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1. Introduction

The topic of nonlocal nonlinear boundary value problems of
integro-differential equations constitutes an important area of
research and has attracted considerable attention over the decades
in view of its numerous applications. Integro-differential equa-
tions, regarded as approximation to partial differential equations,
are employed to model much of the continuum phenomena and
appear in a variety of disciplines such as population models, ecol-
ogy, fluid dynamics, aerodynamics, etc. Lakshmikantham and Rao
(1995) and Kot (2001). The failure of classical boundary conditions
to describe some peculiar processes taking place inside the given
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domain, led to the birth of nonlocal boundary conditions
(Bitsadze and Samarskii, 1969) which relate the boundary values
of the unknown function to its values at some interior positions
of the domain. Integral boundary conditions find useful applica-
tions in computational fluid dynamics (CFD) studies of blood flow
problems and provide the means to assume an arbitrary shaped
cross-section of blood vessels in CFD of blood flow problems. Inte-
gral boundary conditions are also used in the regularization of the
ill-posed backward problems in time partial differential equations.
For further details on integral boundary conditions, see Ahmad
et al. (2008) and Ciegis and Bugajev (2012). During the last few
decades, fractional differential equations have been studied by
many authors and the literature on the topic is now much
enriched. In fact, fractional-order differential and integral opera-
tors are found to be great interest in the mathematical modeling
of real world problems occuring in engineering and scientific disci-
plines. The importance of such operators can be understood in the
sense that they can describe memory and hereditary properties of
various materials and processes and provide more degree of free-
dom than their integer-order counterparts. For theoretical devel-
opment and applications, for instance, see Kilbas et al. (2006),
Magin (2006), Sabatier et al. (2007), Konjik et al. (2011), Zhou
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(2014) and Wang and Schiavone (2015) and the references cited
therein. Fractional-order boundary value problems involving a
variety of conditions such as classical, nonlocal, multipoint,
periodic/anti-periodic, fractional-order, and integral boundary
conditions have recently been studied by many researchers. For
some recent works on boundary value problems involving non-
sequential and sequential fractional differential, integro-
differential equations and inclusions, we refer the reader to works
(Agarwal et al., 2011; Ahmad and Ntouyas, 2013; O’'Regan and
Stanek, 2013; Ahmad and Nieto, 2013; Graef et al., 2014; Wang
et al.,, 9162; Ahmad and Ntouyas, 2015; Ahmad, 2017; Zhou and
Peng, 2017; Ahmad et al., 2017) and the references cited therein.
In this paper, we discuss the existence of solutions for sequential
fractional differential equations and inclusions:

‘DY, + k”Dg;1 )X(t) = f(t,x(t),°Dy, x(t), 'x(t)), t € [0,1], (1.1)

(°D§.. + k°DE.)x(t) € F(t,x(t), Do, x(t), I'x(t)), t € [0,1], (1.2)

supplemented with semi-periodic and nonlocal integro-multipoint
boundary conditions involving Riemann-Liouville integral given by

x(0)=x(1), ¥'(0)=0, ia,—x(ci) = /l/on Mx(s)ds, (1.3)

L(p)

where Djj) denotes the left Caputo derivatives of fractional order
(1,2<q<3,0<8,y<1,k>08>00<n<{ < <lp<1,I0
denotes the left Riemann-Liouville integral of fractional order (-)
(see Definition 2.1), f : [0,1] x R*> — R is given continuous function,
F:[0,1] x R* — P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of Rand 4,a;,i = 1, ..., m are real constants. Here
we remark that the word “sequential” is used in the sense that the
operator ‘DY, +k°D},' can be written as the composition of

operators ngf (D + k). Further, it is imperative to note that the last
condition in (1.3) connecting the nonlocal multi-point and
Riemann-Liouville type strip conditions can be interpreted as the
linear combination of the values of the unknown function at nonlo-
cal points {; € (0,1) is proportional to the strip contribution of the
unknown function on an arbitrary segment (0,#) c [0, 1]. The pre-
sent work is motivated by a recent paper (Ahmad et al., 2016) in
which the authors considered the problem (1.1) and (1.3) with
the first condition x(0) = 0 instead of the semi-periodic condition
x(0) = x(1) in (1.3). It means that the initial-nolocal type conditions
were considered in Ahmad et al. (2016). On the other hand, one can
notice that the semi-periodic type condition x(0) = x(1) assumed in
(1.3) implies that the difference of the values of the unknown func-
tionatt =0and t = 1is zero, that is, x(0) — x(1) = 0. In other words,
we can say that the solutions of the problems (1.1) and (1.3) and
(1.2) and(1.3) experience the effect from the nonlocal multipoint-
strip condition with zero flux at t = 0. Thus the present work is
more interesting and practical as the right end point t =1 of the
interval under consideration is introduced via semi-periodic bound-
ary conditions. Moreover, the scope of the present study can be
extended to the cases of Riemann-Liouville and Hadamard type
fractional differential and integral operators. For some works
involving Riemann-Liouville fractional differential and integral
operators, for instance, see Li et al. (2012) and Alsaedi et al.
(2016), while the text (Ahmad et al., 2017) contains many interest-
ing results on Hadamard type fractional differential equations and
inclusions. The rest of the paper is arranged as follows. In Section 2,
we prove a basic result that plays a key role in the forthcoming
analysis. Section 3 contains the existence and uniqueness results
for the single-valued problem (1.1) and (1.3), which rely on fixed
point theorems due to Banach and Krasnoselskii. In Section 4, we
prove the existence results for convex and Lipschitz type multival-
ued maps involved in the problem (1.2) and (1.3) by applying

nonlinear alternative for contractive maps and Covitz and Nadler
fixed point theorem respectively. In Section 5, we discuss illustra-
tive examples for the obtained results.

2. Background material

This section is devoted to some fundamental concepts of frac-
tional calculus (Kilbas et al., 2006) and a basic lemma related to
the linear variant of the given problem.

Definition 2.1. The Riemann-Liouville fractional integral of order r
with the lower limit zero for a function f : [0, 00) — R is defined as

R S A (O
O 15 )y o

provided the right hand-side is point-wise defined on [0, co), where
I'() is the gamma function, which is defined by I'(r) = [;° t"'e-'dt.
Note that the above integral exists on [0,c0) when f € C([0,0), R)
(Zhou, 2014).

t>0, r>0,

Definition 2.2. The Riemann-Liouville fractional derivative of
order r>0, n—1<r<n, neN for a function f:[0,00) — R is
defined as

d\"
D},.f(t) :ﬁ(a) /O (t—s)" " f(s)ds.

Notice that the Riemann-Liouville fractional derivative of order
ren—1,n) exists almost everywhere on [0,00) if
f € AC'([0, ), R), for details, see Lemma 2.2 in Kilbas et al. (2006).

The Caputo fractional derivative is defined via above Riemann-
Liouville fractional derivatives as follows.

Definition 2.3. The Caputo derivative of order r € [n — 1,n) for a
function f : [0,00) — R can be written as

n—1 ¢k
‘D, f(t) =Dy, (f(t) - Z,t(—’,f“”w)), t>0, n-1<r<n.
k=0 """

Note that the Caputo fractional derivative of order r € [n — 1,n)
exists almost everywhere on [0, o) if f € AC"([0, o), R).

Remark 2.4. If f € C"[0, c0), then

el _ 1 t f(n)(s) _ n-rg(n)
D‘”f(t)fl"(nfr),/o (t,s)rH*”dS*I ), t>0,n-1<r<n.

(see Theorem 2.2 in Kilbas et al., 2006).

To define the solution for problem (1.1)-(1.3), we consider the
following lemma dealing with the linear variant of (1.1)-(1.3).
Lemma 2.1. For any y € C([0, 1], R), a function x € C3([0, 1,R) is a
solution of the linear sequential fractional differential equation:
(“DY, + kD, x(t) = y(t),

supplemented with the boundary conditions (1.3) if and only if it sat-
isfies the following integral equation

(2.1)
:i ,ia. y((:,)/lefk<1—S)Iq4y(s)dS+/:' e’k(;"s)lq’ly(s)ds
A / iy L\Gi b A
Tn-s)"" ' s
+i/ <X(S)/ e’k“’“)lq’ly(u)du-ﬁ-/ e*"(s’”ﬂ"’ly(u)du)ds
JO Jo JO

1 t
+x(t) /O e k1= Ty (s)ds + /0 e K94y (5)ds, (2.2)

X(t)
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where

kw—1+etw
T_ek_k

7 S (s—1)172 B /111/*
7/0 7F(q—1) 1)dt, A = Zal (I #0.

x(w) = w=1t,5,0; I7y(s)

(2.3)

Proof. As argued in Ahmad and Nieto (2013), the general solution
of the system (2.1) can be written as

b,

X(t) =hoe ™ +5( by

t
_e—kt)+12(k l+e—l<t)+/ e—k(t—s)quly(s)dsl
K 0
(2.4)

Using the conditions x(0) =0in (2.4), we find

that

by by (k—(1—e* 1 1
bo:l_<]+k_§< l(—ej )>+l—e—k/0 e K191 y(s)ds, by = kb,

= x(1) and x'(0)

which imply that

K ! :
by =3¢ /0 e K19 y(s)ds.

Thus (2.4) take the form

— 1
by kt—1+e™ e 1911y 5)ds

XO =+ T ek,
t
+ / e k=911 Ty(5)ds. (2.5)
0
Using the integro-multipoint condition: Y[, ax((;) =
2 [ i 5 "x(s)ds in (2.5), we get

e”‘(l’s>1"’1y(s)ds+/si ek !’S)Iq’ly(s)ds}
i=1 0

2 T(n =) ks —1+e*) /] —k(1-u) jq-1
+1—kfe*"_/0 %0 A e 1"y(u)du

=9 * —k(s—u) g1
+A/0 0p) /Oe I"y(u)duds|.

Substituting the value of b, /k in (2.5) together with (2.3) yields
the solution (2.2). The converse of the lemma follows by direct
computation. This completes the proof. [

by 1] & fkg-1iet
T_E[_Za’{—1—e*k—k A

3. Main results for the problem (1.1) and (1.3)

This section is devoted to the main results concerning the
existence and uniqueness of solutions for the problem (1.1)-(1.3).
First of all, we fix our terminology.

Let X = {x:x € C([0,1],R)and*D}.x € C([0,1],R)} denotes the
space equipped with the norm ||x||y = ||| + [|Dy. x| =
SUP¢epo 1) [X(E)] + supt€[0‘1]|ng+x(t)\. It has been shown in Su (2009)
that (X, || - ||x) is a Banach space.

Using Lemma 2.1, we introduce an operator F : X — Xas follows:

{ Z;a,{ /] e”‘“’”l"’lfx(s)ds+./: e”‘“"’”l"”fx(s)ds}
+2 / i 1( /0 e”‘“’“)lq’lfx(u)duf/o Se*"“*"uq*lfx(u)du)ds}

- rt . P
+7(b) /0 e -9[171f (5)ds + /0 e KEI[1f (5)ds, (3.1)

where

Falt) = F(£x(8), Dy, x(0), I'x(1)), (32)

Observe that problem (1.1)-(1.3) has solutions if the operator
(3.1) has fixed points.
For the sake of convenience, we set

- {3y (e

[An”
(

te[0,1].

I(1—e )+ -

ek )>

Kk - k
Y ESNE) ( N +n""(1-e "))}
2(1—e¥)
TR (33)
e 2e*
Mtk T (3.4)
1
b=ty (3.5)

Theorem 3.5. Let f : [0,1] x R® — R be a continuous function satis-
fying the condition

(Hi) If(t,%,,2) = f(t.x0,y1,20)] < L{X=x1[| +[ly =31l + 12 = za]]],

forall t € [0,1],x,y,2,x1,Y,,21 € R, where L is the Lipschitz constant.
Then the boundary value problem (1.1) and (1.3) has a unique solution
on [0,1] if LL1 (A + A2) < 1, where A, Ay, Ly are respectively given by
3.3,34,35and Ay = A;/T(2 - §).

Proof. Let us fix
Mo = Sup,.o |f(£,0,0,0)].

B ={xeX:|x|x <
If(0)]

r>Mo(A+Ay)/(1 —LLi(A+Ay), and
Then we show that FB, C B;where
r}.For x € B, notice that

IF(£.X(8), Do, x(6),Ix(D))]
<If(E,x(6),°Dj, x(t), X (t)) — £(t,0,0,0)| +[f (£,0,0,0)|

< LX)+ Dy, X(O)| + [PX(O)] + Mo <L[\|xnx+ )qu] Mo

b

I'(y+1
1

< - = < .

< L<1+1—("/+])>HXHX+MO LL]HX|‘X+M0\LL1T+M0

Then, for x € X, we have

uF<x>u<sup{‘;‘[Z\uI\{\m)\ [ ieds s [ e sas)

t[0,1]

ST =" ' . ! —k(1-u) g-1)F —k(s—u) [9-1|F
i [ = (4(5)/0 ekt lfx|<u>du+/0 ey lfx\(u)dl')dS

o) /le K (5)ds + /'te O 5

< (LLy+My) \A\{; ( 11— efk)+£?71(1fefk;))
i i, 20-€%)
g (e ol 1 —em) 4 2]
= (LLir+ Mo)A.

Also we have

k - ke"“

[F'(x)(0)]

-2
k\/ </ T_)l) v(r)\dz-)ds
w602 (=) 2
k/o (/0 Tiq-1) [f(r)|dr>ds+/0 Fq-1) If (s)|ds
(1*94‘)2 2—ek
) (LLIHMO){“*e’“lem)+ T(a) }

< (LLyr+Mg)A;.
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By definition of Caputo fractional derivative with 0 < § < 1,we
get

I e LI

< anr Mo [ S

ds

< (LLyT + Mo)A;.

1
T(2-9)
Hence
IF(X) ]l = [F)[| + 1Dy, F(x)||

< (LLyT + M)A + (LLiT + Mo)A; <. (3.6)

1
T2-9)

This shows that F maps B, into itself. Now, for x,y € B, and for
each t € [0, 1], we obtain

|(Fx)(t) = (Ey)(©)] <

‘A|Z‘,|{|yél\/ 1sﬂ1U- fy‘()
+f Y ek, ~hlsys|
+ﬂ/ - ( S)/Ol6”‘“*“>Iq’1lfx*fy|(“)du
. / ek(su)1q1[fxfy(u)du>d5]
0
1 o
+X(t)/ e I, — fy|(s)ds
JO

t ~ ~
+ [ e e - syds
JO

< LA[HX |+ D5, x — <D,y +

1
WHX*)’H}

< LLAIX =Yl
Also we have |(Fx)'(t) — (Fy)'(t)| < LL1A1||x — ¥||x, which implies
that
cnd cnd 't (t*S)_é / 7
Do F(x)(t) — Do, F(y)(t)] </ —— IF(0)(s) = F(y)(s)lds
o I'(1-9)
LL1A
1—*(21 ]O) ”X yHX
From the above inequalities, we get
IF(x) = F@)llx = IF(X) = F)|| + [1°Dp. F(x) — “Dg.F(y)l|
A
< (At gy e 3.7)

As LL, (A + r ) < 1, Fis a contraction. Thus, the conclusion of

the theorem follows by the contraction mapping principle. This
completes the proof. O

Now, we state a known result due to Krasnoselskii (1955)
which is needed to prove the existence of at least one solution of
(1.1)-(1.3).

Theorem 3.6. Let M be a closed, convex, bounded and nonempty
subset of a Banach space X. Let Gy, G, be the operators such that: (i)
G1X + Gy € M whenever x,y € M; (ii) G is compact and continuous;
(iii) G, is a contraction mapping. Then there exists z € M such that
Z=G12+ Gz

Theorem 3.7. Assume that f : [0,1] x R*> — R is a continuous func-
tion satisfying (H;). In addition we suppose that the following assump-
tion holds:

(Hz)V(t,Xl,Xz,Xg)l < M(t),V(t,Xl,Xz,)Q) € [0,1] x R with
pe C([0,1],R).

Then the boundary value problem 1.1,1.2,1.3 has at least one solution
on [0,1] if

(1-e¥) (1-e*’

kI'(q) [1—ek—kI'(2-09)

LL, {A - <1, (3.8)

where A is given by (3.3).

Proof. Letting sup;.o|u(t)| = |1, we fix

> (A s I, 39

given by (3.3), (3.4) and consider
r}. Define the operators F; and F, on Bas

where A,A; are
B ={xeC: x|y <

(F)(8) = /0 e I (5)ds

1| ¢ !k 1? k9 a-1F }
_ i f s M (Gi=9) 19 M
A { ?Zla {X(C)/O e f (s)ds+/0 e fx(s)ds

/1/}7 (nl"(/:/f 1 (,((s /1 k(1 “qu”fx(u)dqu/;e ks “>I"’1f"x(u)du)ds}

+x(t)/0 e KI=9[1-1f, (s)ds.

(F2x)(t) =

For x,y € B,, following the earlier arguments, we can have

IF1x + Fay|| < Allpll, [IFyx + Foyll < Avllpl, |1°Dg, (Fix + Fay)|
< L| |

From the above inequalities, we get

IF1X + F2ylix = [IF1X + F2y|| + [|'Dp.. (F1x + F2y)||

A
< (Al <

Thus, F1x + F,y € B;. In view of the condition (3.8), it can easily
be shown that F, is a contraction mapping. The continuity of f
implies that the operator F; is continuous. Also, F; is uniformly
bounded on B;as

(1—e )il
kl(q)

(3.10)

(2—eM)ull

Fix]| <

IFyx]| <
2 —ellul

cno <
” DO+F]x” =X F(Z _ 5) r*(q)

and

k2 —e*
IF1xll < k%) ((1 ey K2 o 5)))

Now we prove the compactness of the operator F;. Setting
Q=1[0,1] x B; x B; x B;, we define sup, EQ[f( . )| = M,;, and

consequently we get
—S) (S U)
( A TR )

_ . —k(t1-s) (S u)
/0 e (/0 TG )fx( )du)ds

MT -1 -1 -1, -1,
< (7 -t e ek
g (87 -6+ ley),

|(F1x)(t2)—(F1x)(t1)|:|/0zefk(rz

and
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| “Dy, F1(x)(t2) — Dy, F1(X)(t1) |

|y R [ R R s

M. (2 — e 1-5 -5 5
< m(z(trn) +16370 - 6171).
Clearly, | F1(x)(t2) — F1(x)(t1) |— Oand | D}, F1(x)(t2)—

D}, F1(x)(t1) |— 0as ty — t;. Thus, F; is relatively compact on B.
Hence, by the Arzel’a-Ascoli Theorem, F; is compact on B;. Thus
all the assumptions of Theorem 3.6 are satisfied and the conclusion
of Theorem 3.6 implies that the boundary value problem
(1.1)-(1.3) has at least one solution on [0, 1]. This completes the
proof. O

Remark 3.8. In the above theorem we can interchange the roles of
the operators F; and F, to obtain a second result replacing (3.8) by
the following condition:

(1-e¥

RE(Q) <1.

4. Main results for the problem (1.2) and (1.3)

Before presenting the existence results for the problem (1.2)
and (1.3), we outline the necessary concepts on multi-valued maps
(Deimling, 1992; Hu and Papageorgiou, 1997).

For a normed space (X,|-|), let PuX)={YePX):
Yisclosed}, Py(X) = {Y € P(X) : Yisbounded}, P, (X) = {Y € P(X) :
Yiscompact}, and Pepc(X) ={Y € P(X) : Y is compact and
convex}. A multi-valued map G : X — P(X) is convex (closed) val-
ued if G(x) is convex (closed) for all x € X. The map G is bounded
on bounded sets if G(B)= UypG(x) is bounded in X for all
B € Py(X) (i.e. supp{sup{ly|:y € G(x)}} < ). G is called upper
semi-continuous (u.s.c.) on X if for each x € X, the set G(xo) is a
nonempty closed subset of X, and if for each open set N of X con-
taining G(xo), there exists an open neighborhood N of X, such that
G(\Vo)CN. G is said to be completely continuous if G(B) is
relatively compact for every B € P,(X). If the multi-valued map G
is completely continuous with nonempty compact values, then
G is us.c. if and only if G has a closed graph, ie,
Xn — Xoy Yo — V.,V € G(xy) imply y, € G(x.). G has a fixed point if
there is x € X such that x € G(x). The fixed point set of the multival-
ued operator G will be denoted by FixG. A multivalued map
G:[0,1] — Pq(R) is said to be measurable if for every y € R, the
function t—d(y, G(t)) = inf{|y — z| : z € G(t)} is measurable.

For each y € C([0, 1], R), define the set of selections of F by

Sky={ve L'([0,1],R) : v(t) € F(t,y(t),°D’y(t),I'y(t))fora.e.t  [0,1]}.

Definition 4.9. A multivalued map F : [0,1] x R* — P(R) is said to
be Carathéodory if

(i) t—F(t,x,y,z) is measurable for each x,y,z € R;
(ii) (x,y,z)—F(t,x,y,z) is upper semicontinuous for almost all
t €[0,1]; Further a Carathéodory function F is called

L'—Carathéodory if
(iii) for each p > 0, there exists ¢, € L'([0,1],R") such that

IF(t,x,y,2)|| = sup{|v| : v € F(t,x,y,2)} < @,(t)

for all ||x||, |yl lz|l < p and for a.e. t € [0, 1].

We define the graph of G to be the set Gr(G) = {(x,y) € Xx
Y :y e G(x)} and recall two results for closed graphs and upper
semicontinuity.

Lemma 4.2. [Deimling, 1992, Proposition 1.2] If G : X — Py(Y) is u.
s.c., then Gr(G) is a closed subset of X x Y; i.e., for every sequence
{Xn}tpeny CX and {y,},en C Y, if when n — oo, Xp — x.,y, — ¥, and
Y € G(xn), then y, € G(x.). Conversely, if G is completely continuous
and has a closed graph, then it is upper semi-continuous.

Lemma 4.3. [Lasota and Opial, 1965] Let X be a Banach space. Let
F:[0,1] x X> = Pgc(X) be an L'— Carathéodory multivalued map

and let ® be a linear continuous mapping from L'([0,1],X) to
C([0, 1], X). Then the operator

® o0 5px : C([0,1],X) — Pgp(C([0,1],X)), X+ (O 0 Spx)(X) = O(Skx)

is a closed graph operator in C([0,1],X) x C([0, 1], X).

For the forthcoming analysis, we need the following lemma.

Lemma 4.4. (Nonlinear alternative for Kakutani maps) (Granas and
Dugundji, 2005). Let E be a Banach space, C a closed convex subset of
E,U an open subset of C and 0 € U. Suppose that F : U — Pe,c(C) is a
upper semicontinuous compact map. Then either

(i) F has a fixed point in U, or
(ii) thereisau e dU and 1 € (0,1) with u € AF(u).

Let (X,d) be a metric space induced from the normed
space (X;||-|l).- Consider Hg:P(X)x P(X) — RU{cc} defined
by Hgy(A,B) = max{sup,.d(a,B),sup,.d(A,b)}, where d(A,b) =
inf,cad(a; b) and d(a, B) = inf,pd(a; b). Then (Pp, (X), Hy) is a metric
space and (Py4(X),Hs) is a generalized metric space (see
Kisielewicz, 1991).

Definition 4.10. A multivalued operator N : X — P (X) is called (a)
y—Lipschitz if and only if there exists y >0 such that
Hy(N(x),N(y)) < yd(x,y) foreachx,y € X and (b) a contraction if
and only if it is y—Lipschitz with y < 1.

Lemma 4.5. [Covitz and Nadler, 1970] Let (X,d) be a complete
metric space. If N : X — Py(X) is a contraction, then FixN # (.

Definition 4.11. A function x € C*(]0, 1], R) is said to be a solution

of the boundary value problem (1.2) and (1.3) if x(0) =x(1),
X(0) =0, aix(8) = 4 [ (’7;2:;71 x(s)ds, and there exists a function
v € Sex such that u(t) € F(t,x(t),°Dy, x(t), I’x(t)) and

x(t):All [—Zm:ai{}f(ﬁi)/ole’k“’s)lq’l zz(s)ds+/;A efk(:'fs)qulv(s)ds}
i=1
il (1,,75)/!71 . -1 ket s I
+)./) 0p) <)C(S)/O e I v(u)du+/) e I y(u)du)ds

1 t
+x(0) /0 e =911 y(s)ds + /U e K[ T y(s)ds.

4.1. The upper semicontinuous case

In the case when F has convex values we prove an existence
result based on nonlinear alternative of Leray-Schauder type.

Theorem 4.12. Assume that:

(C1) F:[0,1] x R* — P(R) is L'-Carathéodory and has nonempty
compact and convex values;
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(Cy) there exist a function ¢ € C([0,1],R"), and a nondecreasing,
subhomogeneous (that is, Q(ux) < uQ(x) for all p > 1 and
x € R") function Q : R — R* such that

||F(t7 X)”P = SUp{‘W‘ We F(tv XY, Z)}
< GOQIXI -+ NIyl + NIl

for each (t,x,y,z) € [0,1] x R?;
(C3) there exists a constant M > 0 such that

M
- >1
L (A + i) 1)

where A, A and L, are defined by 3.3,3.4,3.5.

Then the boundary value problem (1.2) and (1.3) has at least one solu-
tion on [0, 1].

C([0,1],R) — P(C(10,1],R)) b
R) : h(t) = N(x)(t)}

Proof. Define an operator Q :
Qr(x) = {h € C([0.1],

where
{ Zal{ 2(&) fo eI p(s)ds + [ ek ! (s)ds}
N t = 1 N
®® +, [ ‘)/ ( (s) fo e M0 puydu + f3 e kst z/(u)du)ds}
+(8) o e 9 y(s)ds + f; e I p(s)ds, v € Sex.

We will show that Q satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type. The proof consists of several
steps. As a first step, we show that Qg is convex for each
x € C([0, 1], R). This step is obvious since Sg, is convex (F has con-
vex values), and therefore we omit the proof.

In the second step, we show that Qr maps bounded sets (balls)
into bounded sets in C([0,1],R). For a positive number p, let
B, ={x e C([0,1],R) : ||x|| < p} be a bounded ball in C([0, 1], R).
Then, for each h € Qf(x),x € B, there exists v € Sgx such that

m 1 =
f[‘zaf{x(c» [t et
< 0
n—s) /; 1 1 S
+ﬂ/ ( / et V(u)du+/ et y(umu)ds}
Jo /0

+7(0) / e =919 y(5)ds + / ke 191 p(s)ds.
Jo

Then, for t € [0, 1] we have

A {ka' (7@l —e )+ (1 —e k)

A

,WL'—’Q)() (1= ezl + 711 )}
k

| Ao,

|h(t)

+

which, on taking the norm for t € [0, 1] yields
1]l < AlIGIL1Q(1[xlx) < AllplILr€(r).

Also we have
1 q-2
ek(1-5) ) F:
/0 (/0 Tq-1) Lf('[)\dr)ds
wies [ [° (S*T) B (t—s5)2 .
+k/ /0 T (t )|dr)ds+/ gy fsas

ple
(1-e*’
< VAT R gl ) <

k—ke™

KOl < |7t

Al plIL Q([1X]Ix)-

By definition of Caputo fractional derivative with 0 < g < 1,we
get

Do) 1< [ s W) s < pp s MLl

As h € Q¢(x),x € B, is an arbitrary element, therefore we have

A

195 (x)llx = 1R X)]| + 1Dy, Qx| < <A+n27l®)\l¢lll19(f)-

(4.1)

Now we show that Qr maps bounded sets into equicontinuous sets
of C([0,1],R). Let t1,t; € [0,1] with t; <t, and x € B,. For each

h € Qr(x), we obtain
et k(1-s) s—1)"?
/ (/ Ll )|dr>ds

t S (e m\d-2

+ /) (et —erkr) < /0 <f-(qi) 1 \V<r)\dr> ds
2 o [ (-1

+/r1 e </0 Tq-1) |v(t)|dT |ds|

lk(t; —t1) +e 2 —eM|(1—e)
S [1—ek—k|

[k(ty —t1) +e*’<fz

|h(t2) —h(t:)| < e o

i tzly—l (efk(rrr,) _ (e—ktz _ekt )— 1)

+tg—1 (1- efk(tz—n))] [ plIL:€(r) )

kI'(q)
Also
t )
Dy, h(t2) —“Dj. h(tr) \<‘/ s) (s /(tl—s)wh/(s)ds
0
N - 1-6 _ 41-0
<ty (2 -0 A ) 6L 0.

Obviously the right hand side of the above inequalities tends to
zero independently of x € B, as t; —t; — 0. As Qy satisfies the
above assumptions, therefore it follows by the Arzela-Ascoli theo-
rem that Qr : C([0, 1], R) — P(C([0, 1], R)) is completely continuous.

In our next step, we show that Qf is upper semicontinuous. To
this end it is sufficient to show that Qf has a closed graph, by
Lemma 4.2. Let x, — X., hy € Qp(xy) and h, — h.. Then we need to
show that h, € Q(x.). Associated with h, € Qr(xy), there exists
Uy € Srx, such that for each t € [0,1],

m 1 g
h (t):Al1 [—Zai{x(zi)/o ek(-9)pa-1 1/,1(s)ds+/0 e kG- vn(s)ds}
i=1

2 " (77*5)/171 ., ! —k(1-u)q-1 : —k(s—u) a1
+~/D %0 <4(s)/0 e I v,,(u)duf/oe I v,,(u)du)ds

1 t
+(0) /O e 911y, (s)ds + /O e K91y, (s)ds.

Thus it suffices to show that there exists v, € Sg,, such that for
each t € [0, 1],

1 N PP Yk
E{’Zi,la"{‘(“’/o e ”*“)"”L ¢
T(-s)"! ( /1 k(1) jg-1 /s —k(s-1) g1 )
B u Iq . (s u)lq 3
+/1/o 05 7(8) A e v, (u)du+ A e v, (u)du )ds

1
+x(r)/0 e K[ty ()ds+/ e Ky (s)ds.

a1y, (s)ds}

Let us consider the linear operator © : L'([0, 1],
given by

R) — C([0,1], R)
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v 0O(v [ Za,{,{(g,/ ”“"S>I‘1”1j(s)ds+/0 e kG-9p-1y (s)ds}

" (n-s)"" ( ! k(1-u) g1 S kw1 >
+).'/0 (5 )((S)‘/O e I V(u)du-%—/oe ' pu)du ) ds

1
+7(t) /0 e I T y(s)ds + A e =91y (s)ds.

Observe that

m -1
) ’l {‘Z"f{x(co | et - vss
A & 0

+/ e
JO

QUEDIS T
o [ g (9 [ e e

+/ e kw1 (g, y*)(u)du> ds}
0

1

+7(0) / k1901 (5, _
0

1 (6) —

9[- (g, — m)(s)ds}

v,)(s)ds

ot
+/ e M9 (g, — v,)(s)ds|| — 0asn — co.
JO

Thus, it follows by Lemma 4.3 that ® o S¢ is a closed graph oper-
ator. Further, we have h,(t) € ©(Sky,)- Since x, — x., therefore, we
have

m 1 :l
h*(t):Al]{*Zai{X(Ci)/o e”‘“’leq"v*(s)ds+/o ek

o (”I*S)/M < 1 - et )
+A/0 %) /C(S)./Oe I vx(u)du+/0e "1, (u)du ) ds

1 t
+X(t)/0 e k-1 v*(s)ds+/o e k=911 (s)ds, forsome v, € Sk, .

9Ty, (s)ds}

Finally, we show there exists an open set U C C([0, 1], R) with
X ¢ Qp(x) for any 0€(0,1) and all x€dU. Let 0 € (0,1) and
x € 0Q¢(x). Then there exists v € L'([0, 1], R) with » € Sk, such that,
for t € [0, 1], we can obtain

( A
el =l + D521 < (A+ s I6ILK),  @2)

which implies that
X[l
(A +m55) I Q]
In view of (C3), there exists M such that ||x|| # M. Let us set
U={xe(C(0,1],R) : ||x|| < M}.

< 1.

Note that the operator Q : U — P(C([0,1],R)) is upper semi-
continuous and completely continuous. From the choice of U,
there is no x € 9U such that x € 0Qg(x) for some 0 € (0,1). Con-
sequently, by the nonlinear alternative of Leray-Schauder type
(Lemma 4.4), we deduce that Q; has a fixed point x € U which
is a solution of the problem (1.2) and (1.3). This completes the
proof. O

4.2. The Lipschitz case

We prove in this subsection the existence of solutions for the
problem (1.2) and (1.3) with a nonconvex valued right-hand side
by applying a fixed point theorem for multivalued maps due to
Covitz and Nadler (1970).

Theorem 4.13. Assume that:

(A1) F:[0,1] x R* — Pg,(R) is such that F(-,x(t),°Dy,x
[0,1] — P (R) is measurable for each x € R;

(A2) Ha(F(t,%,,2), F(6,%,5,2)) < p(O)[[X — X| + |y — ¥ + [z~ 2]] for
almost all t € [0,1] and x,y,z,%,y,Z € R with p € C([0,1], R")
and d(0,F(t,0,0,0)) < p(t) for almost all t € [0, 1].

(), I'x(1)) :

Then the problem (1.2) and (1.3) has at least one solution on [0,1] if

Pl (A+ gy ) <1 43)

T2-o

Proof. Consider the operator Qf:C([0,1],R) — P(C(]0,1],R))
defined in the beginning of the proof of Theorem 4.12. Observe that
the set Sr, is nonempty for each x € C([0, 1], R) by the assumption
(A1), so F has a measurable selection (see Theorem III.6 Castaing
and Valadier, 1977). Now we show that the operator Qr satisfies
the assumptions of Lemma 4.5. To show that Qp(x)e
Pq((C[0,1],R)) for each x € C([0, 1], R), let {u,},., € Qr(x) be such
that u, — u(n — oo) in C([0,1],R). Then u € C([0,1],R) and there
exists v, € Sgy such that, for each t € [0,1],

m 1 G
u,,(t):A%{—Za,{x(g,-) /0 e =911y, (s)ds + /0 e”‘(:f’”lq"v,,(s)ds}
i=1

T —s)" < ! k(1-u) jg-1 S ko1 >
+)./0 T05) X(S)/O e I vn(u)du+/() e 1"y (u)du ) ds

1 t
+}5(t)/ e k191 vn(s)ds+/ e K[y (s)ds.
0 0

As F has compact values, we pass onto a subsequence (if

necessary) to obtain that v, converges to » in L'([0, 1], R). Thus,
v € Spx and for each t € [0, 1], we have

Uy (t) — { Zal{ g,)/ e k=93 Ty s)ds+/ e kGi-9)pa- 1v(s)ds}

" ('7_S>/i71 Iy ! u)rq-1 ¢ s—u)jq-1
+/v/n ) (,((s)/o e ka-w v(u)du+/0e"( U v(u)du)ds}

1 t
+ () /, e 19 y(s)ds + A e KD y(s)ds.

Hence, u € Q(x).
Next we show that there exists 0 := ||q||L; (A —+ r<2 ) < 1 such

that
Ha(Qk(x), (X)) < 0])x — ||y foreach x,x € C*([0,1], R).

Let x,xe C3([0,1],R) and h; € Q(x). Then there exists
v1(t) € F(t,x(t),°Dy, x(t), I’x(t)) such that, for each t € [0, 1],
K1-5) -1, (S)ds+/”

m 1
ha (6) :All [—Zaf{x(li)/o e /
i=1

/3 1 1 S
+)/ ( / e k1w ITy, (u)du+/ e kswpTy, (u)du)ds}
0 0

+X(t)/o e [Ty (s )ds+/0 ke 191, (5)ds.

) A (s)ds}

By (Az), we have
Ha(F(t,x,y,2), F(t,%,y,2)) <p(O)[]x = x| + [y = y[ + [z - 2]].
So, there exists w € F(t,X,y,z) such that

|01 () = w < pO)[IX(E) = X(6)[ + |y (€) = Y(E)| + [2(t)

Define U : [0, 1] — P(R) by

—zZ(Ol]; t€[01].
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Ult)={weR:|v(t)—w|
qO)[1x(t) = x(O)] + |y (t) = y(O)] + |z(£) — z(O)[]}-

Since the multivalued operator U(t) NF(t,X,¥,Z) is measurable
(Proposition I11.4 Castaing and Valadier, 1977), there exists a func-
tion v, (t) which is a measurable selection for U(t) N F(t,X,¥,Z). So
v, (t) e F(t,X%,y,z) and for each te€]0,1, we have
21(8) — v2(6)] < qUO[IX(E) — X(O)] + y() — F(O)] + [z(t) — Z(0)]].  For
each t € [0, 1], let us define

1 m 1 T G I }
:7 - i i (-s)pa d G [ d
{ E G{X(C)/ e v5(8) S+/0 e vy(s)ds

"I 5 p-1 1 S
+}/ ( / K(1-wpa lyz(u)dqu/ e ksupa ’yz(u)du>ds
0 0

+X(t)/ e K=y, (s )ds+/ KE=9 1971 gy (5)ds.
0

Thus

I (£) -

A{Z"ll{/{ 41‘/ K91 py — vy|(s)ds

+/ e kG911 g) — vz\(s)ds}
0
Y = 1
i [T (1) [ et 0o, — o
+/ e kWt gy — v2|(u)du>ds]
ol [ e

+/ —kts)Iq llvl Z}2|()

< |p|<A |{Zk'“' (1t

An?
kl"(/fu—q)() (= e™)zml+n"(1 - ew»}

2(1 ) _
W) llx — Xllx,

which yields ||h; — hy|| <

K910 0y — vy (s)ds

-+ -e)

+

IIPIIAL1||x — X]||.Further, in view of the

estimate |} (t) — H,(t)] < ||p|l|A1L1]|x — X||y,we have
cno _cpd (tis) ’
Dhta(e) = Dy (o) < [ 0 - e
1 -
< m”PHAILl”X*XHx-

In consequence, we get

Ay
Iy = el < Pl (A + g ) e =Xl
Analogously, interchanging the roles of x and X, we can obtain
_ Ay _
Ha(r(20,95(%) < [Pl (A -+ 1575 I~ ¥l
By the condition (4.3), it follows that Qf is a contraction and

hence it has a fixed point x by Lemma 4.5, which is a solution of
the problem (1.2) and (1.3). This completes the proof. O

Remark 4.14. In case the multivalued map F is not necessarily
convex valued, we consider the following problem

(D2, + kD2 x(t) =f(x(t)), te[0,1],2<a<3,
m
x(0) = =0,Z]:a,-x _)f'””rfﬁ/)] $)ds,0<y <l < <lnm<l.
P

(4.4)

and note that a solution x € C3([0,1],R) of the problem (4.4) is a
solution to the problem (1.2) and (1.3). In relation to the problem

(4.4), we have the operator Qzx(t) defined by

Za{ / e k=197 (f) (s ds+/ e kG197 (fx) (s }

+;,/0'7 (ﬂ;(sﬁ))’"‘ (x(s)/‘J K1-w a1 (fe) (u du+/ e K0 1 () (u ) }

4700 /0 e K991 () (s)ds + /0 k9 1 (o) (5)ds

QFX(t

In order to establish the existence of solutions for the given
problem, we need the following assumption in addition to (C;)
and (G3):

(C4) F:[0,1] x R* — P(R) is a nonempty compact-valued multi-
valued map such that
(a) (t,x,y,2)—F(t,x,y,2) is L ® B® B ® B measurable,
(b) (x,y,2)—F(t,x,y,z) is lower semicontinuous for each
te[0,1].

The proof of the concerned existence result follows the method
of proof for Theorem 4.12 and relies on the nonlinear alternative of
Leray-Schauder type comined with the selection theorem of
Bressan and Colombo (1988) for lower semi-continuous maps
with decomposable values.

Remark 4.15. For =1, the results of this paper correspond to
semi-periodic nonlocal classical integro-multipoint boundary con-
ditions of the form: x(0) = x(1),x'(0) = 0, 31, aix({;) = 2 [ x(s)ds

5. Examples

(a) Consider the following nonlocal multi-point boundary value
problem of Caputo type sequential fractional integro-differential
equations

(“D>? 4 1Dy )x(t) = f(t,x(t), Dy x(t), IP°x(t)), 0 < t < 1,

) +5xQ) () -

1
11 _¢2
[3 S x(s)ds.

x(0) = x(1),x(0) = 0,3 =
(5.1)

Here
q=5/2,k=1/4,0=4/5,7=2/5,a1 =3/4,a, =5/4,a5 =1,
a,=3,4=i/(i+1),i=1,...3,2=1/2,n = 1/4, 8 = 3/2. With the
given values, it is found that A; ~2.9970615,A ~ 1.877424,
Ay =~ 2.196638,L; ~ 2.1270605. Now we illustrate the obtained

results by choosing different values of f(t, x(t), “Dy/>x(t), I'*x(t)).

(i) Let us consider

FEx(t),5Dy2x(6),1'*x(t)) =

1 c
\/HT(l E?;i)(‘t)\”a“q ( Dg/f'x(t))>

+%I”2x(t)+cos(nt/2).

Obviously L =1/11 as | f(¢,x(t),“D§>x(0),1'*x(t)) — (¢, ¥(0),
DY)y () 1< (Ix=yII+IDE X~ D2y |+ 1) =12y ).
Further, LL; <A+r<215)) ~0.825654 < 1.Thus all the conditions of

Theorem 3.5 are satisfied. Therefore, by the conclusion of
Theorem 3.5, we conclude that there exists a unique solution
for the problem (5.1) on [0,1].

(ii) To show the applicability of Theorem 3.7, we take the
nonlinear function f of the form:
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cnd/5
F(Ex(8),DGx(),1'2x(8)) RE )

3 (o
= sin(x(t)) + —— 7=——
t+20< ) 1+[D*x(t)|
3 1

= /2 —
+201 x(t)+10,te [0,1].

1 ek 1_eky?
Clearly L=3/20 and L {A - (kl"?q)) + \17e7k4<\er(2fo')r(q)] ~

0.830740 < 1. As all the conditions of Theorem 3.7 hold true,
the conclusion of Theorem 3.7 applies. Hence the problem
(5.1) with the given value of f has at least one solution on
[0,1].

(b) Let us consider the following inclusions problem:

(D% +1D3/?)x(t) € F(t,x(t), D x(t), Z°x(t), 0<t<1,

i

x(0) = x(1),%(0) = 0.2x(2) +3x() +x() = fi S x(s)ds.
(52)

(i) In order to demonstrate the application of Theorem 4.12, we
consider

F(t,x(t),*Dyx(t),1'*x(t))

(r3/2)+1)

nx(t)+ TG/2)

{z\/ﬁ (si DY/Sx(t) +1'2x(t) + 1),
1

/2500 + t?

(x(t) +sin(°Dg/?x(t)) + T'(3/2)I'x(t) +%>

(5.3)
Obviously 6] = Gorz, Q(lxllx) = 1+ ||x|ly and Condition
(Hs) is satisfied with M > M; =~ 0.935206. Thus, all the condi-
tions of Theorem 4.12 are satisfied and consequently, there
exists at least one solution for the problem (5.2) with F given
by (5.3) on [0, 1].
(ii) For the illustration of Theorem 4.13, let us choose

F(r,x(r)):[o ! (Lﬂan*'(ngfx(t))Jr‘/Tﬁl”zx(r))+L}

12 +2\8(4+x|) 15+t|"
(5.4)

Clearly

o 1 -
Ha(F (&, %), F(t,%)) < az+ 0 [ = Xllx-

Letting p(t) =1/(12+t?), it is easy to check that
d(0,F(t,0)) < p(t) holds for almost all te€[0,1] and that
IIpIIL (A + 1.(’2“_5>) < 0.756850 < 1. As the hypotheses of Theo-

rem 4.13 are satisfied, we conclude that the problem (5.2)
with F given by (5.4) has at least one solution on [0, 1].

6. Conclusions

We have developed the existence theory for single-valued and
multivalued problems of Caputo type sequential fractional differ-
ential equations and inclusions involving Riemann-Liouville inte-
gral equipped with semi-periodic and nonlocal multipoint
Riemann-Liouville type integral boundary conditions. The nonlin-
earities in the given problems implicitly depend on the unknown
function together with its fractional derivative of order ¢ € (0, 1)
and its Riemann-Liouville integral of order y € (0,1). We apply
standard fixed theorems for single-valued and multivalued maps
to establish the desired results. Our results are not only new in

the given configuration but also yield some new special cases for
specific choices of the parameters involved in the problem. For
instance, the results associated with semi-periodic and nonlocal
multipoint classical integral boundary conditions follow by taking
B =1 in the results of this paper. Letting a; = 0,i=1,2,....,m, our
results correspond to the three-point boundary conditions:
x(0) = x(1),X(0) = 0,’x(17) = 0. We can get the results for semi-
periodic nonlocal multipoint boundary conditions of the form:
x(0) =x(1),x(0) =0,>",aix({;) =0 if we take 2=0 in the
obtained results.
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