!\sum\limits_{j\in\mathbb{N}}|\lambda_j|^r
$$

for some $C > 0$. Furthermore, [\(3\)](#page-1-0) also guarantees that $r > p$. Thus, (4) yields

$$
\|T_{\alpha,\mu}a\|_{\ell^r(\mathbb{N})}\leqslant C\left(\sum_{j\in\mathbb{N}}|\lambda_j|^r\right)^{1/r}\leqslant C\left(\sum_{j\in\mathbb{N}}|\lambda_j|^p\right)^{1/p}=C\|a\|_{H^p(\mathbb{Z})}
$$

for some $C > 0$.

When $r > 1$, we have

$$
\begin{aligned} \|T_{\alpha,\mu}a\|_{l^{r}(\mathbb{N})} &\leq \sum\nolimits_{j\in\mathbb{N}}|\lambda_{j}|\|T_{\alpha,\mu}a_{j}\|_{l^{r}(\mathbb{N})} \leq C\sum\nolimits_{j\in\mathbb{N}}|\lambda_{j}|\\ &\leq C\left(\sum_{j\in\mathbb{N}}|\lambda_{j}|^{p}\right)^{1/p}=C\|a\|_{H^{p}(\mathbb{Z})}\end{aligned}
$$

because $0 < p \leq 1$. \Box

Acknowledgment

The author would like to thank the referees for their helpful suggestions.

References

- [Boza, S., Carro, M., 1998. Discrete Hardy spaces. Stud. Math. 129, 31–50.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0005)
- [Boza, S., Carro, M., 2002. Hardy spaces on](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0010) \mathbb{Z}^n [. Proc. R. Soc. Edinburgh 132A, 25–43](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0010). [Boza, S., 2012. Factorization of sequences in discrete Hardy spaces. Stud. Math. 209,](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0015) [53–69.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0015)
- Herz, C., 1973/74. H_p -spaces of martingales, $0 < p \leq 1$. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28, 189–205.
- [Ho, K.-P., 2009. Characterization of BMO in terms of Rearrangement-invariant](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0025) [Banach function spaces. Expo. Math. 27, 363–372.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0025)
- [Ho, K.-P., 2012. Atomic decomposition of Hardy spaces and characterization of BMO](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0030) [via Banach function spaces. Anal. Math. 38, 173–185](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0030).
- [Ho, K.-P., 2016. Hardy's inequality on Hardy spaces. Proc. Jpn. Acad. Ser. A 92, 125–](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0035) [130](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0035).
- Ho, K.-P., 2016. Hardy's inequality on Hardy-Morrey spaces. Georgian Math. J. (accepted).
- Ho, K.-P., 2017a. Hardy's inequality on Hardy-Morrey spaces with variable exponents. Mediter. J. Math. <http://dx.doi.org/10.1007/s00009-016-0811-8>.
- [Ho, K.-P., 2017b. Atomic decompositions and Hardy's inequality on weak Hardy-](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0050)[Morrey spaces. Sci. China Math. 60, 449–468](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0050).
- [Jiao, J. et al., 2017. The predual and John-Nirenberg inequalities on generalized BMO](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0055) [martingale spaces. Trans. Am. Math. Soc. 369, 537–553.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0055)
- [Kanjin, Y., Satake, M., 2000. Inequalities for discrete Hardy spaces. Acta Math.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0060) [Hungar. 89, 301–313.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0060)
- [Kufner, A. et al., 2006. The Prehistory of the Hardy Inequality. Am. Math. Monthly](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0065) [113, 715–732](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0065).
- [Kufner, A. et al., 2007. The Hardy Inequality, About its History and Some Related](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0070) [Results. Vydavatelsky Publishing House, Pilsen.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0070)
- [Kufner, A., Persson, L.-E., 2003. Weighted inequalities of Hardy type. World](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0075) [Scientific Publishing Co., Inc., River Edge, NJ](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0075).
- [Komori, Y., 2002. The atomic decomposition of molecule on discrete Hardy spaces.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0080) [Acta Math. Hungar. 95, 21–27](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0080).
- Opic, B., Kufner, A., 1990. Hardy-type inequalities, Pitman Reserach Notes in Math. Series 219, Longman Sci. and Tech, Harlow.
- [Weisz, F., 1994. Martingale Hardy spaces and their applications in Fourier analysis.](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0090) [Lecture Notes in Mathematics, vol. 1568. Springer-Verlag, Berlin](http://refhub.elsevier.com/S1018-3647(17)30174-X/h0090).