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A B S T R A C T   

A novel spiroheterocyclic hybrid comprising several privileged structures comprising pyrrolidine, quinoxaline, 
indole and ferrocene moieties were synthesized in good yields in sustainable fashion using [Bmim]Br augmented 
four component cycloaddition process. A relatively less explored ylide prepared from quinoxalinone and L- 
tryptophan with diverse ferrocenyl derivatives in ionic liquids afforded spiropyrrolidinoindole tethered ferrocene 
hybrids. The reaction provides highly regioselective fashion thus created five new bonds and four adjoining 
stereocenter in single synthetic transformation, thus created with complete diastereomeric control. The cholin-
esterase inhibitory potency was performed for synthesized compounds against AChE/BChE enzymes. Among 
them, compound bearing with fluorine substituted heterocycles showed significant activity which is comparable 
activity with reference standard, galantamine.   

1. Introduction 

A highly efficient and sustainable synthetic approach for accessing 
structural complexity that contains efficient structural fragments with 
minimal number of preparation steps is highly desirable in modern drug 
discovery program. Of the various synthetic methods available, multi-
component reactions (MCRs) (Sheldon et al., 2013; Arumugam et al., 
2018; Burke et al., 2004) have developed into a prevailing synthetic 
strategy for the preparation of structurally diverse complex scaffolds in a 
single transformation and are important to meet the increasing demand 
for the elaboration of sustainable organic syntheses with maximum 
molecules diversity (Anusha Rani et al., 2017; Vasudevan Sumesh et al., 
2016). MCRs is atom economic efficient straightforward reaction, 
minimized waste generation, potential to save solvents can avoid time- 
consuming and costly experimental procedures to purify various inter-
mediate and tedious steps of deprotection and protection of functional 
groups (Arumugam et al., 2013). Hence, the development of new regio- 
and stereoselective multicomponent reactions is a constant task at the 
lead of organic chemistry. 

Four-component reactions involving the intermolecular cycloaddi-
tion of in situ ylides with activated olefinic dipolarophile facilitate a 

concise approach into diverse hybrid heterocycles in a regio and ste-
reospecific manner (Ahrendt et al., 2004; Boruah 2007; Pandey et al., 
2006). This eco-friendly synthetic protocol (Sheldon, 2012) has attrac-
ted much attention and significant advances in the field and providing a 
rapid access to hybrid spirooxindole-pyrrolidines/pyrrolizidines het-
erocycles of biological importance (Kobayashi et al., 2002; Kanagaraju 
et al., 2014; Dhanalakshmi et al., 2015). Intriguingly, spirooxindole 
heterocycles have intrinsic three-dimensionality and facility to develop 
compound in all three dimensions. Prominent interactions of a ligand 
with a three-dimensional binding site are easier to achieve with a spi-
rocompounds than with planer aryl ring systems (Carreira et al., 2014). 
Apart from that spirooxindolopyrrolidines are an important entrant of 
many biologically active natural alkaloids and pharmaceutically active 
synthetic analogues including horsfiline, elacomine, spirotryprostatins 
A and B, MI-219 and M− 888 (Fig. 1). These spiro compounds exhibiting 
multifarious biological and pharmaceutical properties, for instance, 
anticonvulsant (Jiang et al., 2006), potential anti-leukaemic (Abou- 
Gharbia 1979) and antiviral activities (Lundahl et al., 1972). Therefore, 
the preparation of variety of functionalized spiro unit embedded pyr-
rolidines/pyrrolizidines is of great value in the field of medicinal 
chemistry. 
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Our team mainly engaged in the preparation and biological activities 
of structurally complex spiroheterocyclic architecture employing single- 
pot multicomponent cycloaddition methodology (Arumugam et al., 
2013 & 2018; Arumugam et al., 2021). These compounds have shown 
multifarious biological activities (Kornett et al., 1976) viz. antimicrobial 
activity, anticancer, anti-inflammatory, and cholinesterase inhibitory 
activities (Arumugam et al., 2019). Some of the spiro heterocycles 
showed interesting biological activities than the reference standard drug 
(Arumugam et al., 2018 & 2018). Inspired by these interesting biological 
precedents and our great interest in the area of cycloaddition (Arumu-
gam et al., 2020), herein we synthesize an easy access to structurally 
intriguing heterocycles comprising ferrocene grafted tethered spi-
ropyrrolidinoindenoquioxaline via a single-pot, eco-friendly green syn-
thetic transformation using a [3 + 2] cycloaddition reaction with their 
biological intervention. The synthetic strategy for the formation of spi-
rocompounds has been described in Fig. 2. 

2. Experimental section 

2.1. Synthesis of spiropyrrolidinoindole integrated ferrocene hybrid 
heterocycles, 5a-f 

An equimolar mixture of substrates 1, 2, L-tryptophan 4 and alkene 5 
was stirred 1 h at 100 ◦C. After an hour, the reaction mixture was diluted 
with EtOAc and brain water, the organic solvent was dried over Na2SO4 
and then solvent was removed under vaccum to give a pure spiro 
compound in excellent yield. 

2.1.1. Spiropyrrolidine, 6b 
Yield: 92 %; Brown solid; 1H NMR: δH 3.07–3.11 (1H, dd, J = 13.5, 

8.0 Hz), 3.53–3.56 (1H, m), 3.96 (1H, t, J = 10.0 Hz), 4.08–4.23 (7H, m), 
4.45–4.50 (2H, m), 5.10 (1H, d, J = 9.5 Hz), 6.86–6.88 (2H, m), 
6.97–6.98 (2H, m), 7.44–7.14 (4H, m), 7.22–7.29 (4H, m), 7.64 (1H, d, 
J = 7.5 Hz), 7.637.74 (3H, m), 8.05–8.16 (2H, m): 13C NMR: δC 30.0, 
45.7, 62.9, 66.3, 67.4, 67.7, 68.5, 68.7, 70.4, 89.7, 111.1, 112.8, 119.1, 
119.5, 121.5, 122.1, 122.8, 126.7, 127.9, 128.0, 128.9, 129.1, 129.4, 
129.7, 129.9, 131.3, 131.7, 135.8, 136.3, 141.9, 142.5, 147.6, 153.2, 
166.1, 197.7; LC/MS(ESI): m/z = 766 (M+). 

2.1.2. Spiropyrrolidine, 6d 
Yield: 90 %; Brown solid; 1H NMR: δH 3.07–3.11 (1H, dd, J = 14.5, 

8.0 Hz), 3.55 (1H, d, J = 14.5 Hz), 3.97 (1H, t, J = 10.0 Hz), 4.08–4.23 
(7H, m), 4.48–4.50 (1H, m), 5.14 (1H, d, J = 10.0 Hz), 6.48–6.51 (2H, 
m), 7.01–7.28 (8H, m, ArH), 7.57–7.79 (3H, m, ArH), 8.03–8.23 (3H, m, 
ArH); 13C NMR: δC 30.0, 45.5, 63.1, 65.2, 66.4, 67.4, 67.7, 68.6, 68.7, 
70.5, 89.8, 111.2, 112.7, 115.2, 115.3, 119.1, 119.5, 121.4, 122.0, 
122.9, 126.6, 128.0, 129.0, 129.1, 129.3, 129.7, 129.8, 129.9, 130.1, 
131.7, 133.6, 136.3, 141.9, 142.5, 147.7, 153.2, 164.2, 166.2, 197.1 LC/ 
MS(ESI): m/z = 706 (M+). 

3. Results and discussion 

3.1. Chemistry 

The starting precursor, ferrocene dipolarophile was prepared ac-
cording to the literature method [25]. The pre-requisite, ferrocenyl 
chalcone 4 was prepared by the reaction of ferrocene 2-carboxyaldehyde 
with appropriate aryl aldehyde in presence of potassium hydroxide. 
With the highly functionalized dipolarophile 4a in hand, firstly we 
achieved the one-pot reaction of 4 with in situ ylide synthesized from L- 
tryptophan (3) and quinoxalinone 7. Thus, a mixture of 1, 2, 3 and 4a in 
heating MeOH (10 mL, 60 min) affording the spiropyrrolidinoindole 
grafted ferrocene hybrids 5a as a single compound in 85 % yield. Ulti-
mately, the four-component reaction was also performed in (Bmim)Br at 
100 ◦C (Scheme 1). The desired spirocompound 5a was attained with 
quantitative yield (94%) compared to conventional method in MeOH. 

The regioselective spirohybrid heterocycles 5 was assigned with the 
help of spectroscopic studies as discussed for a representative case, 5b 
(Fig. 3). In the 1H NMR spectrum, H-3 hydrogen shows at δ 5.11 as a 
doublet its showed (i) correlation (proton, proton-COSY) with the triplet 
at δ 3.97 assigned to H-4 which shows HMBCs (Fig. 4) with the spi-
rocarbon (C-2), benzoylcarbon (C-4), benzoylcarbonyl carbon (C = O) at 
δ 89.7, 45.7,197.7, respectively. The multiplet at δ 4.47 was assigned to 
H-5 proton. The doublet of doublet and multiplet at δ 3.07–3.12 and δ 
3.54–3.56 were ascribable to H-6, which exhibited HMBCs with C-5 (δ 
65.2 ppm). 

Scheme 2 describes a reasonable mechanistic pathway for synthesis 
of spirocompound 6. The interaction of carbonyl of trione 1 with ionic 

Fig. 1. Biological active synthetic spiropyrrolidine derivatives.  
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Fig. 2. Synthetic strategy for the formation of spiropyrrolidino-indenoquioxalino-indole integrated ferrocene hybrid heterocycles.  

Scheme 1. Synthesis of spiropyrrolidinoindole tethered ferrocene hybrid heterocyles, 5a-f.  

Fig. 3. Selected Chemical shift of 5b.  
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liquids rises its electrophilicity, permitting attack of the NH of aryldi-
amine 1 to form quinoxalinone 3 by successive dehydration. Subse-
quently, quinoxalinone 3 was reacts with L-tryptophan to generate 

spirooxazolidinone intermediate 8 via intermediate 7 followed by the 
formation of in situ 1,3-dipole 5 via decarboxylation pathway. Further, 
the interaction of the C = O group of 5 with [Bmim]Br, stimulates 
double bond thus allowing the ylide to react with β-carbon ferrocene 
dipolarophile providing spiropyrrolidine 6. It is important to note that 
the ionic liquids is play a twin action as catalyst and solvent through the 
cycloaddition sequence has been well documented in the literature and 
it has described in Scheme 2. The regioisomer 7 was not detected due to 
the possible orbital interaction between ylide 11 and ferrocenyl ketone 
of dipolarophile 4. Besides, the ylide 11 favorably attacks β-carbon of the 
dipolarophile to afford desired cycloadduct 5. Furthermore, we inves-
tigated the stability of compound 5 through theoretical study employing 
minimization energy calculation (mm2) and found that the ferrocenyl 
cycloadduct 5 has a lower energy of 39.8022 kcal/mol than the other 
likely regioisomer 7 with a higher energy of 51.5377 kcal/mol, this 
shows that the cycloadduct 5 is more preferred than 7 as described in 
Fig. 5. 

Cholinesterase inhibitory activity. 

3.2. Cholinesterase inhibitory activity 

The prepared ferrocene grafted spiroquinoxalinopyrrolidine 5a-j 
were evaluated cholinesterase inhibitory potency and the results are 

Fig. 4. Selected HMBC shift 5b.  

Scheme 2. A mechanism for the formation of cycloadduct 5.  
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shown in Table 1. The synthesized compounds 5a-f showed good to 
moderate AChE inhibitory activity against tested cholinesterase en-
zymes. Among them, three spiro compounds have showed IC50 values of 
less than 10 µM; in that compounds IC50 values of 6b (9.50 ± 0.20), 6c 
(8.81 ± 0.11) and 6d (5.10 ± 0.16 µM) possessing bromo, chloro and 
fluoro units on the aryl ring exhibited potent activity. Particularly, 
compound that bearing with fluoro sustituion are most active compound 
in this series which is a best activity compared to reference standard 
(IC50 2.09 ± 0.11). Other compounds 5e carrying methyl on the aryl 
ring exhibited less activity with IC50 value of 22.75 ± 0.18 µM and 26.15 

± 0.10 while other compounds substituted with methoxy unit on the 
aryl ring displayed very less activity in this series with IC50 value of 
26.15 ± 0.10. Likewise, the synthesized spiro cycloadducts exhibited 
better BChE inhibitory potential with IC50 values from 21.18 ± 0.15 to 
30.11 ± 0.15 µM. Compounds 5c (20.02 ± 0.20), 5d (21.18 ± 0.15) and 
5b (22.02 ± 0.09) had significant activity against tested BChE activities 
while compound 5a (28.12 ± 0.25), 5e(29.14 ± 0.17) and 5f (30.11 ±
0.15) have shown moderate to good activity. The most significant ac-
tivity were observed for the compound 5c (20.02 ± 0.20) bearing chloro 
on aryl ring. The results revealed that halogenated atoms on the phenyl 

Cycloadduct 5; Total Energy: 39.8022 
kcal/mol

Other possible regioisomer 6; Total

Energy 51.5377 kcal/mol  

Fig. 5. Energy minimization diagram of compound 5.  

Table 1 
Cholinesterase activityof compounds 5a-j.   

Compound AChE Inhibition 
IC50 µM (±SD) 

BChE inhibition 
IC50 µM (±SD) 

AChEa 

Selectivity 
BChEb 

Selectivity 

1 24.18 ± 0.20 28.12 ± 0.25  1.16  0.85 

2 9.50 ± 0.20 22.02 ± 0.09  2.31  0.43 

3 8.81 ± 0.11 20.02 ± 0.20  2.27  0.44 

4 5.10 ± 0.16 21.18 ± 0.15  4.15  0.24 

5 22.75 ± 0.18 29.14 ± 0.17  1.28  0.78 

6 26.15 ± 0.10 30.11 ± 0.15  1.15  0.86 

11 Galantamine 2.09 ± 0.11 19.34 ± 0.17  9.10  0.23  
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had significant effect on the inhibitory activities. Over all, the electron 
withdrawing substituted compounds displayed good activity that has 
been observed. 

4. Conclusion 

In conclusion, a facile, efficient and eco-friendly protocol for the 
preparation of spiroquinoxalinopyrrolidine engrafted ferrocene hybrids 
heterocycles in good to excellent yields. The dipole component gener-
ated in situ from the combination of L-tryptophan and quinoxalinone has 
been comparatively less explored. The formation of Ferrocenyl cyclo-
adduct arose by a [3 + 2] cycloaddition process that created two C–C 
and three C-N bonds in a single transformation with four adjoining 
stereogenic bonds that were formed with complete diastereocontrol.The 
synthesized compounds displayed significant cholinesterase inhibitory 
activity. Among them, compound thus possessing fluoro on the aryl ring 
displayed excellent acetyl cholinesterase (5.10 ± 0.16) /butryl cholin-
esterase (21.18 ± 0.15) inhibitory activity compared to reference stan-
dard drug, galatamine. 
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