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solvability of abstract Riccati equation is considered, and Hyers-Ulam stability is discovered in the sequel.
Based on the new study, we design new stable of Self-organization in complex networks (SOCNs).

1. Introduction

Numerous probability distributions, including the gamma distribu-
tion, chi-squared distribution, and exponential distribution, are strongly
associated with the gamma function. Numerous statistical applications,
such as theory of queues, reliability analysis, and delay modeling,
include these distributions. An example of analytic continuation that
permits its application to complex numbers is the gamma function.
In complex analysis and the study of functions of a complex variable,
this trait is crucial. Many branches of physics and engineering, such
as quantum mechanics, fluid dynamics, electromagnetic, and signal
processing, use the gamma function. It frequently comes up while
defining answers to diverse physical issues and analyzing differential
equations.

The gamma function, represented as I'(y), is a real and complex
number extension of the factorial function. In terms of positive integers,
the factorial function and the gamma function are almost identical. It
has been outlined nonetheless, for a considerably larger scope. It is
defined by the integral

I'(y)= /oo ey lay, 1.1
0

where y is a real or complex number. According to Diaz and Pariguan
(2007), the first parametric generalization for the gamma function is as
listed below:
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Conversely, T.G. and Tai (2011) provided the second kind of parametric
generalization, which appears via the expression

[so]
L0 =/ ey gy, 1.3)
0

The algorithm for the two-dimensional parameter generalization of
the gamma function (2D-gamma function) was recently developed by
Tayyah and Atshan (Tayyah and Atshan, 2024), as follows:

oo

L= / o gy, (1.4)
0

The three-dimensional parameter generalization of the gamma func-
tion (3D-gamma function) is discussed in this paper. We suggest the
following definition:

® () e
L) = / ) pang,, 1.5)
0

(m(u) >0, RW) >0, k> 0)

Clearly, T,

1,V,K

(x) (see Figs. 1 and 2) is a generalization of the previous
formulas via different values of (u,v, x).

Relations of T i (¥) are presented, as follows:
Proposition 1.1. Let y € Cwith R(y)>1-1/v, v#0, R (f) >0 and
x > 0. Then
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Fig. 1. The plot of I, ,.(x) when (u,v,x)=(1,1,2),(2,1,2),(2,2,2) and (2, 1, 3) accordingly.
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Fig. 2. The ComplexPlot3D of I, (r) when (u,v,x) = (1,1,2).(1,2,2),(3,3,2) and (4, 3, 1) accordingly using Mathematica 14.1.
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Proof. A direct application of the definition in (1.5) and using
the asymptotic approximations of gamma function, we obtain the
results. []

In view of I}, (y), we generalize a set of special functions in-
cluding the Mittag-Leffler function. As a consequence AB-fractional
calculus is generated and discuss some of its properties, such as the
boundedness. Applications based on the suggested model, the stabil-
ity of self-organization in complex networks is investigated such that
their dynamics and geometry change over time through decentralized
processes.

2. 3D-Mittag-Leffler functions (3D-MLFs)

Numerous branches of mathematics, such as probability theory,
fractional calculus, and the theory of special functions, use this func-
tion. It may be used to describe complicated relaxation or waiting
time behaviors in many phenomena. In the mathematical concept of
fractional differential equations, it is important. In fractional calculus,
a field of mathematics that extends the idea of differentiation and
integration to non-integer orders, MLFs usually occur. They frequently
show up as fractional differential equation solutions. They are used
in the analysis of fractional differential equations regulating materials,
anomalous transport processes, and fractional relaxing behaviors in the
study of dynamical systems. The 2D-MLF is given by the description

<]

Ep© =Y —

——, a>0,beR.
four I'(an+b)

A generalization of this function is defined as follows:

e o (€),&"
Zar© = Z n!T'(an +b)’

n=0
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where
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=T

Now, by using the generalized gamma function I, , ,,
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Clearly, when y=v=«x =1, [0 )i ©) and [Z¢ 1. (6) are reduced
into [Z,,1(¢) and [=2,1) respectively. As a special case, when u = «,

we have (see Fig. 3)
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where ,¥] is the normalized Fox-Wright function,
p |:(01'A1) (a3, Ay) (a, Ap), ] _ I'(by) - I'(hy)
P74 (b,,B) (b, By) (b, B I'(a)) - I'(a,)
< I'(ap + Agn) - I'(a,+ Ayn) gn

X .
; I'(b, + Bn) - I'(b, + B,n) n!

Next section deals with the generalization of AB-fractional calculus
using the generalized 3D-Mittag-Leffler function.

3. AB-fractional calculus

In Atangana and Baleanu (2016), Atangana and Baleanu presented
a fractional calculus based on the Mittag-Leffler function, as follows:

x _
ABCDT () = @/ @' (x)Z, (—y()( - X)V> dx
L=v Jo -y
and
G d [* _ -
ABR Dy () = L) 4 / P0)Z, (—y(;( - x)f) dx,
l-ydy Jo -y
where G(y) satisfies the relation G0) = G(1) = 1, ¢ € H'(J), J is an
interval, y € [0,1] and
_y n
o | —(x—x)
= <__y(1_x)7> = z M
"\l-y fors T(yn)

Corresponding to the fractional derivatives, the fractional integral be-
comes

1—y Y 4 -
AB rr =7 N S— / —x) " ldx, 0.
o(x) o(x) + GHT ) Jo o)y —x)"dx, y>

G(r)
Note that the above fractional operators are utilized in different ap-
plications (Abd-Elmonem et al., 2023; Momani et al., 2023; Ibrahim,
2022; Huang et al., 2023).
By using the suggested 3D-gamma function, we have
n
o (=L (y—x)
=] (__y(x_xy)_zw
- VLK -
T - 14 n=0 Fy,\/,x(}’n)
n
iy —x)
c(Za-v)

(yn—1)v+1
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s (Za-wr)
TSV ((2)n+ )
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Fig. 3. The of [Z,,],,,.(&) = K[5<£>V(L,)](§) for different values, where x = 1,2,3,4 respectively.
. _ %()(—x)y Let p —f o::—ly—y a:=yv/k,b:=(1-v)/kand 4 : = . Then
= v=1 = =2 v . — XY
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Now, we introduce the following definitions.

Definition 3.1. Let ¢ € H'[J] and y € [0, 1]. Then the generalized
AB-operators are as follows:

. Gy [* - -
[ABCD;/]”,V’K@(Z) _ m /0 (p’(x)[;y]w’,( <1Ty()( - x)7> dx

G(y) d [* - —r
ABR pyr = —(y—x)
TABRDTY, L 0(r) = T, d}(/o POILE) 1w i <1—y(1 ) )dx
. 1-

[AB[y]M,v,K‘/’(}() G(r) (p(}() + _é

K r ((y—l)v+1 )

K

G (4

x
X/ (p(x)()(—x)y_ldx, y > 0.
0

Note that when y = v = k = 1 we obtain the usual [4BI7] | ;p(y) =
[AB17]p(x). We have the following properties:

Proposition 3.2. Let a and b be real numbers. Then for continuous
functions g and h over [0, T], the generalized 3D-fractional operators satisfy

the semi group property
(D [4B€Dr],, . (ag(x) + bh(y)) = a [*B DY), , g(x) + b [*BC D7), ,
h(x);
(i) [*BRDY],, . (ag(x)+bh(y)) = a [*BRDY], , e(x) + b [*BRD7], .
h(x);
(i) [ABI7],, . (ag(x)+bh(x)) = a [*BI7],,  &(x) + b [*BI7],,  h(x).
Example 3.3. Let ¢(y) = y™. Then

G i -
€D 000) = 22 /0 DIE, Dy (ﬁu - xv) dx

_ mG(}’) /l(xm—l) K g %(Z —x) dx
1-y 0 (ﬂ)% (%)(I%) (E)% ’

= fl)me/('“>~a,,u<z—x>7>dx

mG(y)

1-7

z/ e 1)[/1()(—X)y]”
=~ I'(an + b)

mG(y) m—1 ",
1=y z F(an +b) / "0 = 2T

" T(mI(ny 4+ Dy

mG(y) 2
1—y ; I'(an + b)

7" T(m+ 1DGF) ~

I'm+ny+1)

T'(n+ DI (ny + D(Ax7)"

Furthermore, we have

x"G(y)
RORE

To(i-7 =

- [(1, )
Rl (X))

I'(an+ b)I'(m + ny + 1)n!

1,7)

. Y
m+ 1,90 M )] :

G —x)
000 = | =5 [ 22 [Temz i )(0(”—3 : >dx
P Y A ()~
_d| « G(}’) m-1 [/l(x—X)’]"
_d)( pv;l z/( ) Tan+b I'(an+b)
_i K G(y) ny
T l—yzF(an+b)/ ") =) dx
_d| « |6 Z A LOm+ DI (ny + 1) mrm!
T dy p%l T—7y & T(an+b) T(m+ny +2)
_d | _x |zrm+n6em
dy | vt I -y
o F
« i T(n+ DI (ny + (A7)
~  I'(an+b)I'(m+ ny +2)n!
4| x| 26w A
dy | 5L [ T®A=1 "7 |(ba)  (m+2.7) '

Hence, we obtain
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ABR pyr () W wit e |0 A Y
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Finally, we attain

! —1 — K x o
217, (0™ = L "+ I / ) — 3y dx
o k) F (=i /0

G (4 r ()

“on” et . /0 ™)y = x)"'dx
G(r) (f r <% )

— I__yk,m + YK F(V)f(m + 1);(}’*'”

T Gy ) . Tty + D
G(y) :-‘ r <(/—|}3v+] )

If ¢(y) = sin(y) then

1—
(A7)0 Si002) = G5 Sin() + p—
ARG (y=Dv+1
Gn(t) T r(=E)
x
X / sin(x)(y — x)’ " ldx
0
-y . vk
= G0 sin(y) + T P
I K y—Dv+
o (£) r(=p)
+1 LY v L 3._22
XXV 1F2(1’5+1’E+E’ 4)
rr+y
And if ¢(y) = cos(y) then
11—y K
AB —
[PPI7 ]y cos(x) = ) cos(y) + BT
2 K =Dv+l
sn(s) T r(e=E)
X
X / cos(x)(y — x)" " dx
0
11—y K
= o) cos(y) + T o
2 K =Dvt+l
Gn(s) (=)
vl 22
/}’7 IFZ (1, 5 + 303 + 1,—T>
X
14
Finally, suppose that ¢(y) = e*. Then
AB ~V K ‘. -1
[*°17],, ef = et + - ey —x)"dx
A% G(}/) _ =l el o
(e ()
1-y |
=—Lery " A (F(r) = T(v. 1)),

K

G(y) 6o (L’:), ‘HA»)M , (M)

where I'(y, y)) indicates the incomplete Gamma function.

Proposition 3.4. Assume that ¢ € H'[J] where J =[0,T]. If y € [0, 1)
and k # h then

TlellcnGr)
T where llglicry) = llglle + 118"l

[AEC D, 02| <
and ||g||, is the supremum norm;

G)llell
- |[BRDA, ()] < —
llolle K
. [ABIV]M_K(p(X)| < eor|a-n+ (HW}’ TTV
(}’) u — r ((7—1)v+1 )

Proof. By the definition of the suggested fractional operators, we have

G [* - -r
m/o @' OLE, e <m(}( —X)y> dx

lellein G 4| _ -y
< ?/ [Z, vk <m(}( —X)y>

€ )| =

dx
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Moreover, we have

Gy) d [* = -r
ABR 1y _ v =) —x)
42X D7, 00| = Sy /0 PONE e (7= (0 =07 ) dx
Gllelle d  [* -
< LT = = T (y—x)
<=7, d)(/o [R5 P l_y()( x) || dx
< G(}')”(plloo.
=,
Finally, we obtain
(P17),0(2)|
1—y yK z i
= m(p(xH ot /Oqo(X)()(—X) dx{, y>0
an(z) (=)
ol

YK x ~
T (T ”WGWwﬂlkrW%w

“
K

4
< ol d-p+ rK T

G(r) R r ((y—l)v+l> 4

3
K

O

P

Corollary 3.5. Consider the fractional differential equation
[BCD"],, c0(x) = ap(x) +u(y), (3.1)
TG()

I=y
domain of ¢(y), y € [0,T] with ||| > @ Then

llul
<L —— —
le(l < T

1-y

where a > and u(y) is a nonzero continuous function included in the

(3.2)

Proof. According to Proposition 3.4, we get

TllollcnG@)
ABEDY ()| = lag(r) + u(x)| < 1=,
Thus, a computation yields
[lecll
eIl < e
=35

In other inequality, we have the result (3.2). []

Note that Eq. (3.1) represents the generalized Riccati equation,
which will be considered as an application in the next section.
Corollary 3.5 shows that the solution of Eq. (3.1) is bounded, with

upper bound lu
a

4. Suggested system of complex networks with solvability

The solvability of fractional differential equations is established by
the subsequent theorems and the particular conditions of the equations.
Various standards for evaluating these attributes may be applied to
differential equation categorization. In this part, we deal with the
solvability of the generalized fractional differential equation

[*BCD,, c0(2) = D1, 9); 4.1
or
[ABRD"],, c0(2) = (1. 9), (4.2)

where ¢(0) = ¢, # 0 and @ : [0,T] xR — R is continuous. Consider
the Banach space B of all continuous functions over the interval [0, T’]
subjecting to the sup. norm.
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Theorem 4.1. For (4.1) (or (4.2)). If @ is bounded in its domain with
@] < Allell, llell > 0, A € [0, o) then Eq. (4.1) admits a solution ¢ under

the condition

11—y + KkT? < 1
G@y) _ =D+l A
H K (r=Dv+l
6 () r(ep)
Moreover, if @ is a Lipschitz with respect to the second variable
l2Cr, () — P, w I < olle() —w (O,

with
-y xT? 1
G(y) * _G=hvtl <5 ¢ >0,

G() (5) o ((y—l)v+1 )

K

then the solution is unique.

Proof. Consider Eq. (4.1). Define an operator W : .S — .S such that

l@ol
S:=3¢p€eB: ol < 0
Y i K17
G(y) + _ (=Dv+l
H K (y=Dv+l
G (¢ =
by
Woly) = o+ K
?() = 9o + G@&) X —=hutl

G(}’) (5) K r ((y—l)v+1 )
X /I d(x)(y —x) " ldx, y>0.
0

Thus, we obtain
YK

_ =yt

an(z) (=)

K

Wo(n| < ool + ——

GG |<1>(;r ?)|+

X /1 |DCx, )| (x = x)~"dx
0

kyl @l
<lgol + G—Ild’ll + o (;( - x)y'dx
2 I E <r—l)v+l 0
G (=
Al =7p) KMIIrpll Tr

<lgol + re llell + o —

(¢2) ) gDt ¥

G (¢ =

-y kT"

=legl + 4 G0 + o llell

o) T r()

1- TY
< lpol +24 WQ - llll.
G (£) T r ()

M

Hence, we obtain

We(p)] < [0l

1—y xkT7"

G * G(y)(f)iw - <(y_1x)v+1)

1-24

We obtain the boundedness of W in the set .S, by choosing the supre-
mum of the inequality mentioned earlier. Our goal is to demonstrate

the continuity within S. It is clear that
Wao(x) = Wo(p)l
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Ky

1-
< —L @y, 0) -

@
G0 -l +

G0 (&

_ =D+l

K F((y—l)v+1 )
K

X
X / |D(x, @) — P(x, §)| (x — x) dx
0

< 50 1@~ @ ol + —
G () ()
T
X |D(y, p) —D(x, D)l v
1—y Ky

(r=Dv+1

N
W G (4)

K

T
3 F((y—l)v+l) 4

— |ll®Cx, @) — D(x, DIl

Since @ is continuous then it is uniformly continuous in .S with

€

lP(x, 0) — P(x, Pl <
1= -y,

, €>0.

kT”

G(}')

As a consequence, we get

/4

G (4)

_ =Dyt

(=
I—

kT7

1-
Wo(l | =— +

Weo(x) - GO

_ =D+l

an(z) T r(ee)

X |2y, @) = (. H

<e.

This shows that W is continuous over the set .S. We proceed to show
that W is equicontinuous over S. Let y; and y, € J with y, # y,. Thus,
we get

W) = Wolx,)l

1 - Ky el 1
< m@(xl,(p)l + o |[@(x, )|y —x)" dx
i 1y 0
n(e) ()
1— Ky 12 -1
+ m@m,rpn + / D (x. )| 1y = x)" " dx
B iy 0
an(e) ()
<24| Gt + = Il
G (%) T or(ee)
—_ TV
<ol +24 G(y§ o llel
G (L) (e
1- TY
< logl +24| o5+ e el
G (L) T r(e)
Thus, we obtain
|(P0|
Wo(x) —Welr)l <
-y kT?
1-24| o5+ o —
ow(e) T r(=)

Hence, W is a reasonably compact operator, as the Arzela-Ascoli the-
orem reveals. According to Schauder’s fixed point theorem, W permits
a minimum of one fixed point, which is analogous to the solvability of
Eq. (4.1).

Next, we aim to show that the operator W admits the unique fixed
point over the set .S. Obviously,

Wo(x) =Wy ()l
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KY

—=bvrl

Gy (%) o ((y—l)v+l )

K

11—y
— (@ )
< G0 [(@(x, ) —P(x,w))| +

X
x / |D(x, @) — DCey)| (x — %) 'dx
0

] _
< oot [ @(r.9) = D) + p—
) A =1+l
6o () r(ee)
TY
X |D(x, p) — Py, w)| v
1— Y
<[t + ——r et o) - oGl
o (2 1 ()
1 —_
|+ 0 alle(r) —woll
Go (L) or(ees)

This implies that the operator W is a contraction mapping over S. Thus,
according to Banach fixed point theorem, W has one fixed point which
is corresponding to the solution of Eq. (4.1). [J

Example 4.2. Consider the following equation:

20051, 0 = 22, 3)
where gy =1, y € J =1[0,1], ®(y,9) = 1/4p(y) with A = 1/4. If we let

G(y) = 1 then the condition for the solvability of (4.3) becomes

-y kT” 1 1

=L+ —106419. < L = L _o

G() e T <247 2074
on(z) (=)

K

Therefor, by Theorem 4.1, Eq. (4.3) has at least one solution. By letting
o =1/4, we have

- v

-7, <7 = 1.06419... < L =4,

G N5 e o

o (s) (=)
Thus, in view of the second part of Theorem 4.1 yields the unique
solvability.
Next, we consider the following fractional differential equation

5D, s = 22, (4.4)

then, when y = x =2 and v = 1, we have

11—y kT7 1 1

o G@) (g)_M r((}’—l){)vﬂ) DY STV

Therefor, by Theorem 4.1, Eq. (4.3) has at least one solution. By
assuming o = 1/8, we have

1- Y

—_r, KT =25<1=3g

G(y) _W (Dl o
G (£ It

K

Thus, in view of the second part of Theorem 4.1 yields the unique
solvability. Note that the formula solution is as follows:

1—y yK
() =9y + mﬂx) + =

G(y)(f) 3 r((y—l)v+l>

K

X
x/ d(x)(y —x)"ldx, y>0
0

bt
=1+M+ ! / %(;{—x)y_ldx.
0

16 I'(0.25)
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Hence,
16 “ -1
o(y) = 1 1+ 0.0344 P(x)(y —x)"dx ).
0
5. Stability of the complex networks

In this section, we study the Ulam-Hyers stability (Hyers et al.,
2012). There are different generalizations of the Ulam stability using
the fractional calculus (see Ibrahim, 2012, 2013; Wang and Xu, 2015).
Here, we aim to introduce another generalization, using the suggested
fractional differential operators, as follows:

Definition 5.1. Consider Eq. (4.1). Then it is Ulam-Hyers stable if

there occurs a real positive number g > 0 achieving the following

conclusion: for all ¢ > 0 and for every solution ¢ € S,
[*BCD"),, o)~ P(1. @) <e, neED (5.1)

there is a solution y € S of Eq. (4.1) such that

lo() —w(n| < pe, r€J=[0,T]. (5.2

Additionally, a generalization of the above definition can be realized
as follows: if there is a positive real function w : R, — R, then

lo(x) —y(x)| < pw(e), xeJ=I[0T] (5.3)

Definition 5.2. Consider Eq. (4.1). Then it is Ulam-Hyers stable if
there occurs a real positive number ¢ > 0 satisfying the following
conclusion: for all ¢ > 0 and for every solution ¢ € S,

(*BCD7],, c0() — D(r. )| <ef(x). x€J=[0,T], (5.4

where f : J — R, is a positive real valued function; there is a solution
v € S of Eq. (4.1) such that

lo() —wn| < geftn), x€J=1[0,T],p>0. (5.5)

Note that ¢ € B is a solution of Eq. (4.1)if and only if there occurs
a function y € S with |y| < e achieving the equation

[*BCDM,, c0(0) = (1. @)+w(y). y €J=[0.Tl.y €(0.1], 4,v,x > 0.
(5.6)

Theorem 5.3. Let the assumptions of Theorem 4.1 hold. Then Eq. (4.1)
is a generalized Ulam—Hyers stable.

Proof. Assume that ¢ is a unique solution and a function y € S such
that ¢(0) = w(0) = ¢, and for a positive constant ¢ > 0, we have

-y YK “ —1
Qo+ —=—P(x) + — D(x, @)y —x)"dx —y(y)
G() AEE T Jo
an(2) T or(=E)

K

<e.

Then a computation yields (see Box I) that is
€

lo(r) —w(n)l < = goe,
-y KT
-0 +
G()/) _ (r=Dv+l _
(e (=)
where
-y kT
ol —= + <1
G(y) _ =D+l
n I3 (y=Dv+1
Gn(2) T r(=E)

(see Theorem 4.1). Hence, Eq. (4.1) is a generalized Ulam-Hyers
stable. [
Example 4.2 is generalized Ulam stability.



I. Aldawish and R.W. Ibrahim

Journal of King Saud University - Science 36 (2024) 103512

Ve
/ D(x, )y — x) dx |- w(p)

X
/ D(x, @) (x —xY dx |- w(p)

loC) —w(nl
1—-y vK
=|l®o+ W@x, ?)+ o
7 A =1\ 70
Gt (4 r (—)
1-y yK
= (P0+G—¢(1,fﬂ)+ —
) W\ (et ) 0
G (s) T r(e)
-y yK ¥ 1
+ mﬂx, w) + T D, y)(x — %) dx
u\~ K (y=hv+1 0
G (s) T r(ep)
1- K 4 _
| Gy @+ — / D)y — X dx
! G(y) (ﬂ T r (—W‘”V“ ) 0
K K
1- TY
Seto| & })' + (y_fw loCo) —w ()l
Y G(}/) (E B r ((y—l)v+l )
K

Box I.

6. Applications on self-organization of complex networks

The concept of self-organization in complex networks is fascinating
because it describes how separate components in the network interact
to generate structured patterns or behaviors. One use of Riccati equa-
tions, which are frequently used in differential equations and control
theory, is in the analysis of complex networks. In complex networks, the
dynamics of the network’s connection or the growth of specific network
properties can be simulated using Riccati equations (Peng et al., 2021;
Klickstein et al., 2017). These equations could explain how one node
interacts with the others or how the network topology changes over
time. One way is to use Riccati equations to represent the dynamics
of the network’s adjacency matrix, which displays the connections
between nodes. The Riccati equations can describe the self-organizing
behavior of the network by establishing appropriate rules for node in-
teractions, which lead to the formation of specific designs or sequences.
Additionally, Riccati equations may be used to study the stability and
controllability of complex networks. By looking at the solutions to
these equations, researchers can gain greater insight into how the
structure of the network influences its overall behavior and usefulness.
Generally speaking, using Riccati equations to analyze the behavior
of complex networks provides a solid framework for understanding
the self-organizing principles underlying the emergence of complex
behaviors and trends in a range of systems, from biological networks
to social networks and beyond (Duan et al., 2022; Vamvoudakis and
Jagannathan, 2016). This study focuses on a multi-channel system
in which an agent with network communication capabilities oversees
every communication channel.

The particular dynamics system for the agent p € N is defined as
follows (see Fig. 4):
[1#€D"),,,,0,(x) = aB, () + I1,(x) (6.1)
[#€D7],,, Y, () = ¢ 0,(x).

where 0, indicates the reference state of the net and Y, represents the
outcome of the state ©, and I, refers to the external control input

vector. The solution of the system can be viewed by Corollary 3.5 and

Theorem 4.1. The first equation has an optimal solution given by
LT, 1l
|6, < — 6.2)
a

where

11—y xT?
G(y) + _(=Dbv+l
U K (y=1v+1
on(r) T or(=e)
while the second equation has a unique solution with the bound

K
10,
1Y,II < , (6.3)

<a,

11—y KkT”
G(y) _(r=Dv+l

(e (=)

where ¢ >0, y € [0,T],T < oo and

1—y + kT7
G(r) R
G (L) ()

Combining the inequalities (6.2) and (6.3) to obtain the optimum value
of the reference outcome for each agent in the net

<

N | —

I, |
a
- %
a
IY,Il <
l-y kT7
2l G * ol T
H K y—Dv+
on(s) T or(eE)
A

= a#0.
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reference state
of the net: @

v 4

external control
input vector: II
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Fig. 4. Block diagram showing a controller model that is referred to the suggested system (6.1).

For a special case, ac = 1/2, we have
117, ]|

I, I < ~. a#0,

a(l—&
a

where
I, = 11" = =, <%(1,, —x)’) c (Y/,_, —c5, (a%(){n —x)790>> . pEN.

According to Theorem 5.3, System (6.1) is stable.

Remark 6.1.

» The reference agent plays a crucial role in guiding the develop-
ment, evaluation, and improvement of agents in a multi-agent
system. A reference agent can serve as a benchmark or standard
when comparing one agent to another. It might be an intelligently
designed agent that demonstrates characteristics, methods, or
behaviors deemed most optimal or appropriate for the specific
task at hand or the environmental conditions. The approaches
and activities of the reference agent may provide agents with
hints and strategies. Through the analysis and assessment of the
reference agent’s actions, other agents are able to improve and
adjust their own processes for making decisions. The reference
agent can be used as a model to set policies or criteria for
agents’ behavior. By looking at how the reference agent behaves,
designers might derive rules or guidelines that specify desired
systemic behaviors.

A notepad that is used to play video games on a computer or
console could be an example of an external controller. These
controllers let players engage with games by pressing buttons,
moving joysticks, or activating other input devices. They are
usually connected to the gaming device wirelessly over Bluetooth
or USB. Using an external controller instead of a keyboard and
mouse allows for a more tactile and intuitive gaming experience.

7. Conclusion

From the above illustration, we have made a generalization for
gamma function to get the 3D-gamma function. Based on this gen-
eralization, the Mittag-Leffler function is generalized. As a conse-
quence, we considered 3D-AB-fractional calculus. Application is given
for the generalized fractional Riccati equation. Examples are formu-
lated using the suggested fractional operators. We considered the gen-
eralized Ulam stability for the solutions. We utilized the operator
[4B€D7],, «@(x), which can be replaced by [*BRD7],  o(y). Applica-
tions on self-organization of complex networks are proposed using the
generalized fractional differential operators. For future efforts, we aim
to make an extension of the suggested operators by using a complex
analytic function of a complex variable. We constructed new stable
SOCNs based on the recent studies. The optimal control is given in
terms of the generalized Mittag-Leffler function.
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