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ABSTRACT

The current study assesses the efficacy of thidiazuron and cytokinins (6- benzylamino purine and kinetin)
in modulating flower senescence in excised spikes of Consolida ajacis. The spikes harvested at commercial
maturity were transported to laboratory and arranged into multiple sets. Each set of spikes was subjected
to different treatments of thidiazuron (TDZ), benzylamino purine (BAP) and kinetin (KIN) viz., 25 uM,
50 uM, 75 pM and 100 pM. One set of spikes designated as control was kept in distilled water.
Inclusion of these growth regulators significantly improved the postharvest longevity of C. ajacis cut
spikes. The enhancement in display life was proportionate with upsurge in the activity of superoxide dis-
mutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). Flowers held in different test solutions of
BAP, KIN and TDZ, exhibited higher values of sugars, phenols and proteins. Furthermore, these growth
regulators minimized membrane leakiness by reducing lipoxygenase activity (LOX) and improved mem-
brane stability. Among the various growth regulators tested, 50 pM TDZ was found to be highly effica-
cious in mitigating flower senescence in C. ajacis cut spikes as compared to KIN and BAP.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Flower senescence involves programmed death of petal tissues
resulting in loss of their function. It is viewed as end stage of devel-
opment characterised by wilting, withering and color fading of
petal tissues (Fischer, 2012). Petal senescence is accompanied by
leakage of membranes, decrease in sugars, proteins and antioxi-
dant enzymes (Ul Haq et al., 2021). It is a key postharvest attribute
affecting the marketability of cut flowers. Postharvest senescence
is regulated by various factors like, humidity, temperature, sugar
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content, hydration status, light and phytoharmones (Reid, 2009).
The optimum levels of all these factors improve postharvest long-
evity and delay in the onset of senescence. Moreover, understand-
ing the key biochemical mechanisms governing flower senescence
is crucial to modulate postharvest performance of cut flowers.
Senescence is influenced by the interaction of various plant har-
mones including cytokinins, ethylene and abscisic acid. Typically,
ethylene and ABA facilitate senescence, while as cytokinins retard
senescence (Igbal et al., 2017). Cytokinins retard senescence in
ethylene sensitive as well as ethylene insensitive flower systems.
Cytokinins postpone onset of senescence by lowering ethylene out-
put in ethylene responsive flower systems (Van Doorn and
Woltering, 2008). While as, cytokinins inhibit sensescence initia-
tion in ethylene insensitive flowers by decreasing ABA synthesis
(Trivellini et al., 2015). Cytokinins rather prevent instigation of
senescence by promoting sugar accumulation and reducing meme-
brane leakage of petal tissues (Igbal et al., 2017). Furthermore,
cytokinins boost antioxidant capacity by augmenting activity of
antioxidant enzymes and reduce lipid peroxidation by neutralizing
free radicals (Xu et al, 2012). Cytokinins prevent protein
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degradation and thus maintain protein content of the petal tissues
(Chen et al., 2018). Additionally, cytokinins enhance phenolic
enrichment, which activates a defensive mechanism against
postharvest senescence (Schmitzer et al., 2010). Cytokinin content
and senescence has been reported to be inversely related in some
studies (Honig et al., 2018). However, ethylene levels have been
found to be positively correlated with the cytokinin breakdown.
Increased ethylene levels trigger cytokinin breakdown via O- gly-
cosylation, resulting in senescence (Chang et al., 2003). Reportedly,
all the three growth regulators have been found to improve
postharvest life in Iris germanica L. However, phenyl urea type
cytokinin (TDZ) has shown more promising effects than adenine
type cytokinins (BAP and KIN) (Ahmad et al., 2018).

C. gjacis is beautiful ornamental of Ranunculaceae. It has
immense potential as cut flower because of its ravishing spikes
which adds gracefulness to the garden and rooms. However,
increased sensitivity to ethylene triggers early senescence of its
flowers. Although, application of ethylene antagonists have posi-
tively ameliorated its display life (Shahri and Tahir 2010), never-
theless, the role of cytokinins and TDZ as modulators of
senescence in C. gjacis flowers is yet to be examined. Therefore,
the present research aims to evaluate the role of these growth reg-
ulators in orchestrating antioxidant and biochemical mechanisms
underlying senescence of C. gjacis cut spikes.

2. Materials and methods
2.1. Plant material

Spikes of C. ajacis were collected from the field plots at commer-
cial maturity (Fig. 1) and carried to laboratory. The spikes were
recut to size of 30 cm and placed in 100 ml flasks containing test
solutions of various growth regulators viz, TDZ, BAP, and KIN. Each
growth regulator comprised of four concentrations viz, 25 puM,
50 pM, 75 puM and 100 pM. The treatment effects were compared
with control set of spikes. All the concentrations including control
consisted of 10 replicates. The different biochemical parameters
were analyzed on day 2 and day 5 of transfer of spikes to their
respective test solutions. The experiment was performed under
controlled conditions with an average temperature of 25 + 2 °C,
12 h light period a day and a relative humidity (RH) of 60 + 10 %.

2.2. Postharvest longevity and flower diameter

The average postharvest longevity was calculated from day of
transfer to test solutions till senescence of an average 70 % florets
on each spikes. The floral diameter was measured as an average of
two perpendicular distances across a flower on day 2nd and day
5th of the experiment.
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2.3. Membrane stability index

Membrane stability index (MSI) was estimated by a method of
Sairam (1994) as seepage of solutes from floral tissues. MSI was
calculated as:

MSI = [1- C1/C2] *100

C, indicates conductivity of floral tissues dipped in distilled
water at 25 °C for 30 min, while as C, indicates conductivity of flo-
ral tissues dipped in distilled water at 100 °C for 15 min.

2.4. Estimation of sugars, amino acids and phenols

1 g of tepal tissue was fixed from each concentration in 70 % hot
ethanol. The tepal tissues were subsequently macerated and cen-
trifuged. The quantification of a- amino acids, total sugars, reduc-
ing sugars, non -reducing sugars and total phenols was performed
by taking suitable volume of aliquot from the supernatant. o-
amino acids were estimated by Rosen (1957) method using glycine
as standard. Swain and Hills method (1959) was used for estima-
tion of total phenols with Gallic acid acting as standard. Reducing
sugars were determined by Nelson (1944) method using glucose as
standard. For calculating total sugars, invertase was used to con-
vert non-reducing sugars to reducing sugars. The amount of non-
reducing sugars as evaluated as difference between total and
reducing sugars.

2.5. Protein estimation

Proteins were quantified by macerating 1g of floral tissue in 100
mM phosphate buffer (pH 7.2) containing NaCl (150 mM), EDTA
(1ImM), Triton-X-100 (10%), glycerol (10%), PVP (10%) and Dithio-
theritol (1mM). The mixture was centifuged at 12000 g for 15 min-
utes at 4°C. The proteins were quantified by Lowry et al. method
(1951) by taking suitable volume of aliquot from the supernatant.

2.6. Enzyme assay

2.6.1. Superoxide dismutase activity

The activity of superoxide dismutase enzyme was estimated by
Dhindsa et al. method (1981). The SOD activity was expressed as
units min~! mg~' protein.

2.6.2. Catalase activity
The activity of catalase was assayed by the method of Aebi
(1984) and was expressed as pmol H,0, red. min~' mg~! protein.

Fig. 1. One day before anthesis stage of C. ajacis flowers used for the present study.
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2.6.3. Ascorbate peroxidase activity

Ascorbate peroxidase activity was determined by a method of
Chen and Asada (1989) and was expressed as umol min~! mg~!
protein.

2.6.4. Lipoxygenase activity

Lipoxygenase activity was determined by the method of
Axelrod et al. method (1981) and the units were expressed as pumol
min~! mg~! protein.

2.7. Experimental design and statistical analysis

Complete randomized design was followed during the experi-
ment and the statistical analysis was performed through SPSS soft-
ware. The treatments means were considered significant at
(P < 0.05) according to Duncan'’s test.

3. Results
3.1. Postharvest longevity and floral diameter

Individual spikes of C. ajacis lasted for about 7 days in the dis-
tilled water. Flower senescence in C. gjacis involves turgidity loss,
wilting and ultimately abscission of tepals Fig. 2 (A-C). Flowers
held in optimum concentration of TDZ (50 uM), BAP (50uM) and
KIN (75 pM) showed maximum increase in longevity by 123 %,
68.4 % and 91.7 % respectively (Fig. 3A). In addition, flowers sup-
plied with test solutions had significantly higher flower diameter
as compared to control. The flower diameter increased by 25.6 %,
12.95 and 16.2 % respectively in TDZ (50 puM), BAP (50 uM) and

v
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KIN (75 puM) treated flowers. Moreover, flower diameter showed
a maximum increase up to day 2 and then decreased gradually
from day 2 to day 5 (Fig. 3B).

3.2. Membrane stability index (MSI)

In the present investigation flowers held in test solutions of
TDZ, BAP and KIN exhibited higher MSI values compared to the
control. Decrease in MSI values in control treatment relative to
treated samples suggests loss of membrane integrity with
advancement in flower development, which eventually ends up
with disorganization of subcellular organelles. Among the selected
growth regulators, maximum increase in MSI values was recorded
in 50 uM TDZ (191 %) treated samples as compared to75uM KIN
(143 %) and 50 pM BAP (160 %). MSI values exbhited a decline
towards the later stages of experiment. (Fig. 4).

3.3. Soluble proteins and o~ amino acids

The higher protein concentration was recorded in spikes held in
test solutions of BAP, KIN and TDZ. Meanwhile, o-amino acid con-
centration was found lower in the spikes held in these test solu-
tions. Therefore, a- amino acids were found to be maximum in
spikes held in distilled water. The percent increase in protein con-
centration of floral tissues held in TDZ (50 uM), BAP (50 uM) and
KIN (75 pM) was found to be 74.28 %, 25.7 % and 37.14 % respec-
tively. Likewise, the concentration of a- amino acids for these opti-
mum concentrations was found to be 60.7 %, 51.7 % and 53.57 %.
The effectiveness of these growth regulators decreased towards
end stages of flower development resulting decrease in the

Fig. 2. (A-C). Photograph depicting efficacy of TDZ, BAP and KIN in accentuating postharvest longevity of C. ajacis cut spikes on day 13, day 11 and day 12 of transfer to

respective test solutions.
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Fig. 3. (A-B). Graphs showing the effect of TDZ, KIN and BAP treatments on postharvest longevity and floral dimensions of C. ajacis flowers. Each value is a mean of 3 replicates
with standard error S.E. indicated by bars. Treatments indicated by different superscripts differ significantly according to Duncan’s test at p < 0.05.
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Fig. 4. Graphs showing the effect of TDZ, KIN and BAP treatments on MSI of C. ajacis
flowers. Each value is a mean of 3 replicates with S.E. indicated by bars. Treatments
indicated by different superscripts differ significantly according to Duncan'’s test at
p < 0.05.

soluble proteins with corresponding increase in o- amino acids
Fig. 5 (A-B).

3.4. Phenols and sugars

As compared to untreated flowers, higher phenolic enrichment
occurred in tepal tissues held in BAP, KIN and TDZ solutions, with
maximum in TDZ treated samples. The phenolic concentration of
tepal tissues held in TDZ (75 pM), BAP (50 uM) and KIN (50 pM)
increased by 253 %, 115.3 % and 215 % respectively (Fig. 6A). Like-
wise, the tepal tissues held in 50 uM TDZ, 50 nM BAP and 75 uM
KIN maintained higher sugar content as compared to control treat-
ment Fig. 6 (B-D). The sugar concentration for these optimum
treatments was found to be 66.2 %, 34.9 % and 60.2 % respectively.
Moreover, TDZ treated tepal tissues retained more sugar content as
compared to BAP and KIN. The concentration of both sugars and
phenols declined towards end of experiment.

3.5. Activity of antioxidant and Lipoxygenase enzyme

Application of all the three growth regulators (BAP, KIN and
TDZ) caused a notable amplification in SOD, APX and CAT activity
in comparison to control. The peak in activity of SOD and CAT
was recorded at, 50 uM TDZ, 50 uM BAP and 75 pM KIN Fig. 7
(A-B). The CAT activity for these three treatments increased by
364.8 %, 265.9 % and 350 % respectively, meanwhile, the APX activ-
ity peaked at 50 uM TDZ, 75 uM BAP and 75 puM KIN (Fig. 7C). The
percent increase in APX activity for these treatments include,
271.2 %, 157.5 % and 243.9 %. Conversely, spikes placed in these
test solutions exbhited low LOX activity in tepal tissues as com-
pared to untreated spikes. LOX activity significantly reduced by
31.5 % in 50 M BAP, 54.3 % in 50 pM TDZ and 40.3 % in 75 pM
KIN treatments (Fig. 7D). However, antioxidant enzyme activity
subsequently reduced towards later phase of experiment, with
parallel rise in LOX activity.

4. Discussion

Based on the findings, our study justifies TDZ and cytokinins as
potential postharvest treatments for improving the marketability
of C. agjacis cut spikes. TDZ and cytokinins treatments caused a pro-
found increase in postharvest longevity in comparison to control.
Our results indicate that Cytokinin mediated enhancement in
postharvest longevity may be due to higher respirable substrates,
improved hydraulic conductivity and membrane stability. These
findings are quite consistent with the study conducted in Chrysan-
themum where BAP and TDZ treatments prolonged vase life by
maintaining respirable substrates, improved membrane stability
and water uptake in florets (Kaur and Singh, 2015). Application
of cytokinins is also known to prolong postharvest longevity of var-
ious flowers like, Anemone (Moneruzzaman et al., 2010). Besides
longevity, other postharvest attributes like floral diameter also
exhibited increase due to cytokinin and TDZ treatments. Expansion
in floral dimensions may be linked to sugar enrichment in tepal tis-
sues, which in turn increases the turgidity of floral tissues through
endosmosis, thus leading to increase in flower diameter (Reid,
2003). Increase in flower diameter by cytokinin application has
been observed in Dendranthema grandiflorium (EL, 2018).

Enhanced LOX activity is regarded as characteristic feature of
senescent plant tissues as observed in petal tissues of Chrysanthe-
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mum (Khokhar and Mukherjee, 2013). Lipoxygenase affects mem-
brane fluidity by degrading membrane lipids and increases leaki-
ness of the cell membrane (Khokhar and Mukherjee, 2013).
However, tepal tissues of C. ajacis treated with cytokinins exhibited
lower LOX activity as compared to untreated samples. Conse-
quently, decrease in LOX activity causes a corresponding increase
in MSI value in cytokinin treated flowers and improve membrane
stability. The increased membrane stability can be also correlated
with the inhibition of protease leakage from the vacuoles thereby
retaining optimum content of phospholipids, proteins and thiols
crucial for membrane integrity (Dek et al., 2017). Decreased LOX
activity by cytokinin application has been reported in Iris german-
ica. (Ahmad et al., 2018). Our observations are also consistent with
the findings reported in Brocelli florets where cytokinin treatment
reduced malondialdehyde (MDA) content by preventing lipid per-
oxidation (Xu et al., 2012;).

Proteins serve as crucial metabolites in the regulation of
postharvest senescence. Sensecent tissues are characterised by
lower concentration of soluble proteins. Meanwhile, the concen-
tration of proteins was found to be higher in BAP, KIN and TDZ
treated tepal tissues. Accumulation of proteins in tepal tissues
can be linked with inhibition of protease activity by cytokinins
and TDZ. Upsurge in protease activity has shown to trigger protein

breakdown in Lilium longiflorum (Battelli et al., 2011). Hydrolyzed
proteins are mobilized as o- amino acids from petals to growing
organs during senescence (Jones, 2013). However, studies con-
ducted in Lilium candidum and Raphanus sativus reported a
decrease in protease activity by exogenous application of cytoki-
nins and TDZ (Khokhar and Mukherjee, 2011; Sharafi et al,
2013). Moreover, a decreased content of a- amino acids was found
in cytokinin treated tissues as compared to untreated ones. This
may be due to curtailed protein breakdown by cytokinins, decreas-
ing quantity of o-- amino acids (Criado et al., 2007). Thus, implicat-
ing cytokinins as potent inhibitors of proteases, arresting protein
breakdown and improving flower longevity.

Inclusion of cytokinins and TDZ led to increase in phenolic con-
tent of floral tissues as compared to untreated ones. This may be
linked to cytokinin mediated expression of phenolic synthesis
enzymes like Phenyl ammonia lyase, Chalcone synthase and Chal-
cone isomerase (Deikman and Hammer, 1995). Phenolic enrich-
ment was found to occur in floral tissues of Iris germanica treated
with BAP, KIN and TDZ (Ahmad et al., 2018). Decrease in phenolic
content induces senescence as noticed in Iris japonica and Iris ver-
sicolor (Ahmad and Tahir, 2017). Phenolic enrichment stimulates
anti- ROS mechanisms to offset the stress related mutilation
(Cavaiuolo et al., 2013). Higher phenolic content enables the plant
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to overcome endogenous disturbances including biotic and abiotic
stress (Trivellini et al., 2015) Cytokinin induced phenolic enrich-
ment suggests their explicit role in activation of antioxidant sys-
tems to prevent oxidation of membrane lipids and proteins
during senescence. Besides phenols, carbohydrates content was
also found higher in cytokinin and TDZ supplied flowers relative
to control. Carbohydrate enrichment in petal tissues may be corre-
lated with increased vase life of ornamentals like Eustoma (Chang
et al., 2003). In addition, cytokinins enable mobilization of nutri-
ents by stimulating cell wall invertase (Werner et al., 2008) and
thus promote transfer of carbohydrates and other solutes from
leaves to flowers (Chathuri and Sarananda, 2011). Reportedly,
cytokinins and TDZ intensify sink activity, to prevent back flow
of sugars from petal tissues to ovary during remobilization of
nutrients (Ahmad et al., 2018). In conclusion, cytokinin mediated
sugar accumulation specifies their unequivocal role in sugar meta-
bolism and photosynthesis.

Treatment of C. ajacis flowers with different cytokinins showed
a considerable upturn in the activity of SOD, APX and CAT enzymes
in comparison to untreated ones. Upturn in antioxidant enzymes
due to cytokinins has been implicated in ROS scavenging in Nico-
tiana (Tahir et al., 2018). Rise in ROS concentration is a well-
known feature of senescent plant tissues as reported in Dianthus
caryophyllus and Hemarocallus fulva (Rogers and Munné-Bosch,
2016). Cytokinin treatment therefore intensified the activity of
antioxidant enzymes to offset the deleterious effects of ROS.
Upregulation of antioxidant system shields the plant cells from
oxidative stress through detoxification of superoxide ion (05’ to
water and oxygen (Xu et al., 2012).

5. Conclusion

Based on findings, the present study proposes considerable role
of cytokinins and TDZ in accentuating postharvest performance of
C. gjacis cut spikes. The inclusion of these growth regulators
improved postharvest performance by modulating various bio-
chemical pathways like, upregulation of antioxidant system, sus-
taining membrane integrity and maintaining higher content of
respirable substrates especially sugars and proteins. Our study
authenticates TDZ as best postharvest treatment among the
selected growth regulators to maximize postharvest longevity of
C. ajacis cut spikes for their efficient marketability. Although the
current study provides key insights into physio-biochemical mech-
anisms underlying senescence, however elucidating molecular
interaction of cytokinins with other phytohormones particularly
ethylene may offer a promising strategy to modulate flower senes-
cence and unveil novel techniques to maintain quality of these fas-
cinating climacteric flowers.
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