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a b s t r a c t

Achromatopsia (ACHM) is a genetically heterogeneous visual disorder, also known as rod monochroma-
tism, in which human get affected due to cone cells. Mutation in five genes viz. CNGA3, CNGB3, GNAT2,
PDE6C, and PDE6H have been reported in ACHM. These genes encode essential constitutes of the cone-
specific photo transduction cascade. Present study was focused on CNGB3 gene that accounts 40%-50%
mutations of all ACHM cases. A new approach for analyzing drug-drug interactions based on modularity
was adopted. This approach depends on the behavioral relationship of drugs against CNGB3 for ACHM,
particularly the ADME and toxicity between drugs. Data of 2475 compounds were retrieved, out of which
185 were selected on the basis of Lipinski rule of five. In total, eight clusters were made for which the
strongly interacted DDI networks were build based on their modularity values. Strong DDI and minimum
toxic values indicates that 5 drugs are effective, but on the basis of docking only 2 drugs indicated no
bumps, which shows that they are most appropriate for treating ACHM. Our findings revealed that
drug-drug interactions disclose the intervention of drug nature and can also successfully diagnose new
indications and more convincing drugs for other diseases as well.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vision of the photons or images is accomplished by photorecep-
tor cells viz. cone and rod cells (Schnapf and Baylor, 1987).
Achromatopsia (or rod monochromatism), is a visual disorder in
which eye gets affected due to cone cells’ abnormality. ACHM is
an autosomal recessive inactive cone dystrophy that occurs in
complete and incomplete forms (Chiang et al., 2017), which is
characterized by a limited or complete absence of color vision
(Johnson, 2004). The rate of ACHM prevalence is approximately 1
in 30,000 (Zobor et al., 2017). Some major symptoms of achro-
matopsia, are hyperopia, nearsightedness (myopia), an enlarged
sensitivity to light and brightness, involuntary back and forth eye
movements of eyeballs, and expressively reduced perceptiveness
of vision (Chen et al., 2015). In addition to these defects, ACHM
patients also experience different degrees of cone photoreceptor
degeneration (Michalakis et al., 2005).
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ACHM is inherited in an autosomal recessive manner with vary-
ing percentages in different regions. Probability of ACHM inheri-
tance to get affected is 25% and the chances of being unaffected
is also 25%, while 50% chances of being an asymptomatic carrier
in individuals (Kohl and Jägle, 1993). Mutations in these five genes
CNGA3 ‘cyclic nucleotide-gated cation channel alpha-30, CNGB3
‘cyclic nucleotide-gated cation channel beta-30, GNAT2 ‘guanine
nucleotide-binding protein G(t) subunit alpha-20 PDE6C ‘the cat-
alytic alpha-subunit of the cone cyclic nucleotide phosphodi-
esterase’, and PDE6H ‘the inhibitory gamma-subunit of the cone
photoreceptor PDE’ have been reported in ACHM. Mutations in
CNGB3 represents 40 to 50% of all ACHM cases, representing the
most recognized cause of this disorder. Another most common rea-
son is the mutations of CNGA3, which is around 25% of the Achro-
mats (Chen et al., 2015). Mutation in CNG genes are anticipated in
majority of ASHM cases. Mutations in the four non-CNG channel
encoding ACHM qualities are significantly less, with a record of
about 6% of the cases. Cyclic nucleotide gated channel beta 3
(CNGB3) encodes the beta subunit of a cyclic nucleotide-gated
molecule channel (Biel et al., 1999). The beta subunit encoded by
CNGB3 assume a vital part in the working of cone photoreceptor
(Mühlfriedel et al., 2014). The CNG channels positioned in the
plasma membrane remain open in darkness by cyclic guanosine
monophosphate (cGMP), creating an inward positive current
(Zein et al., 2014). Approximately 80% of the mutations in the
CNGA3 and CNGB3 of all complete ACHM cases have been
reported.

Arrangement of a particular set of objects/items based on
their characteristics and similarities in such a way that data
points in the same groups are more similar to other data points
in the same group than those in other groups (Udrescu et al.,
2016). Clustering is an important region of utility for the
arrangement of fields which includes statistics mining, statistical
evaluation, compression, and vector quantization. Clustering has
been formulated as a successful approach for getting to know
about sample recognition, optimization, and data literature.
Gephi25, a leading tool in visualization and analysis of large net-
works that process cluster based drug-drug interaction networks,
including computation of statistics, modularity clustering, and
graphical layouts. Drug-drug interactions can motive early
improvement, refusal of endorsement, recommending limita-
tions, and withdrawal of medications from the commercial cen-
ter (Bjornsson et al., 2003).

Repositioning of the existing drugs ought to increase the pro-
ductiveness efficiently. The costs for bringing a drug to the market-
place are 60% lesser than the development of a novel drug, which
charges around one thousand million US dollars (Haupt and
Schroeder, 2011). With the successful clinical advent of number
of remedies, drug repositioning now has become an effective alter-
native approach to find out and increase novel anticancer drug
applicants (Shim and Liu, 2014). Recent studies have shown that
bioinformatics-primarily based methods have the capability to
offer systematic insights into the complex relationships for a suc-
cessful repositioning. The gene therapy being used against ACHM
mutated genes are not effective enough therefore there is a need
to identify better drugs for it. The focus of the research study is
to reposition a effective drugs against CNGB3 gene based on clus-
tering based drug-drug interaction networks.
2. Materials and methods

A clustering based methodology for drug repositioning against
achromatopsia was applied. It comprises of clustering the proper-
ties of drug data for the development of strongly interacted DDIs,
which leads to the repositioning of drugs and the toxicity of the
selected drugs are checked to make the final recommendation of
the drugs against achromatopsia.

2.1. Collection and mining of drug property data

ZINC Database was used for the collection of compounds
against CNGB3 and approximately 2475 compounds were col-
lected along with their structures and chemical properties such
as Drug’s Zinc ID, LogP, Molecular weight, Hydrogen bond Donors
(HBD), Hydrogen Bond Acceptors (HBA), Rotatable bonds, a-polar
dissociation and polar dissociation. Virtual screening was used, a
computer-based method to filter and identify new compounds on
the basis of their biological structures from the large set of com-
pounds library (Shoichet, 2004). The large set of drug data were
obtained from ZINC database, through virtual screening.

To get the desired subset of data from a large set of data, mining
was performed. Lipinski rule of five was used for the mining of the
data which is an important step in drug discovery process. Lipinski
rule of five delineates that value for hydrogen bond donor <5,
hydrogen bond acceptors <10, subatomic weight is under
500 g/mol, segment coefficient log P esteem is under 5, number
of rotatable bonds ought to be more prominent than 10. Drug com-
pounds that fulfill the Lipinski rule were selected while the rest
were discarded.

2.2. Clustering of drugs using WEKA tool

Weka (Waikato Environment for Knowledge Analysis) is based
on machine learning calculations for settling genuine information,
mining issues and a suitable way for machine learning program-
ming (Hall et al., 2009). Weka tool was used for clustering on the
drug’s information data by simple K means clustering. This process
follows a simple and easy way to classify a given set of data (x1, x2,
x3. . .. . . xn) into a no of K clusters (K � N) according to their prop-
erties. The optimal number of cluster K(n) was determined using
Elbow method given by Kodinariya and Makwana (2013) where
K is the number of clusters and n is the data set.

2.3. DDI networks generation

Drug-Drug interaction networks were built which are based on
K means clustering to find out the strong associations between
drug compounds within each cluster by using Gephi tool. Gephi
is a principal tool for analyzing the data, exhibit the feature of fast-
est graph visualization, potential to work with complex data and
layout algorithms for the large networks (Bastian et al., 2009). Each
network consists of the set of vertices V and edge E, average path
length L, degree D of nodes, Network Density, and modularity
classes.

2.4. Identification of strongly interacted DDI

The single cluster was identified from the set of other strongly
drug-drug interactions so that the research move ahead from gen-
eral to specific. A single cluster was identified so that the drugs can
be selected which are strongly interacted to achromatopsia.

2.5. ADME and toxicity of the drugs

To determine the mode of action of the obtained drugs ADMET
predictor and ProTox was used. The ProTox web server has a sim-
ple to utilize interface (Drwal et al., 2014) and the main necessity
was the 2D structure of the atom for which the danger is to be
anticipated. Those drug compounds whose toxicity level was <4
were neglected. Only 5 drug compounds were considered for repo-
sitioning against achromatopsia.
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2.6. Repositioning of drugs

The drug compounds, which lie in a low toxic classes, were sug-
gested to be used in combination with each other to achieve max-
imal results during the treatment. DDIs reflect the intervention of
several behaviors of the drug. The drug-repositioning analysis
was based on a systematic approach. The strategy explained in this
research is based on the behavioral interactions between drugs
rather than the structural similarities characterized by chemical-
structures interactions or drug-target interactions.
Fig. 3. DDI Network 1 showing strong interactions of 1st cluster consisting of 29
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.
3. Results

ZINC database was used to retrieve the data of 2475 drug com-
pounds and those which followed the rules of Lipinski were con-
sidered (184 drugs) while others were discarded.

3.1. Cluster formation

WEKA tool was used to identify and generate the clusters. 8
clusters were identified based on Elbow method for 184 drug
compounds. Furthermore, K means algorithm was used for group-
ing homologous drug compounds. The Clusters were generated for
Fig. 1. Bar graph representation of each clusters along with attributes.

Fig. 2. Plot matrix representation of the clusters along with their attributes.
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those drug compound which follow the Lipinski rule of five as
shown in Figs. 1–10.

Fig. 1 shows the bar graph representation of clusters having
attributes along with the values of xLogP < 5, H Donor < 5, H Accep-
tor < 10, Molecular weight < 500 and those having rotatable bonds.
Each cluster possess those drug compounds with similar
properties.

Fig. 2 shows the clusters by plot matrix having dot representa-
tions along with their attributes of xLogP < 5, H Donor < 5, H Accep-
tor < 10, Molecular weight (M.W) < 500 and rotatable bonds.

3.2. Drug-drug interaction network generation

DDI method is used which is based on the clustering approach
to recognize the best drug compounds (Langlo et al., 2015) which
Fig. 4. DDI Network 2 showing strong interactions of 2nd cluster consisting of 5
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.

Fig. 5. DDI Network 3 showing strong interactions of 3rd cluster consisting of 62
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.
can be utilized to treat CNGB3 mutations. The clustered drug com-
pounds were analyzed in GEPHI by applying the attribute of mod-
ularity, layouts of expansion and Fruchterman rein gold to
visualize the interactions of modules in the network. 8 distinct
DDI’s were built. Each cluster comprised of nodes and edges where
nodes symbolizes unique drug.

There were 8 distinct DDI’s, developed by GEPHI. The network 1
consist of 68 nodes and 137 edges with Average Degree of 4.029
and Average Path length 1.0, network 2 consist of 26 nodes and
27 edges with Average Degree of 2.077 and Average Path length
1.0, whereas network 3 comprises of 144 nodes and 228 edges
with Average Degree of 3.167 and Average Path length 1.0, 38
nodes and 44 edges in network 4 with Average Degree of 2.316
and Average Path length 1.0, 53 nodes and 65 edges in network 5
Fig. 6. DDI Network 4 showing strong interactions of 4th cluster consisting of 9
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.

Fig. 7. DDI Network 5 showing strong interactions of 5th cluster consisting of 19
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.



Fig. 8. DDI Network 6 showing strong interactions of 6th cluster consisting of 19
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.

Fig. 9. DDI Network 7 showing strong interaction of 6th cluster consisting of 13 drug compounds, interactions between the drugs compounds are shown by dotted lines,
while the strong interactions are represented by solid lines.

Fig. 10. DDI Network 8 showing strong interactions of 8th cluster consisting of 37
drug compounds, interactions between the drugs compounds are shown by dotted
lines, while the strong interactions are represented by solid lines.
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Table 1
Predicted values for each network.

Networks Average degree Average weighted degree Network diameter Density Modularity Average path length

Network 1 4.029 2.265 1 0.030 0.403 1.0
Network 2 2.077 1.308 1 0.042 0.581 1.0
Network 3 3.167 2.215 1 0.011 0.539 1.0
Network 4 2.316 1.421 1 0.031 0.648 1.0
Network 5 2.453 1.962 1 0.024 0.587 1.0
Network 6 2.390 1.805 1 0.030 0.505 1.0
Network 7 3.086 2.395 1 0.019 0.534 1.0
Network 8 2.059 1.294 1 0.031 0.629 1.0

Table 3
Selected drug compounds fulfilling Lipinski rule of 5.

ZINC ID’s XLogP Hydrogen
donor

Hydrogen
Acceptor

Molecular
weight

Rotatable
bonds
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with Average Degree of 2.453 and Average Path length 1.0, 41
nodes and 49 edges in network 6 with Average Degree of 2.390
and Average Path length 1.0, 81 nodes and 125 edges in network
7 with Average Degree of 3.086 and Average Path length 1.0 simi-
larly network 8 possess 34 nodes and 35 edges with Average
Degree of 2.059 and average path length 1.0 as shown above in
Fig (3, 4, 5, 6, 7, 8, 9, 10) respectively.

3.3. Modularity and degree distribution analysis

Modularity classes of all drug-drug interaction networks were
retrieved by using Gephi tool (Table 1). Modularity and degree dis-
tribution are an important parameter of any network. Nodes of the
networks were colored on the basis of its modularity class. This
outcome determines that modularity being a decent indicator of
properties and usefulness of chemical compounds.

3.4. Repositioning of strongly interacted drug

Out of 8 DDI networks, drugs with strong interactions and hav-
ing a modularity class greater than 4 were selected and final
strongly interacted network was built. GEPHI was used to make
Fig. 11. Final Strongly Interacted drug network, interactions between the drugs
compounds are shown by dotted lines, while the strong interactions are repre-
sented by solid lines.

Table 2
Predicted values of strongly interacted drugs.

Average degree Average weighted degree

Final strongly interacted network 3.111 1.857
the strongly interacted cluster. Out of 184, 46 drugs have greater
modularity value. Final strongly interacted DDI network is
depicted in Fig. 11.

The final strongly interacted network consist of 126 nodes and
129 edges. All the parameters i.e. Average path length, graph den-
sity, network diameter, modularity class, average degree of the
network were calculated and the drugs that were having strong
interactions were selected. 31 drug compounds were strongly
interacted to one another. The Average degree, average weighted
degree, network diameter, density, modularity, average path
length are shown in Table 2.

The chemical properties of selected drugs that were strongly
interacted to each other and fulfilling the Lipinski rule of 5 are
shown below in Table 3.

In final network total 37 strongly interacted drugs were deter-
mined. Then toxicity class of these drugs were examined. Toxic
doses are often managed as LD50 values in mg/kg of the body
Network diameter Density Modularity Average path length

1 0.012 0.541 1

ZINC98603033 1.53 3 6 367.497 6
ZINC98604505 1.94 2 6 353.446 5
ZINC1495335 2.04 1 6 383.394 4
ZINC98607134 0.3 1 6 330.432 7
ZINC98605438 3.01 1 6 475.564 5
ZINC98604024 0.89 1 4 295.428 3
ZINC1736466 1.54 2 6 357.332 7
ZINC4228404 2 0 6 369.343 4
ZINC91326481 0.74 3 6 356.47 5
ZINC98604344 0.36 1 6 363.483 5
ZINC98607464 2.18 0 3 283.437 6
ZINC98602266 1.57 2 6 357.483 5
ZINC82231011 4.4 0 6 429.538 6
ZINC98605772 3.04 3 4 371.476 6
ZINC98604018 1.13 1 6 316.429 5
ZINC98604022 1.12 2 6 351.515 6
ZINC98608099 2.35 0 6 358.468 8
ZINC1736464 1.89 1 6 357.332 7
ZINC98604752 2.74 1 3 281.371 6
ZINC98605772 3.04 3 4 371.476 6
ZINC40875648 5.14 2 5 443.053 3
ZINC98605018 2.64 2 5 336.452 5
ZINC28530517 3.77 1 5 443.950 5
ZINC1495333 3.06 0 5 367.371 4
ZINC98607837 2.78 2 5 370.448 5
ZINC45229921 4.31 2 5 362.432 4
ZINC98605276 1.86 1 5 333.457 4
ZINC1495334 2.55 0 5 353.344 4
ZINC98603027 3.23 0 4 274.364 5
ZINC98602262 0.27 2 7 335.433 4
ZINC98605644 2.36 0 3 276.405 1



Table 4
Predicted LD50 and oral toxicity class of the selected drugs.

S. # Structures Zinc ID LD50 Toxicity class

1 ZINC98603033 500 mg/kg 4

2 ZINC98604505 500 mg/kg 4

3 ZINC98607134 303 mg/kg 4

4 ZINC98605438 550 mg/kg 4

5 ZINC98604024 1250 mg/kg 4

(continued on next page)

B. Zainab et al. / Journal of King Saud University – Science 32 (2020) 1793–1811 1799



Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

6 ZINC1495335 660 mg/kg 4

7 ZINC1736466 1000 mg/kg 4

8 ZINC4228404 1000 mg/kg 4
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

9 ZINC91326481 400 mg/kg 4

10 ZINC98607464 1000 mg/kg 4

11 ZINC98604344 4000 mg/kg 5

12 ZINC98602266 500 mg/kg 4

(continued on next page)
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

13 ZINC82231011 1000 mg/kg 4

14 ZINC98605772 5000 mg/kg 5

15 ZINC98604018 3500 mg/kg 5
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

16 ZINC98604022 3500 mg/kg 5

17 ZINC98608099 700 mg/kg 4

18 ZINC1736464 1000 mg/kg 4

(continued on next page)
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

19 ZINC98604752 750 mg/kg 4

20 ZINC98605772 5000 mg/kg 5

21 ZINC40875648 1240 mg/kg 4
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

22 ZINC98605018 3500 mg/kg 5

23 ZINC28530517 500 mg/kg 4

24 ZINC1495333 1000 mg/kg 4

(continued on next page)
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

25 ZINC98607837 370 mg/kg 4

26 ZINC45229921 400 mg/kg 4

27 ZINC98605276 640 mg/kg 4

28 ZINC1495334 1000 mg/kg 4
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Table 4 (continued)

S. # Structures Zinc ID LD50 Toxicity class

29 ZINC98603027 1400 mg/kg 4

30 ZINC98602262 1250 mg/kg 4

31 ZINC98605644 1250 mg/kg 4

B. Zainab et al. / Journal of King Saud University – Science 32 (2020) 1793–1811 1807
weight. Some intense harmfulness tests, (for example, the ‘‘estab-
lished” LD50 test) are intended to decide the mean lethal dosage
of the test substance (Dastmalchi et al. 2016). The middle lethal
measurements is characterized as the dosage of a test substance
that is lethal for half of the creatures in a measurements gathering
(Toxicity–Up, 2001).

LD50 esteems have been utilized to ensure about relative
intense risks of modern chemicals, particularly at the point when
no other toxicology information are accessible for the chemicals.
In any case, numerous imperative perceptions of poisonous quality
are not spoken to by LD50 esteems or by inclines of dosage reaction
bends for lethality. The oral toxicity of selected drugs that lie under
acceptable toxic class are shown in Table 4.

Out of 37 drugs, 31 drugs were selected. This selection was
completely based on toxicity class of the drugs and 6 drugs were
discarded because of their high toxicity. 5 drugs were lying on tox-
icity class 5 while 25 drugs were lying on toxicity class 4, both of
which are nontoxic classes. As 6 drugs were lying on toxicity class
5, were selected and as these drugs can have synergic effect, so can
be given to patients in combination to one another for achieving
more efficient and maximal results. These 6 drug can be further-
more examined with in vivo and in vitro methods, to confirm the
suggestedrepositioning or interactions. The toxicity of selected
drugs are shown below in Table 5.

3.5. Molecular docking analysis

Structure of CNGB3 (Fig. 12) is not reported yet. Ab initio
method was used to generate a number of possible confirmations
and the final model is selected from them, which depends on
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energy function, conformational search and selection of native.
Phyre 2 server fallowed by ab initio approach was used to make
computational structure prediction of CNGB3. Phyre2 (http://
www.sbg.bio.ic.ac.uk/phyre2) is a web server for protein modeling,
prediction and analysis.
Table 5
Predicted LD50 and Oral toxicity class of selected Top 5 drugs compounds.

S # Structures

1

2

3

The selected drugs (5) having minimum toxicity, were submit-
ted to patchdock along with CNGB3 structure, having .pdb format.
Patchdock (http://bioinfo3d.cs.tau.ac.il/PatchDock/patchdock.
html) is an algorithm for molecular docking which may be of pro-
teins, DNA, peptides or drugs.
Zinc ID Predicted LD50 Toxicity class

ZINC98604344 4000 mg/kg 5

ZINC98605772 5000 mg/kg 5

ZINC98604018 3500 mg/kg 5

http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
http://bioinfo3d.cs.tau.ac.il/PatchDock/patchdock.html
http://bioinfo3d.cs.tau.ac.il/PatchDock/patchdock.html


Table 5 (continued)

S # Structures Zinc ID Predicted LD50 Toxicity class

4 ZINC98604022 3500 mg/kg 5

5 ZINC98605018 3500 mg/kg 5

Fig. 12. Predicted structure of CNGB3 by Phyre2.

Fig. 13. a) D Receptor-Ligand Interaction b) 2D Receptor-Ligand Interaction along
with bumps (3 in red dottedline).

Fig. 14. a) 3D Receptor-Ligand Interaction b) 2D Receptor-Ligand Interaction along
with bumps (4 in red dotted line).
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The results of patchdock having list of potential complexes were
sorted by shape complementarity criteria. Top results of patchdock
were interpreted in discovery studio to check their bumps and 2D
structures as shown in Figs. 13–17. Bumps are un-favorable collu-
sions between proteins and the ligands and those having minimum
no of bumps are considered as the best.



Fig. 15. a) 3D Receptor-Ligand Interaction b) 2D Receptor-Ligand Interaction
having no bump.

Fig. 16. a) 3D Receptor-Ligand Interaction b) 2D Receptor-Ligand Interaction along
with bump (1 in red dotted line).

Fig. 17. a) 3D Receptor-Ligand Interaction b) 2D Receptor-Ligand Interaction
having no bump.
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4. Discussion

Achromatopsia results from changes in one of these genes i.e:
CNGA3, CNGB3, GNAT2, PDE6C, or PDE6H (Chen et al., 2015). The
CNG channel gene (CNGA3, CNGB3) mutations are considered to
be the majority of reported cases of ACHM. The CNG channels neg-
atively affect the cones on the outer segment membrane (Johnson,
2004). These, CNG channels are heterotetramers that are composed
of homologous alpha and beta subunits (CNGA3 and CNGB3 in
cones). Mutations in the genes CNGA3 and CNGB3 which encodes
the alpha and beta subunits of cone photoreceptor, CNG channels
have been described as main reason to cause ACHM. The medical
diagnosis of ACHM is based on the electrophysiological, psy-
chophysical (visual acuity, visual field, and color vision), and mor-
phological examinations and medical history of a patient.
Achromats see only with their rods, the clinical findings arise cer-
tainly from missing cone and intact rod functions (Johnson, 2004).
The gene therapies already in used to treat mutated genes of ACHM
are not effective enough.

So far there is no effective medication available for Achro-
matopsia which can target the disease at genomic level. To develop
a single efficient, cost effective drug and make it available to the
market, approximately 15 years are required for tests and trials
with huge amount of budget. By considering all the circumstances
and for rapid development of medication, repositioning/repurpos-
ing is one of the advanced approach being used. The goal of this
study is to induce conceivable repositioning. This technique is
not based on structural resemblances but it depends on the behav-
ioral relationship characterized by drug target relationships.

Modularity based clustering technique determine the potential
of drug’s interactions for treatments. The results of modularity
being a good predictor of properties and functionality. Moreover,
modularity is directly associated to the dissemination and density
of links, which represent drug interactions in this research. In this
study, methodology based on drug-drug interaction network anal-
ysis, have identified and ranked candidate novel drugs against
CNGB3. Identified characteristics i.e. Modularity, Avg Degree, Avg
Weighted Degree, Network Diameter, Density, Avg path length
suggest that these characteristics are paramount in defining, inter-
preting and finding novel treatment for ACHM. The efficacy of clus-
tering drug compounds according to specific pharmacological
properties is confirmed for 31 drugs, by cross-checking with other
drug databases and extensive literature survey. The validations
carried out shows that the ranked list of drugs produced by our
method is enriched for CNGB3.

Number of network based interactions have been established
(Jahchan et al., 2013) and these techniques are being used to differ-
entiate drug candidates that are more appropriate for repurposing/
repositioning. The predictions made for a strongly interacted drugs
revealed that this approach can successfully diagnose new indica-
tions and more convincing drugs to treat CNGB3 mutations. The
predicted 6 strongly interacted drug compounds can be also exam-
ined with in vivo and in vitro methods, to confirm the conceivable
repositioning or new interactions.
5. Conclusion

This research work predicts the novel drugs for achromatopsia
and representing bio-medical drug-drug interaction networks
using clustering and repositioning methodology. Thisstudy is an
attempt towards repositioning the effective drugs for achromatop-
sia. Methodology focused on the achromatopsia highly mutated
gene i-e CNGB3. Drugs were repositioned on the bases of their
on the behavioral relationship and interactions characterized by
drug target relationships. Research engine (ZINC Database) was
used to retrieve the drug compounds of CNGB3 and different desk-
top applications were applied on retrieved drug compounds to
make their clusters. 8 clusters were made from 2475 drug
compounds and for each cluster separate DDI was generated and
strong DDI was developed from the 8 DDI’s based on their modu-
larity values. The toxicity value helps to reduce the venomous
effects of the drugs, by discarding them and selecting those drugs
whose toxicity ranges in a safest zone. Only 5 drugs were
suggested to be effective for achromatopsia based on their strong
DDI and minimal toxic values. Repositioning methodology is a
newly innovated technique and is rapidly evolving in the research
due to its evoking additional knowledge as well as it takes shorter
time for its development with minimal toxic effects. A newly
developed drug takes a lot of time to be introduced in the market
and catch a lot of budget. While repositioning technique made a
breakthrough in the world of medicine by minimizing budget as
well as time.
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