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1. Introduction

In 2017 we discuss the topological property ‘‘C-normal”
(AlZahrani and Kalantan, 2017). In this paper we introduce a new
property called C-a-Normality and C-b-Normality. We show any
a-normal (b-normal) space is C-a-normal (C-b-normal), but the
converse is not true in general. And we show that any C-normal,
lower compact, epinormal, epi-a-normal and epi-b-normal spaces
is C-a-normal (C-b-normal). We prove any locally compact is
C-a-normal (C-b-normal) but the converse is not true in general.
Also observe that a witness function of C-a-normal (C-b-normal)
not necessarily to be continuous in general, but it will be continu-
ous under some conditions.
2. C–-Normality and C--Normality

Recall that a topological space Y ; sð Þ is called an a-normal space
(Arhangel’skii and Ludwig, 2001) if for every-two disjoint closed
subsets F and E of Y there are two open subsets G and W of Y such
that F \ G is dense in F; E \W is dense in E, and G \W ¼ £, and a
topological space Y ; sð Þ is called a b-normal space (Arhangel’skii
and Ludwig, 2001) if for every-two disjoint closed subsets F and
E of Y there are two open subsets G and W of Y such that F \ G is
dense in F; E \W is dense in E, and G \W ¼ £. A topological space
Y ; sð Þ is called C-normal (AlZahrani and Kalantan, 2017) if there
exist a bijective function g from Y onto a normal space Z such that
the restriction map gjB from B onto g Bð Þ is a homeomorphism for
any compact subspace B of Y .

Definition 1.1. A topological space Y; sð Þ is called C-a-normal (C-b-
normal) if there exist a bijective function g from Y onto a-normal (b-
normal) space Z such that the restriction map gjB from B onto g Bð Þ is a
homeomorphism for any compact subspace B of Y .
In these definition, we call the space Z a witness of C-a-normal
(C-b-normal) and the function g is called a witness function.

A topological space Y; sð Þ is called a-regular (Alzahrani, 2022) if
for any x 2 Y and a closed subset A � Y such that x R A there are
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two disjoint open sets G; H � Y such that x 2 G and A \ H ¼ A. And
topological space Y; sð Þ is called almost a-regular (Alzahrani, 2022)
if for any x 2 Y and a regular closed subset A � Y such that x R A
there are two disjoint open sets G; H � Y such that x 2 G and
A \ H ¼ A.

Lemma 1.2. Any regular space is a-regular.
Proof. Let Y ; sð Þ be a regular space. Pick y 2 Y and F#Y be a closed
set such that y R F, then there exist two disjoint open sets W1 and
W2 subsets of Y where y 2 W1 and F#W2, hence F \W2 ¼ F (note
that F ¼ F since F is closed), and W1 \W2 ¼ £, therefore Y; sð Þ is
a-regular space.
Lemma 1.3. (Alzahrani, 2022) Any a-regular space is almost a-
regular.

From Lemma 1.2. and Lemma 1.3. we conclude the following
corollary.

Corollary 1.4. Any regular space is almost a-regular.
Lemma 1.5. Any normal space is a-normal.
Lemma 1.6 ((Arhangel’skii and Ludwig, 2001)). Any normal space is
b-normal.
Proof. Let Y be a normal space. Pick two disjoint closed sets F1 and
F2 subsets of Y . Since Y is normal, then there exist two disjoint
open sets W1 and W2 subsets of Y where F1 #W1, F2 #W2 and
W1 \W2 ¼ £. Hence F1 \W1 ¼ F1 and F2 \W2 ¼ F2. It remains
to prove W1\W2¼£. For a normal space Y, if F is a closed set, U
is an open set and F # U, then there exist an open set V such that
F # V # �V # U. Now apply this to F1 and setW1 = V andW2 = Y\ �V .

So we have the following theorem.

Theorem 1.7. Any C-normal space is C-a-normal (C-b-normal).

The converse is true under some conditions, first we mention
some definition.

A Hausdorff space Y is extremally disconnected (Engelking, 1977)
if the closure of any open set in Y is open. A topological space is
called mildly normal (Shchepin, 1972) if any two disjoint regular
closed subsets can be separated.

Theorem 1.8 ((Arhangel’skii and Ludwig, 2001)). Any a-normal
extremally disconnected space is normal.
Proof. Let Y be a a-normal extremally disconnected space. Pick
two disjoint closed sets F1 and F2 subsets of Y . Since Y is a-
normal, then there exist two disjoint open sets W1 and W2 subsets
of Y where F1 \W1 ¼ F1 and F2 \W2 ¼ F2. Hence F1 #W1 and
F2 #W2. However, W1 \ W2 = £ since W2 is open and W1 \ W2

= £. Thus, W1\ W2 = £ as well since W1 is open (by extremally
disconnectedness) and W1 \ W2= £.

Therefore Y is normal space.
From Theorem 1.8, we have the following.

Theorem 1.9. If Y is C-a-normal (C-b-normal) such that the witness
of C-a-normal (C-b-normal) is extremally disconnected, then Y is
C-normal.
2

Theorem 1.10. If Y is C-b-normal such that the witness of C-b-
normal is mildly normal, then Y is C-normal.
Proof. Let Y be C-b-normal. Then the codomain Z witness of C-b-
normal is b-normal. Let F1 and F2 be any disjoint closed subsets
of Z. Since Z is b-normal, there exist open subsets W1 and W2 of
Z where W1 \W2 ¼ £, F1 \W1 ¼ F1 and F2 \W2 ¼ F2. So W1,
W2 are disjoint regular closed subsets containing F1 and F2 respec-
tively. Since Z is mildly normal, there exist disjoint open subsets U1

and U2 of Z where F1 #W1 #U1 and F2 #W2 #U2. Hence Z is
normal.
Lemma 1.11. Any a-normal space satisfying T1 axiom is Hausdorff.
Proof. Let Y be any a-normal T1-space. Let y; z be any two distinct
elements in Y . Hence yf g and zf g are disjoint closed subsets of Y ,
by a-normality, there exist two disjoint open subsets G1 and G2

of Y where yf g \ G1 ¼ yf g and zf g \ G2 ¼ zf g which implies
y 2 G1 and z 2 G2. Therefore Y is Hausdorff.
Lemma 1.12 ((Arhangel’skii and Ludwig, 2001)). Any b-normal
space satisfying T1 axiom is regular (hence Hausdorff).

By Corollary 1.4. we have the following result.

Corollary 1.13. Any b-normal space satisfying T1 axiom is almost a-
regular.

Also by Lemma 1.12 and Lemma 1.2 we have the following
result.

Lemma 1.14. Any b-normal space satisfying T1 axiom is a-regular.
Corollary 1.15. Any a-normal space satisfying T1 axiom is a-regular.

By Lemma 1.3. we conclude the following corollary.

Corollary 1.16. Any a-normal space satisfying T1 axiom is almost a-
regular.
Proposition 1.17. (Murtinov́a, 2002) Every first countable a-normal
Hausdorff space is regular.

Recall that a topological space (Y, s) is called submetrizable
(AlZahrani and Kalantan, 2017) if there exists a metric d on Y such
that the topology s d on Y generated by d is coarser than s.

Theorem 1.18. Every submetrizable space is C-a-normal (C-b-
normal).
Proof. Let Y; sð Þ be a submetrizable space, the there exists a
metrizable s0 such that s0 # s. Hence Y; s0ð Þ is a-normal since it is
normal, and the identity function idY from Y; sð Þ onto Y; s0ð Þ is a
one-to-one and continuous function. If we take B any compact sub-
space of Y ; sð Þ, then idY Bð Þ is hausdorff, since it is subspace of Y; s0ð Þ,
and by (Engelking, 1977);3.1.13]; idY jB

is a homeomorphism.
Example 1.19. The Rational Sequence Topology R;RSð Þ (Steen and
Seebach, 1995) is submetrizable being finer than the usual topology
R;Uð Þ, so R;RSð Þ is C-a-normal (C-b-normal).

The converse of Theorem 1.18. is not true in general, for exam-
ple x1 þ 1 is C-a-normal (C-b-normal) which is not submetrizable.
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Apparently, any a-normal (b-normal) space is C-a-normal (C-b-
normal), to prove this, just by considering Z ¼ Y and g is the iden-
tity function.

While in general the converse is not true. We provide some
examples below.

Example 1.20.

1. The Half-Disc topological space (Steen and Seebach, 1995) is C-a-
normal (C-b-normal) because it is submetrizable by Theorem 1.18.
but it is not a-normal nor b-normal because it is first countable and
Hausdorff but not regular, so by Proposition 1.17. the Half-Disc
topological space is not a-normal space, hence not b-normal. In
general C-a-normality (C-b-normality) do not imply a-normality
(b-normality) even with Hausdorff or first countable properties.

2. The Deleted Tychonoff Plank (Steen and Seebach, 1995), it is
C-a-normal (C-b-normal) since it is locally compact by Theo-
rem 2.7. but it is not a-normal nor b-normal see
(Arhangel’skii and Ludwig, 2001).

3. The Dieudonn e
Â�
Plank (AlZahrani and Kalantan, 2017), in exam-

ple 1.10 we proved that it is C-normal, hence it is C-a-normal
(C-b-normal) by Theorem 1.9. but it is not a-normal nor b-
normal see (Arhangel’skii and Ludwig, 2001), also not locally
compact, hence this example also shows that the converse of
Theorem 2.7. is not true.

4. The Sorgenfrey line square S�S see (Steen and Seebach,
1995) is not normal, but it is submetrizable space being it is
finer than the usual topology on R� R, so by Theorem 1.18. it
is C-a-normal (C-b-normal).
Theorem 1.21. If Y is a compact non–a-normal (non–b-normal)
space, then Y can not be C-a-normal (C-b-normal).
Proof. Assume Y is a compact non–a-normal (non–b-normal)
space. Suppose Y is C-a-normal (C-b-normal), then there exists
a-normal (b-normal) space Z and a bijective function g : Y ! Z
where the restriction map gjB from B onto g Bð Þ is a homeomor-
phism for any compact subspace K of Y . As Y is compact, then
Y ffi Z, and we have a contradiction as Z is a-normal (b-normal)
while Y is not. Hence Y can not be C-a-normal (C-b-normal).

Observe that a function g : Y ! Z witnessing of C-a-normal
(C-b-normal) of Y not necessarily to be continuous in general, and
here is an example.
Example 1.22. Let R with the countable complement topology CC

(Steen and Seebach, 1995).We know R;CCð Þ is T1 and the only com-
pact sets are finite, hence the compact subspaces are discrete. If we let
D be the discrete topology on R, then obviously the identity function
from R;CCð Þ onto R;Dð Þ is a witnessing of the C-a-normality (C-b-
normality) which is not continuous.

But it will be continuous under some conditions as the follow-
ing theorems.

Theorem 1.23. If Y; sð Þ is a C-a-normal (C-b-normal) and Fréchet
space, then any function witnessing of C-a-normality (C-b-normality)
is continuous.
Proof. Let Y be a Fréchet C-a-normal (C-b-normal) space and
g : Y ! Z be a witness of the C-a-normality (C-b-normality) of Y .

Let A#Y and pick z 2 g A
� �

. There is a unique y 2 Y where

g yð Þ ¼ z; thus y 2 A. since Y is Fréchet, then there exists a sequence
anð Þ#A where an ! y. As the subspace K ¼ yf g [ an : n 2 Nf g of Y
3

is compact, the induced map gjK : K ! g Kð Þ is a homeomorphism.
Let U# Z be any open neighborhood of z. Then U \ g Kð Þ is an open
neighborhood of z in the subspace g Kð Þ. Since gjK is a homeomor-

phism, then g�1 U \ g Kð Þð Þ ¼ g�1 Uð Þ \ K is an open neighborhood
of y in K, then there exists m 2 N where an 2 g�1 U \ g Kð Þð Þ
8n � m; hence g anð Þ 2 U \ g Kð Þð Þ8n � m; then U \ g Að Þ–£: Hence

z 2 g Að Þ and g A
� �

# g Að Þ: Thus g is continuous.

Since any first countable space is Fréchet, we conclude that, In
C-a-normality (C-b-normality) first countable space a function
g : Y ! Z is a witness of the C-a-normality (C-b-normality) of Y is
continuous. Also, by theorem (Engelking, 1977),3.3.21], we con-
clude the following.
Corollary 1.24. If Y is a C-a-normal (C-b-normal) k-space and g is a
witness function of the C-a-normality (C-b-normality), then g is
continuous.

For simplicity, let us call a T1 space which satisfies that the only
compact subspaces are the finite subsets F-compact. Clearly F-
compactness is a topological property.

Theorem 1.25. If Y is F-compact, then Y is C-a-normal (C-b-normal).
Proof. Let Y be a F-compact. Let Z ¼ Y and let Z with the discrete
topology. Hence the identity function from Y onto Z does the job.
Example 1.26. Consider R;CCð Þ, where CC is the countable com-
plement topology (Steen and Seebach, 1995). We know R;CCð Þ
is T1 and the only compact sets are finite, therefore, by Theo-
rem 1.25. R;CCð Þ is C-a-normal (C-b-normal). This a fourth
example of C-a-normal (C-b-normal) but not a-normal (nor b-
normal).

Notice that any topology finer than a T1 topological space is T1.
Also any compact sub set of a topological space Y; sð Þ is compact in
any topology coarser than s on Y .

Hence any topology finer than F-compact topological space is
also F-compact. As an example, R; sð Þ denotes the Fortissimo topol-
ogy on R, see [14, Example 25]. We know that R; sð Þ is finer than
R;CCð Þ which is F-compact, hence R; sð Þ F-compact too. Thus,
R; sð Þ is C-a-normal (C-b-normal).

Theorem 1.27. C-a-normality (C-b-normality) is a topological
property.
Proof. Let Y be a C-a-normal (C-b-normal) space and let Y ffi W .
Let Z be a a-normal (b-normal) space and let g : Y ! Z be a bijec-
tive function where the restriction map gjB from B onto g Bð Þ is a
homeomorphism for any compact subspace B#Y . Let k : W ! Y
be a homeomorphism. Hence Z and g�k : W ! Z satisfy the
requirements.
3. C–-Normality (C--Normality) and some other properties

Definition 2.1. A topological space Y; sð Þ is called C-a-regular if there
exists a bijective function g from Y onto a-regular space Z such that
the restriction map gjB from B onto g Bð Þ is a homeomorphism for any
compact subspace B of Y .

This definition is new and we will study some of its properties
later.
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Corollary 2.2. If Y is C-a-normal (C-b-normal) space and the witness
of the C-a-normality (C-b-normality) of Y is T1, then Y is C-a-regular.

We prove this corollary by Lemma 1.11, Lemma 1.12. We
defined C-regular in (AlZahrani, 2018).

Corollary 2.3. If Y is C-b-normal space and the codomain witness of
the C-b-normality of Y is T1, then Y is C-regular.

We prove this corollary by Lemma 1.12.

Corollary 2.4. If Y is a C-a-normal (C-b-normal) Fréchet space and
the witness of the C-a-normality (C-b-normality) is T1, then Y is T2.
Proof. Let Y is a C-a-normal (C-b-normal) Fréchet space, then
there exist a-normal (b-normal) space Z (witness of the C-a-
normality (C-b-normality)) and a bijective function g : Y ! Z such
that the restriction map gjB from B onto g Bð Þ is a homeomorphism
for any compact subspace B of Y , then by Theorem 1.23. g is con-
tinuous. Let any a; b 2 Y be such that a–b, then g að Þ–g bð Þ,
g að Þ; g bð Þ 2 Z. Since Z is a-normal (b-normal) and T1, then by
Lemma 1.11 (Lemma 1.12) the space Z is T2 , then there exist W1

and W2 are open sets in Z where g að Þ 2 W1; g bð Þ 2 W2 and
W1 \W2 ¼ £. Since W1;W2 are open sets in Z and g is continuous,
then g�1 W1ð Þ and g�1 W2ð Þ are open sets in Y , a 2 g�1 W1ð Þ;
b 2 g�1 W2ð Þ and g�1 W1ð Þ \ g�1 W2ð Þ ¼ g�1 W1 \W2ð Þ ¼ £. Hence Y
is T2 .
Theorem 2.5. Any C-regular Fréchet Lindelof space is C-a-normal
(C-b-normal).
Proof. Let Y be any C-regular Fréchet Lindelof space. Let Z be a reg-
ular space and g : Y ! Z be a continuous bijective function see The-
orem 1.23. By (Engelking, 1977); 3.8.7] Z is Lindelof. Since any
regular Lindelof space is normal (Engelking, 1977), 3.8.2]. Hence
Y is C-a-normal (C-b-normal).

C-a-normality (C-b-normality) does not imply C-a-regularity
nor C-regular, for example.

Example 2.6. Consider the real numbers set R with its right ray
topology R, where R ¼ £;Rf g [ b;1ð Þ : b 2 Rf g. As any two non-
empty closed sets must be intersect in R;Rð Þ, then it is normal, and by
Lemma in above, it is a-normal (b-normal), hence C-a-normal (C-b-
normal). Now, suppose that R;Rð Þ is C-a-regular. Take a-regular space
Z and a bijective function g fromR onto Z where the restriction map gjB
from B onto g Bð Þ is a homeomorphism for any compact subspace B ofR.
We know that a subspace B of R;Rð Þ is compact if and only if B has a
minimal element. Hence 1;1½ Þ is compact, then
gj 1;1½ Þ

: 1;1½ Þ ! g 1;1½ Þð Þ � Z is a homeomorphism, it means 1;1½ Þ
asa subspaceof R;Rð Þ isa-regularwhich is a contradiction, since 1;4½ � is
closed in subspace 1;1½ Þ and 4:5 R 1;4½ �, but any non-empty open sets
on 1;1½ Þmust intersect. Then R;Rð Þ cannot be C-a-regular (C-regular).

Recall that a topological space Y ; sð Þ is called Locally Compact
(AlZahrani and Kalantan, 2017) if Y; sð Þ is Hausdorff and for every
y 2 Y and every open neighborhood V of y there exists an open
neighborhood U of y such that y 2 U#U#V and U is compact.

Theorem 2.7. Every locally compact space is C-a-normal (C-b-
normal).
Proof. Let Y be locally compact space. By (Engelking, 1977), 3.3.D],
there exists T2 compact space Z and hence a-normal (b-normal),
and a continuous bijective function g : Y ! Z. We have gjK from K
4

onto g Kð Þ is a homeomorphism for any compact subspace K of Y ,
because continuity ,1–1 and onto are inherited by g, also gjK is
closed since K is compact and g(K) is T2.
Example 2.8. Consider x1, the first uncountable ordinal, we consider
x1 as an open subspace of its successor x1 þ 1ð Þ, which is compact
and hence is locally compact [14, Example 43]. Thus, x1 is locally
compact as an open subspace of a locally compact space, see
(Engelking, 1977),3.3.8]. Then by Theorem 2.7. x1 is C-a-normal
(C-b-normal).

The converse of Theorem 2.7. is not true in general. We intro-
duce the following example of C-a-normal (C-b-normal) which is
not locally compact.

Example 2.9. Consider the quotient space R=N. Let Z ¼ RfNð Þ [ if g,
where i ¼

ffiffiffiffiffiffiffi
�1

p
. Define g : R ! Z as follows:

g að Þ ¼ a for a 2 RnN
i for a 2 N

�

Now consider R with the usual topology U. Define the topology
s ¼ V # Z : g�1 Vð Þ 2 U

� �
on Z. Then g : R;Uð Þ ! Z; sð Þ is a closed

quotient mapping. We explain the open neighborhoods of any ele-
ment in Z as follows: The open neighborhoods of each a 2 RfN are
a� e; aþ eð ÞfN where e is a natural number. The open neighbor-
hoods of i 2 Z are GfNð Þ [ if g, where G is an open set in R;Uð Þ such
that N#G. It is clear that Z; sð Þ is T3, but it is not locally compact .
Z; sð Þ is a continuous image of Rwith its usual topology, so it is Lin-
delof and T3, then Z; sð Þ is T4. Hence it is C-a-normal (C-b-normal).

A topological space Y; sð Þ is called Epi-a-normal (Gheith and
AlZahrani, 2021) if there is a coarse topology s0 on Y such that
Y ; s0ð Þ is a-normal and T1. A topological space Y ; sð Þ is called
Epi-b-normal (Gheith and AlZahrani, 2021) if there is a coarse
topology s0 on Y such that Y; s0ð Þ is b-normal and T1. We defined
Epinormal in (AlZahrani and Kalantan, 2016). By the same argu-
ment of Theorem 1.18. we can prove the following corollary.

Corollary 2.10. Every epinormal space is C-a-normal (C-b-normal).
Corollary 2.11. Every epi-a-normal (epi-b-normal)space is C-a-
normal(C-b-normal).

Any indiscrete space which has more than one point is an exam-
ple of a C-a-normal (C-b-normal) space which is not epi-a-normal
(epi-b-normal).

The converse of Corollary 2.9 is true with Fréchet property.

Theorem 2.12. Any C-a-normal (C-b-normal) Fréchet space is epi-a-
normal (epi-b-normal).
Proof. Let Y ; sð Þ be any C-a-normal (C-b-normal) Fréchet space.
Let Z; s0ð Þ be a-normal (b-normal) and g : Y ; sð Þ ! Z; s0ð Þ be a bijec-
tive function. Since Y is Fréchet, g is continuous (see Theorem 1.23).
Define s	 ¼ g�1 Vð Þ : V 2 s0� �

. Obviously, s	 is a topology on Y coar-
ser than s such that g : Y ; s	ð Þ ! Z; s0ð Þ is continuous. Also g is
open, since if we take U 2 s	, then U ¼ g�1 Vð Þ where V 2 s0. Thus
g Uð Þ ¼ g g�1 Vð Þ� 	 ¼ V which gives that g is open. Therefore g is a
homeomorphism. Thus Y ; s	ð Þ is a-normal (b-normal). Hence
Y ; sð Þ is epi-a-normal (epi-b-normal).

A topological space Y ; sð Þ is called lower compact (Kalantan
et al., 2019) if there exists a coarser topology s0 on Y such that
Y ; s0ð Þ is T2-compact.
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Theorem 2.13. Any lower compact space is C-a-normal (C-b-
normal).
Proof. Let Y; sð Þ is lower compact, then Y ; s0ð Þ is T2-compact, hence
normal and the identity function idY : Y ; sð Þ ! Y ; s0ð Þ is a continu-
ous and bijective. If we take B any compact subspace of Y ; sð Þ, then
idY jB is a homeomorphism by (Engelking, 1977);3.1.13].

In general, the converse of Theorem 2.13. is not true, for exam-
ple consider a countable complement topology on an uncountable
set, it is C-a-normal (C-b-normal) since it is F-compact, but it is not
lower compact because it is not T2.

Theorem 2.14. If Y ; sð Þ is C-a-normal compact Fréchet space and the
witness of the C-a-normality is T1, then Y; sð Þ is lower compact.
Proof. Pick a-normal space Z; s	ð Þ and a bijective function
g : Y ; sð Þ ! Z; s	ð Þ such that gjB : B ! g Bð Þ is a homeomorphism
for any compact subspace B#Y . Since Y is Fréchet, then g is contin-
uous. Hence Z; s	ð Þ is compact. Since Z; s	ð Þ is T1 a-normal space,
then by Lemma 1.11. it is Hausdorff. Hence Z; s	ð Þ is T2 compact.
Define a topology s0 on Y as follows s0 ¼ g�1 Vð Þ : V 2 s	

� �
: Then

s0 is coarser than s and g : Y; s0ð Þ ! Z; s	ð Þ is a bijection continuous
function. Let any U 2 s0 , then U is of the form g�1 Vð Þ for some
V 2 s	. Hence g Uð Þ ¼ g g�1 Vð Þ� 	 ¼ V . Thus g is open. Hence g is a
homeomorphism. So Y ; s0ð Þ is T2 compact. Therefore Y; sð Þ is lower
compact.
Theorem 2.15. If Y; sð Þ is C-b-normal compact Fréchet space and the
witness of the C-b-normality is T1, then Y; sð Þ is lower compact.
4. Conclusion

The aim of this paper is to introduce a new weaker version of
normality called C-a-normal and C-b-normal. We show that some
relationships between this a new topological property and some
5

other topological properties, and there are still many topological
properties that the researcher can study in this topic.
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