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Abstract Most existing multivariate models in finance are based on diffusion models. These mod-
els typically lead to the need of solving systems of Riccati differential equations. In this paper, we
introduce an efficient method for solving systems of stiff Riccati differential equations. In this tech-
nique, a combination of Laplace transform and homotopy perturbation methods is considered as
an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is
applied to solving stiff diffusion model problems that include interest rates models as well as two
and three-factor stochastic volatility models. We show that the present approach is relatively easy,
efficient and highly accurate.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Stochastic processes have taken over the world of financial
modelling. Starting with simple Geometric Brownian Motion
well described by Bachelier (1900), to more sophisticated pro-
cesses for better fitness and calibration of market fluctuations.
A huge range of papers have considered Lévy processes as
their driving force, they usually take the umbrella of jump dif-
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fusion process. Basically the state process X, follows a Brown-
ian motion with drift for which a pure jump process, usually of
Poisson type, is added on in order to accommodate abrupt
changes in the market. In this work we restrict ourselves to
pure diffusion processes for which the drift, the variance as
well as the interest rate processes are all affine functions of
X;; we refer the reader to Eq. (2.4) in the next section for the
explicit form. Duffie et al. (2000) present a general framework
of diffusion processes under affine coefficients (also termed as
affine models) then apply it to a two dimensional option pric-
ing problem. These diffusion models have the advantage of
providing tractability of closed form formula for a wide range
of asset price such as fixed income securities: bonds, options
and swaps. Technically, in dealing with these diffusion models
we apply transforms that will result later in a system of ordi-
nary differential equations of Riccati type that can be solved
analytically or numerically in order to compute the asset price.
In most cases, numerical methods using Fourier transform or
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inverse Laplace transform are needed to solve the integro-
differential equation that arise thereof.

Various types of diffusion models have been introduced in
the literature and used in different sectors. They differ in the
model parameter while preserving some properties that are
essential in asset price dynamics such as mean reversion.

In one-factor models the volatility process is a deterministic
function of ¢, this includes the class of affine term structures
that is encountered in interest rates and option pricing con-
texts, see Duffie (2005), Bjork (2004), Black and Scholes
(1973) and Merton (1974).

Heston (1993) introduces a two-factor model where the
volatility is now stochastic, to accommodate the implied
volatility smile encountered in the financial markets as shown
by Kotzé et al. (2015). Bates (1996) extends the Heston model
in adding a up jumps into the diffusion process to model a
huge flux of information that can occur in the market.

Fang (2000) brings a three-factor model with jump diffu-
sion process that looks quite stable. The model takes its roots
from the Bates model to which an extra parameter is added:
the long-term volatility, which is important for instruments
like bonds that have long term maturity. Banks are often inter-
ested in this parameter. Christoffersen et al. (2009) consider a
three-factor model with no jumps, but the state process is dri-
ven by a deterministic drift, plus two Brownian motions. How-
ever, as the number of factors increases one must expect the
model to become more robust, but less realistic. In this paper
we present a detailed framework of a class of asset prices
whose pay-off at a future time (the maturity time) 7 is of the
form ¢“*7 where X, is of a pure diffusion type with affine coef-
ficients. This class includes fixed income security prices. A
quick overview of the pure diffusion with affine coefficients
is provided together with an application on bond price in the
context of single, two and three-factor models based on the
Heston type. In other words, the volatility is considered to
be stochastic. This Gives them a wider range of application.
Bravo (2008) uses an affine process for pricing longevity
bonds; Jang (2007) applies a two-factor affine process in insur-
ance; Crosby (2008) uses it in pricing a class of exotic com-
modities and options in a multi-factor model.

In addition we introduce a modified form of homotopy per-
turbation and Laplace transform methods to value financial
models of diffusion type with affine coefficients. These models
lead to the need of solving systems of Riccati differential equa-
tions. Laplace transform method (LTM) alone is incapable of
handling such equations, instead some variants of the LTM
prove to better handle nonlinear differential equations. Among
those variants we cite the Laplace decomposition algorithm
(Khuri, 2001; Khan, 2009) and the H2LTM, (Fatoorehchi
and Abolghasemi, 2016) which are obtained with the help of
the Adomian decomposition and Adomian polynomials
respectively. Another successful variant of LTM is obtained
in coupling it with variation iteration methods. Alawad et al.
(2013) used it to solve space—time fractional telegraphic equa-
tion as it allowed them to overcome the difficulty arising from
finding Lagrange multipliers. LTM has also known great suc-
cess when combined with differential transform methods on
solving non-homogenous equations, see Alquran et al.
(2012). On the other hand, the homotopy perturbation method
is a combination of the classical perturbation technique and
the homotopy technique whose origin is in topology , more

on homotopy can be found in Hilton (1953), but not restricted
to small parameters as it occurs with traditional perturbation
methods. For example, the HPM requires neither small param-
eters nor linearisation, but only few iterations to obtain highly
accurate solutions. The standard homotopy perturbation
method was proposed by He (1999) as a powerful tool to
approach various kinds of nonlinear problems. It can also be
viewed as a special case of Homotopy Analysis Method
(HAM) proposed by Liao (1992, 1997). For the past decade,
many improvements on HAM have been introduced, one of
it being the Homotopy Analysis Transform Method (HATM)
which is basically a HAM coupled with a Laplace transform.
The method is very powerful, fast converging and accurate.
Recently, it has been applied in many different areas of science
including fluid dynamics, wave theory (Kumar et al., 2014a,
2015b, 2016b), quantum physics, see Kumar (2014), and many
more, with extension to fractional cases. Kumar et al. (2014c)
applied this method on Volterra integral equation to obtain
good quality results. Another improvement of HAM is
obtained by coupling it with the Samudu transform which
gives rise to the Homotopy Analysis Samudu Transform
Method (HASTM), see Kumar and Sharma (2016); Kumar
et al., 2016a for more details. Likewise, the Samudu transform
has also been introduced in HPM to generate the Homotopy
Perturbation Samudu Transform Method (HPSTM), see
Singh et al. (2013); Singh et al., 2014b. Singh et al. (2014a) used
the method successfully to get analytical and numerical solu-
tions of nonlinear fractional equations found in the area of
biological population model. Also, Kamdem (2014) proposed
a generalised integral transform based on the homotopy per-
turbation method where various integral transforms were used.
In this paper we are interested in the combination of the HPM
with Laplace transform giving rise to the Homotopy Perturba-
tion Transform Method (HPTM). The method has shown suc-
cess already in obtaining solutions of the Navier—Stokes
equations (Kumar et al., 2015a), gas dynamics equations com-
ing from fluid dynamics in the case of fractional differential
equation as explored by Kumar et al. (2012). The method
has also shown success in solving KdV equations arising in
wave theory (Goswami et al., 2016) as well as Fokker-Planck
equations commonly found in solid-state physics (Kumar,
2013). Another useful application of the technique is found
in Kumar et al. (2014b) in which the authors derive the price
of a plain vanilla call option of European type under Black—Sc-
holes model in the financial market.

This paper is structured as follows: Section 2 reviews the
formalism of diffusion models with emphasis on the case with
affine coefficients. In Section 3, we introduce the basic concept
of homotopy perturbation transform method (HPTM). In Sec-
tion 4, we describe the solution procedure of the HPTM for
interest rate models, especially the two and three-factor
stochastic volatility models. Finally, the conclusions are pre-
sented in Section 5.

2. Mathematical description of affine models

Consider the financial market model M = (Q,F,P,
(Ft)i50> (81),50) where Q is the set of all possible outcomes
of the experiment known as the sample space, F is the set of
all events, i.e. permissible combinations of outcomes, P is a
map F—[0,1] which assigns a probability to each event,



Homotopy perturbation transform method for pricing under pure diffusion models with affine coefficients 3

(F1),s is a natural filtration and S, a risky underlying asset
price process. The triplet (Q, F,P) is defined as a probability
space. Let (W), denote a P-Wiener process, ¢ >0 the
volatility of the underlying asset, u(z, X;) the drift parameter.
Suppose X, satisfies the following stochastic differential
equation

dX, = u(t, X,)dt + o(t, X,)dW,. (2.1)
Under an equivalent martingale measure @, the price

Y (t,x) at time 7 of a contingent claim that pays off @7 at matu-
rity time 7 > ¢ is given by

T
lp(l7 X) = EQ <€7f! r<vy‘X\)dS(‘DT|f’)
t T
= efo s Xo)ds po (e_ fo "(’T’X")d’rq)r\f,) . (2.2)

Let wus consider an auxiliary process WY(1,X,) =

.
EQ(efﬁ) "(‘“X‘)d"d)ﬂ]-",). For simplicity of notation, we may

from time to time write ¥, to denote W¥(z,X,). Same for
other variables as well. Applying the Ito’s differentiation we
get

LoV, LoV,
w(tvx)_l//(ovx)_ o ds S ) a_KdXS
'O, : " oY
- SdlX, X] = ;
T3 ), o A= [
Y, 1 0¥ "9Y,
ThGx, T30 e @ +/ % ax, s
B / oY, OV, +1 OV
=), os Box, T27% o @

s O,
s dW -

/0 ’ / ax,
1 I’y 0¥,
+ 20“75 T(5, X)) =—— 8X2 ® ds +/ “OX. —dW;

Under no-arbitrage conditions, the discounted pay-off ¥,,
must be martingale, meaning the drift part must be zero. That
is,
oY, oY, 1 0¥

8_+ ’8X + = O', t (9X2 = (23)

In Affine framework as described by Cont and Tankov
(2004), we consider u, g, and r to be Affine in X. That is,

My = Ko+ K, x X, K, € Rd» K, € Rxd
O',O';r = HO +H1 X X,7 HO c Rdxd’ Hl c Rdxdxd
re=py+p XX, Py € R, p, € Rxd_

(2.4)

Theorem 2.1 (see Duffie et al., 2000). Under technical condi-
tions, if the pay-off function is chosen such that

q)]‘ — euXT7

then \ is of the form

W(t,x) = eHD+B0)x

with o and [ verifying the following Riccati equation

{(’( ) = po — KoB(t) =L B(1) " HoB(1)
L(r)y=p, — K B(1) *% (z)TH]ﬁ(zf

with terminal conditions a(T) = 0 and B(T) =

Proof. Given the pay-off ®7 = ¢“*7 a good candidate for the
auxiliary process is

¥(1,X,) = e*j:r(s)dxeac(t)+ﬁ([),\/,

where W, is the discounted pay-off. Under no arbitrage and
the equivalent martingale measure @Q,¥, martingale and
Y(T,Xr) = ®7. For any 0 < ¢ < T, we have the following

l{I' = (\PT|]_—I)7

\P'ej RO _ ) RO B | ).

@fo R(X)ds ,~ Ix ROG)dSs (1) +B(0)x E{efo’ R(X\)dSlIJT‘ft:|
SN = (1, X,) = Y(1,x).

We can apply the above result on the auxiliary process to

obtain

oY, ov, 1 oY
6+/8X 70,,8X2:

Using the Affine framework coupled with the fact that

B(X 1) = [~R(X) + (1) + B X ] (X, 1),
o (X, 1) = B()W (X, 1),
X, 1) = B0 (X, 0)B(1)

axz (

we get

[~ ROG) + (1) + Blo)x. ] w(x,, 0

FHOBOROE B0 () T T =0 (26
Implying,
—R()+ &00) + BOX(0) + 1OEB0 + L)ool B0 =0

+
—(po + P X (1)) + é(t) + B(1) X(2) ,
+(Ko + K1 X(1))B(2) + 3 B(2)[Ho +H X)) =0

Finally we have,

3By Hop(r) =0

{ —po +&(1) + Ko(1) +
%ﬁ(l) Hip(t) =0

—p1 + B(1) + K] B(1) +
with terminal conditions
a(T)=0, B(T)=u O (2.8)

Eq. (2.7) together with initial condition (2.8) is a nonlinear
system of ODE of Riccati type. In general, Riccati equations
do not have analytical solutions, hence numerical methods
have to be used. In addition, these equations have been
reported to be stiff. Hence the use of explicit methods will
require a high mesh refinement to produce acceptable solu-
tions. This will result in an increase in the computational cost.
In this article we propose a Laplace Transform Homotopy
Perturbation method to circumvent the stiffness problem.
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3. Basic idea of homotopy perturbation transform method

We first define the Laplace transform (LT) and its inverse
transform, and list useful properties employed in this paper.

Definition 3.1. Laplace transform of F(¢) is denoted by L{f{7)}
and is defined by the integral

LI} = F(s) = /O ey, (3.1)

The inverse Laplace transform is evaluated on a contour I,
known as the Bromwich contour, as

LOFS)) = 1) = / ¢ F(s)ds. (3.2)
r
The contour I' is chosen such that it encloses all the singu-
larities of F{(s).

One useful property of LT for this paper is:

E{f{n } _ S"F _ Snle(O) _ Snszi(O) _ _ F‘(nfl)(o)7

(3.3)
where F"(¢) denotes the n-th derivatives of F(¢) and

LY} = Flo).

To illustrate the basic ideas of this method, let us consider
the following system of nonlinear partial differential equations
A(U) = fir) =0,

with the following initial conditions

reQc R (3.4)

U(0) = ap, U'(0) = aty, ..., U D(0) = oy, (3.5)

where A is a general differential operator and f{r) is a known
analytical function. The operator 4 can be divided into two
parts, L and N, where L is a linear and N is a nonlinear oper-
ator. Therefore Eq. (3.4) can be rewritten as

L(U) + N(U) = f(r) =0, r€ Q C R" (3.6)

In order to solve the system of differential Eq. (3.4) by
means of the homotopy perturbation transform method, we
construct the homotopy V(r,p) : @ x [0, 1] — R", which satis-
fies the following

H(V,p) = (1 =p)[L(V) = vo] +p[A(V) = f(r)] =0,
pe0,1], reQ (3.7)

or equivalently,

H(V,p) = L(V) = vo + pvo + p[N(V) = f(r)] = 0,

peD1, reQ (3.8)
where p € [0, 1] is embedding parameter, v, the initial approx-

imation of the solution of Eq. (3.4). From Eq. (3.6) and Eq.
(3.8) we have

H(V,0) =L(V) — vy = 0, (3.9)
H(V,1) =A(V) — fr) = 0 (3.10)

We apply the Laplace transform on both sides of the homo-
topy Eq. (3.8) to obtain

L{L(V) —vo+pvo + p[N(V) —f(1)]} =0, p€ [0,1], r € Q.

(3.11)

Using the differential property of the Laplace transform we
have

SL{VY =" V(0) — s"2V(0) — - — VID(0)
= L{vo — pvo + p[N(V) = fTr)]}, (3.12)
or
L{V} = % {s"'V(0) +5"2V'(0) + - - + VD(0)
+L{vo — pvo + p[N(V) = fl0)]} }. (3.13)

By applying the inverse Laplace transform on both sides of
(3.13), we have

V=r" {si” {s"7V(0) +5"2V'(0) + - - - + V" 1(0)

— ]} 1}

Assuming that the solutions of Eq. (3.7) can be expressed as
a power series of p

+L{vy — pvo + p[N(V) (3.14)

=3PV, (3.15)
n=0
Then substituting Eq. (3.15) into Eq. (3.14), we get
anvn = [ { { n— IV(O) +Sn—2 Vl(o) + + V(n—l)(o)
n=0

() )

(3.16)

+£{v0 —pv+p

Comparing coefficients of p with the same power leads to

PiVo=L0 {l(” 'V(0) + 5 2V’(O)+---+V<”*”+£{VO})}»

(L{N(Vo) = vo — mm}

~
|I

RE
’ L ‘{l (L{N(V,,V })}
e

1

piVy=L"" -(L{N( V()7V17V2)})}

{l L{N(V, V1, Vs, v,-,l)})}

Assuming that the initial approximation has the form

U(O) = Vo = Qo, U,(O) =0y, aU(nil)(O) = 0y—1,
therefore the exact solution may be obtained as following

(3.18)

(3.17)

p—

The utility of HPTM is shown by its applications on Affine
diffusion problems.
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4. Numerical experiments

4.1. Interest rate models

We first look at affine term structure models that are found in
interest rate models (see Bjork, 2004). Here the state process is
the interest rate itself r following the dynamics:

dr(t) = u(t,r(t))dt + o(t,r(t))dW,

where  u(t,r(1)) = a(t)r(1) + b(1), 0> (1,r(1)) = c(0)r(t) + d(2)
and a(1),b(t),c(),d(t) are deterministic functions of 7. This
suggests that the state process X, corresponds exactly to the
interest rate r(z). It is one dimensional, and as a result we have
the following matching

K :b(t)v H, :d(t)»
K] = Cl([), H] = C(l),

,D():O,
pr =1

For a zero coupon bond that pays 1 at maturity 7, we see
that its price at any time t prior to maturity is given by

plz,r) = e%(fHﬁ(r)r(r)7
with o and f satisfying the system of stiff ODEs of the form
{ (1) = b(1)B(r) +3d(0)B* ()

L(x) = ~1+a(®)B(x) +1e(0)f(x)
where T = T — ¢ and the initial conditions are given by
2(0) =0 and B(0) = u

(4.1)

We investigate numerical solutions of the system (4.1) by
means of the HPTM. To this end we construct the following
homotopy

{ A' () — o9(t) + p[oo(t) — b(x) B(x) — 1d(x)B*(r)] =0
B'(t) = o) +p[Bo(x) + 1 = a()B(z) =S c()B ()] =0

Applying the Laplace transform on both sides of (4.2), we
have

L£{4'(r) -
L{B'(1) -

Using the differential property of the Laplace transform we
have

{S[,{A(r)} — A(0) = L{(7)

sL{B(1)} — = L{Bo(1)

%(7) + plan(t) — b(1) B(r) — 3d(1)B*(1)] } = 0
Bo(x) + p[Bo(7) + 1 — a(x) B(z) — 3e(0)B*(7)] } =
(4.3)

= plon(r) = b(1)B(x) - ld(f)Bz( )]}
= p[Bo(2) + 1= a(x)B(x) S e(0) B ()]}
(4.4)

By applying inverse the Laplace transform on both sides of
Eq. (4.4) and after algebraic simplification we get

{A(r) = L7L(A(0) + L{x(7)

= plon(z) = b(x)B(x) — 1d(x) B*(v)]})}
B(x) = L7 {1 (B(0) + L{By (1) B(1)]

—p[Bo(0) + 1 —a(x)B(x) = 4e()B (1] })}
(4.5)

Suppose the solution of Eq. (4.2) to have the following
form

{40 o0 () 42

: (4.6)
B(t) = Bo(1) + pBy(v) + p*Bo(7) + - -

where 4;(7), Bi(t), j=1,2,... are unknown functions which
should be determined. Substituting Eq. (4.6) into Eq. (4.5), col-
lecting the same powers of p and equating each coefficient of p
to zero, results in

0.{Au<r>=zf‘{%< (0)+ L{z(0)})} 47

| Bol@) = £ {LBO) + L{By (1))} '

1. AI(T>:£71{*£L{ o(7) = b(t)By(t) —5d }} 48

P '{er):b'{—%c{ﬂ (@) +1—a(1)B (r>——c< )By(1)}} )
A,v<r>:c*‘{a—1.c{fb<r>3,- ()~ 1) BB ( >}}

P o 4.9)
B,(r):c*'{fgc{fams,fl(r) OO AGL AN >}}

Example 4.1. We consider a particular case of the Vasicek
model (see Bjork, 2004). This model is obtained from Eq. (4.1)
when the parameters are b(f) =b,d(t) = ¢%,a(t) = —a,
¢(t) =0 and u = 0. The exact solution of the Vasicek model
was found to be of the form

ﬁ(r):é(e"”—l) and a(z) = PO

—9(ab-30°) Ch)
@ 4a
(4.10)

The Taylor expansions of both o« and f§ at about zero at

order 6 is
T 5 Te)T (3 8 120 120
e

B 1 ) az ; a3 . a4 5
ﬁ(r)-—r—i—zar —e Tttt 1201 +mr + 0.

To obtain the numerical solution of the (4.1) for the
Vasicek model, we assume og(t) = 4(0) =«(0) =0 and

a(t) = —

Bo(t) = B(0) = B(0) =0. Solving Eqgs. (4.7)-4.9) for
A;(7), Bi(t), j=0,1,...,6 leads to the following result
b, ab 5 d ah ad\ ,
AlR) = 3T+ gr g _(24+z;d>T
@b+ 1a? ad\
4.11
+ ( 120 ’/) (720 48d> (411)
and
2 3 4 5
B(r):—r+ar oy L Lo (4.12)

2 6 24 120 720

The polynomials A(t) and B(t) are the same as the Taylor
expansion obtained above for o(t) and f(z), respectively. This
means the limit of infinitely many terms (4.11) and (4.12) yields
the exact solution (4.10). The accuracy of the scheme is mea-
sured using the following relative error

() — A{@)]
|ex(2)]

where (1) and A(t) represent the exact and approximate solu-
tions, respectively.

E= (4.13)
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Table 1 illustrates the convergence of the HPTM. At t =1
and as j increases from 4 to 10 the error in o decreases from
order 107* to 107® and from 107> to 107" for . At 7 =0.1

and as j increases from 4 to 10 the error in o decreases from

order 107 to 107'* and from 10~® to 107" for g.

0 and

Using the initial conditions op(7) = A(0) = «(0)

(4.1) for A;(x),

Considering the bond that pay-off 1 at

maturity implies ¥ =0. The solution computed using the

HPTM at order j = 6 is given by

Fig. 1 (a) shows that the exact and numerical solutions of
Eq. (4.1) are in good agreement. The bond price behaviour
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this model is

Again we observe that the Taylor expansion and the solu-
tion of the CIR model computed by the HPTM are in good
agreement. Table 2 records the error for different values of j
and different values of 7 taken randomly. The same conclusion
applies as to the Vasicek model, that the error decreases
rapidly as 7 gets closer to 0. The bond price in terms of time

to maturity t and the interest rate r is given by
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(4.16)

O ()

p(t,r)

where y = v as? + b*. The corresponding Taylor expansion is

=0.1.

Convergence of HPTM of the Vasicek model for ¢ = 0.5, = 0.3 and d

Table 1

7=0.7

t=0.5

7=0.2

t=0.1

9.66072E—5 1.55847E-3 4.36287E-3 1.30838E-2

1.19416E—-5

8.61305E—7 3.53106E—5 1.39979E—4 6.10400E—4

5.29545E—8

8.86011E—-8 9.02825E—6 4.98717E—-5 3.08174E—4

2.72792E-9

2.05922E-10 5.30832E—8 4.14078E—7 3.70637E—6

3.1584E—12

4.88715E—11 3.13493E-8 3.40916E—7 4.32664E—6

3.84661E—13

A(7)
B(7)

2.92069E—14 4.63624E—11 7.1053E—10 1.30249E—8

8.13539E—17

1.99155E—15 7.16094E—11 1.53097E-9 3.98281E—8

1.11102E—-14
1.91192E—-16

Jj=10

2.64043E—14 7.95826E—13 2.98415E—11

5.38435E—16

Bond price

R
Z 2

==

s
L

22
L
22

22

=
S
ZRR
=
%
2

22
S
22

R

2

LRI
2R
Sass
LR

>
2
2L
Z
XZ
%
2

2%
%

2%
2z
=
22
L
R
2L
%
X7
=

2>
%
2

S,
2R
RRRIILRL
LRI
SSSEES
ZRLILE
RRLLEE
PRI
RZRRLLE
LIRS
L
LR

>
28

LT

RS
LRI

%
2%
2z
%
o
22
Z

i

2

e
B
2

2
2%
%
s
2
2L
R
S
R
=
L
LRLL
L

e
LRLLLZE

- @ o N
o o o
(1nd
1@
°
‘ °
D
3 °
D
L \\O‘
o
H ®
—~ o~~~ .
IE58 g
[ )
X - e e
©o N © O ¥ o N -
O O O O o o o o
gw'gy

0.8

0.6

0.4

0.2

=0.1 at

0.3 and d

(a) Exact and numerical solutions of 4.1 and (b) Bond price process for the Vasicek model when a = 0.5, 5

Fig. 1
j=38.
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Table 2 Convergence of the CIR model for a = 0.5, 5 =0.3, ¢ =0.1.
=02 =04 t=0.6 =028 =1
n=4 A7) 1.43085E—-5 1.16921E—4 4.02833E—4 9.74221E—4 1.9403E-3
B(7) 4.95614E—7 8.31425E—6 4.40686E—5 1.45623E—4 3.71224E—4
n==6 A(7) 1.07357E—-10 5.13301E-9 5.16706E—8 2.71528E—7 9.93647E—7
B(7) 2.00642E—10 1.30547E—8 1.51097E—7 8.62187E—7 3.33847E—6
n=2_, A7) 2.68126E—12 1.90102E—10 3.28522E-9 2.49695E—8 1.20746E—7
B(7) 1.28341E—13 3.43621E—11 9.14227E—-10 9.47091E—9 5.84918E—8
n=10 A(7) 1.22378E—12 7.96574E—13 5.11847E—12 7.03396E—11 5.42104E—10
B(7) 7.29208 E—-16 1.16398E—14 6.42225E—13 1.09941E—11 9.83115E—11
Bond price
0.8} A )
0.7F] * ) LA
LB o
OO e By o
K J
«n 0.57 e 1
<} K |
i) 0.4 K =)
< 0.3t o , =
0.2} ° |
0.1 ] 1
e 1
0 0.2 0.4 0.6 0.8 1
t
(a) (b)
Fig. 2 (a) Parameters o(t) and f(t) exact and approximate and (b) bond price behaviour for 0 < r < 0.5,a=0.5, »=0.3, 0 =0.1.
Fig. 2 shows the behaviour of the parameters o and The stochastic differential Eq. (4.18) can be written as

p as well as the corresponding bond price (4.16) for
a=0.5 b=0.3, 0 =0.1. Clearly, exact and numerical solu-
tions are in good agreement.

4.2. Two-factor stochastic volatility model

One of the most well-known stochastic volatility models is the
Heston model described by Duffie et al. (2000). Under con-
stant interest rate r, the stock price has dynamics driven by

dS, = rS,di + \/V,S.dW, (4.17)

where g, = v/V, is the stock price stochastic volatility driven by
the process

dv, =0 —V,)dt + a,\/V.dW, (4.18)

where « is the rate of mean reversion, 0 is the long-run variance
and o, is the volatility of the variance. The correlation between
the two processes W, and W] is defined by

AW, dW' = pd. (4.19)

v, = k(0 — V,)dt + o,/ Vi (pdW' + /1 — p2dW?),

where W! and W? are independent processes. We consider

X, = (InS,, ;) in order to force the process to become Affine.
Let Y, =InS, then dY, = (r — %)di + VV:dW'. The state

vector X, = (Y,, V,) has linear dynamics and it is written as

Y, r—1iv, ) (1 0 )
dx, =d = 2 dr+/7V, dW® +dz,.
! ( V;) (K(G -V * "\ pa, 1 - plo, Pt

Under the risk free equivalent martingale measure Q the
process X, is governed by

dX, = p,dt + o,dw?
where

r 0o -1 (1 po
'u’:<r<1,.9>+(0 —;)XH il :(ﬂav 7’ )Vﬁ
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00 00 1 o,
a,alT = + | ,02 X,.
0 0 0 0 | po, o

Referring to Affine settings, we see that

K(): ) Kl: ) HO )
K0 0 —«x 0 0

4.20
0 0 | 1 P, (4.20)
Hl = ;
0 0 | po, o
and
Po =T, Pi :(070) (421)

Eq. (2.3) is now two-dimensional and referred to as a two-
factor model. By choosing the pay-off function in the form

W= AT (4.22)

where u = (uj,u,) € R* is constant, the Riccati Eq. (2.5)
becomes

B(y=r—(r K9)(£;>+%(ﬂl ﬁz}(ﬁ g)(ﬁl)
- )

| 1 Pﬂv)(ﬁl)
| pov ot J\B,
Resulting in

F (1) = —r+rBi(z) + k0By(x)

%(r) =0
d(ﬁ_?(f) = _%ﬁl

— KBy +1B1(1) + po. By (1) By () + L a2 B3 (1)
(4.23)

where t = T — ¢ and the initial conditions are given by
2(0) = 0 and (8,(0), 55(0)) = (u,0).
The exact solution is given by

(G417
) 2os(! ‘T)}

2 2
g, gy

a(t) =rt(u—1) — Ok

Bi(7) =u

pule) = — )

2y = (b+7)(1 —e7)

where 7y = Vao? + b>. To solve Eq. (4.23) by the use of the
HPTM, we construct the following homotopy
A'(v) = % (7) + plow(t) — r + rB(t) — k0C(7)] = 0
B(1) - ﬁl,o(T) +Pﬁ1,o(f) =0 .
C'(17) = Pa(t) + p[Bro(7) +3 B(1) + po,B(x)C(2) + 5,C(1)]
(4.24)

Applying the Laplace transform on both sides of (4.24), we
have

L{A'(t) — o(7) + plag(z) — r + rB(zr) — k0C(7)]} = 0
L{B(t) = B1o(x) +pPio(r)} =0 .
L{C(1) = B2o(1) + P[Bro(z) +3 B(1) + po, B(1)C(1) +30,C*(1)] } = 0

(4.25)

Using the differential property of the Laplace transform we
have

SLLA(1)} — A(0) = L{og () — ploto () — r +rB(t) — kOC(7)]}
:‘C{ﬁl.ﬂ(t) *pﬂm(f)}

= E{ﬁz.o(’) -P [/32.0(‘5)

SL{B(z)} — B(0)

sL{C(1)} — C(0) +1B(t) + po,B(1)C(1) + 10

By applying the inverse Laplace transform on both sides

of (4.26) and after algebraic simplification, we have
(see Fig. 4)
A<> L£7H{HA(0) + L{oo(x) = plao(t) = r + rB(x) — kOB(2)]})}
B(t) = L7 {L(B0) + L{B1o(t) = pB1o(1)}) }
Cf = ‘{%<C(0>+L{ﬁzo ) = p[Bao(x) +1B()
pa,B(x)C(2) +30,C*(1)]}) }

(4.27)

Suppose the solution of Eq. (4.27) to have the following
form

A(7) = Ao(7) + pA,(t) + p*Aa(7) +

B(t) = Bo(t) + pB,(x) + p*Ba(7) + -+,

C(1) = Co(1) + pCy(z) + p*Ca(1) +
where A4;(1), B;(t), Ci(t), j=1,2,... are unknown functions
which should be determined. Substituting Eq. (4.28) into Eq.

(4.27), collecting the same powers of p and equating each coef-
ficient of p to zero, results in

(4.28)

Ag(z) = L7{E(A(0) + L{m(1)})}
:{BQ(T) =L7{E(B0) + L{Bio(1)})} (4.29)
Co(f):L l{%( +L{ﬁzo )})}
A (1) =L~ '{ LL{og(t) — r+ rBy(t) — k0Cy(1)}},
P {B,(r)ﬁ H=1L{Bio(0)}} (4.30)
Ci(0) = L7 =LL{By0(x) +1 B2(1) + po,By(1)Co () +1a2Ca(r) }}

Ay(r) =L {7f/v'{rBH(r
Bi(1) =0

V2 C/(r):ﬁ"{—}ﬁ{%iB(
+30 Z Ci(7) ,Al(f}}

Je=

) = KO0C;-1 ()} ],

+pO'\ZBA Cia( (4.31)

Assuming  og(t) = A(0) =«(0) =0 and fy(r) = B(0) =
p(0) =u and solving the above equation for A;(t), B;(t),
j=0,1,..., we get the following graphs for « and f3, as f; is
just constant and equal to u.

Here the parameters are chosen randomly as r = 0.02,x =
0.3,0,=0.6,0 =0.05,p = —0.3,u=1.1. One can clearly see
in Fig. 3 the quick convergence of the HPTM as 7 is small
enough, but for t > 1 it is essential to increase the number ;.
The price at time © of the security that pays off @y = "7 is
given by

(b(f,y, V) _ em(r)+u}‘(t)+[}(f)v(r) _ eulnS,ez(f)Jr/)’z(f)v(r)‘

If we consider S, = Spe’™ with r =0.02, we get the asset
price behaviour ¢, sketched in Fig. 4(a). We can also view
the asset price ¢, as a function of y and 7. For the sake of com-
putation we consider v to be a polynomial of order 2 in 1, that
is, we arbitrarily take v(t) = 0.01 + 0.5t — 0.0027. The result-
ing asset price behaviour is recorded in Fig. 4(b).
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%107 alpha
2.5r

exact

® approximate

Fig. 3

4.3. Three-factor stochastic volatility model

We consider the three-factors Heston model also considered by
Duffie et al. (2000) where the state process X, is the triplet
(Y,, V., V,) where V, is the long-term volatility trend of the
stock S,. The state process dynamics under the equivalent
martingale Q is given by

Y, ,uf%
d V, = (T/ v,) |dr
(7= T)
0 0
(pam o/T=p™V, 0 |dw?, (4.32)
0 ooV V;
= % It 0 -1 o Y,
( Vv, — 0 +10 —x x V.1,
(v— KoV 0 0 —Kp v,
VTV, 0 0
(pa\/-V, omm 0 =
0 0 ooV,
v, paV, 0
O’,O’t = | poV, a*V, 0 ,

0 0 oV,
where p is the stock’s drift, ¢ is the volatility of the variance
Vi, p is the correlation between Y, and V,, the long-term

volatility ¥V, is stochastic with volatility o,. Referring to the
affine settings we get

U 0o -1 0
K() = 0 s Kl = 0 —x K 5
KoV 0 0 —kKo

beta2

—— approximate *
0.04| * exact b

(a) () exact and approximate A4 for j = 8 and (b) f5,(1) exact and its approximate C obtained for j =8 .

000 1 po 0] 00O
H=[0 00 ps o> 0| 00 0 |,
0000 0 0] 00 o

Po =T, Py :(0,0,0)

We know the solution is given by Eq. (4.1) ie. with o and f§
satisfying

9 B
Dw=r—(u 0 xn)| B
Bs
and
B, 0 0 0 0 B,
g Brl=10|+]-% -« 0 N
B 0 0 K —Ko N
| By
t5(Be By By) < Hix | B
Bs

After algebraic simplifications, we end up with the
following system of ordinary differential equations of Riccati

type

(1) = —r+up, (1) +K07P5 (1)

%(1) =0
2 (1) = —L B, (2) — 1By (x) +1 B2 (2) + pafy () B (7) + L2 B2(x)
W (1) = ey (1) — ko3 (1) + 103 B(x)

(4.33)
where 1 = T — ¢ and the initial conditions are given by
2(0) =0 and (B,(0), 5,(0), B;(0)) =

To solve Eq. (4.33) by the HPTM, we construct the follow-
ing homotopy

(1, uz,u3).
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A'(1) = (1) + plon() + r — uB(r) — 17D(x)] = 0
B'(1) = Bro(1) + p[Bro(1)] =0 (4.34)
C'(t) = og(1) + p[Bao (1) + 3 B(x) + kC(1) = 3 B (1) — paB(1)C(1) — 50°C* (1) =0 ’
D/(t) = Bsy(1) + p[Bso (1) = KC(1) + Ko D(1) — 3030%(1)] = 0

Applying the Laplace transform on both sides of (4.34), we have
L{A(t) = ao(7) + plawo(7) + r — pB(7) — ko¥D(1)]} = 0
£{BI(T) - ﬂl,o(f) +p[ﬂ1,0(r)]} =0 (4.35)
L{C(0) = Brg(0) +p[Ba(7) + 3 B(1) + kC(2) = 1 B(1) — poB(t)C(x) = 30°C(1)] } = 0 '
L{D () = B30(2) + p[B3(2) — kC(7) + 10 D(1) — 303 D*(7)] } = 0

Using the differential property of the Laplace transform we
have
sL{A(7)} — A(0) = L{oo(7) — plon(t) +r — uB(r) — ko¥D(7)]}
sC{B(r)} — B(0) = C{ﬁl,o(f) *P[ﬁl.o(f)} }
SL{C(0)} = C(0) = L{Pay(1) = p[Bro(v) +3B(1) + 1C(1)
+L B (1) + paB(t)C(r) + 16> C*(7)] }
Sﬁ{D(T)} -C(0)= ﬁ{ﬁ&o(f) -P [ﬁlo(f) —KkC(t) — Ko D(7)
+30,0%(1)] }
(4.36)

By applying the inverse Laplace transform on both sides of
(4.36) and after algebraic simplification we have

B(t) — paB(1)C(x) +1aC*(1)]})}

Suppose the solution of Eq. (4.36) to have the following
form

A7) = Ao(t) + pA,(t) + pP*Ax () + - -
B(t) = By(t) + pB,(t) + p*By(t) + - -+ 4.38)
C(1) = Co(t) + pC,(z) + p*Ca(t) + - - ’ :
D(t) = Do(t) + pD,(t) + p*Da(z) + - -

where 4;(t), B;(t), C;(t), j=1,2,... are unknown functions

which should be determined. Substituting Eq. (4.38) into Eq.
(4.37), collecting the same powers of p and equating each coef-
ficient of p to zero, results in

(4.37)

3030°(0)] 1) }
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(a) Asset price behaviour with respect to (z, v(t)). (b) Asset price behaviour with respect to (z, y(1)).
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Ag(t) = L7H1(A(0) + L{zo()}) }
pO : By(1) :Eil{% (B(O)+£{ﬁ10 T)})} (4.39)
Co(t) =L {% (C(O) + ﬁ{ﬁzo T)})}
Dy(r) = Lil{% (D( )+ L{ﬁm 7)})}
A(x) = £7{=1L{on(r) +r — uB(x) — xvD(x)}},
. Bi(t)=L" { E{ﬁlo 3 B(1)C(7) +2PUC2 }}
p (4.40)
Ci(1) = L7H{=1L{B,o( +;cc(1—) +1B*(1) + paB(1)C(7) +16>C* (1) }}
Di(t) = L7{=1L{Bs,(x) — kC(t) — ko D(z) +1a3D*(1)}}
A1) = L= L{—pB;-1 (v) — koVDj1 (1)} },
Bi(t) =0.
J. J-1 Ul 441
r Cj(‘L’) =L { L{ i1 + Kq 1 __ZBl‘ ] f— 1 pasz(T)Cj—k—l(T) — %O’zzck(f)cj‘_k_l(l’)}} ( )
k=0 k=0
Di(x) = £7{-1£{—xC(x) + xoD(r) —1a3D* ()} }
Assuming op(t) = A(0) = 2(0) = 0, B, o(r) = B(0) = Table 3 show that numerical solutions converge rapidly as j
By (0 )— u, Bro(t) = C(0) = B,(0) =0 and  B54(r) = D(0) = increases.
B5(0) = we solve the above equation for Defining the error function at order j to be
A,-(r),B,-(r), Ci(1), Di(r)j=0,1,..,12.  For computational
purpose we consider the following set of parameters: E— M

Aj1 (1)

Table 3 records the errors in o, f,, and f; at order 9. Note
that f8,(t) = u is constant since its derivative is 0.

r=0.02, £1=0.03 k=2, ko =12, v=0.05, 6o =0.01, 0 =
0.05, p=04and u=09. We run the HPTM for
j=10,j=11, and j=12. The results in Fig. 5 and

Alpha x 107 Beta2 Beta3

0.045F

0.04r

0.035

0.03f
0.025F
S 0.02f
0.015F
0.01

0.0051

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 t 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) (b) ()

Fig. 5 (a) a(r), (b) B,(r) and (c) B5(r)computed for j= 10,11 and j=12 for r=0.02, 1 =0.03, k =2, ko = 1.2, v=0.05, g9 =
0.01, 0=0.05, p=0.4 and u = 0.9.

Table 3 Convergence of the three-factor model for r=0.02, u=0.03, k =2, ko = 1.2, ¥ = 0.05, gp = 0.01, 6 =0.05, p =
0.4 and u = 0.9.

t=02 t=04 t=0.6 t=0.8 t=1
o(t) 9.44787E—10 2.88458E—7 8.75677E—6 1.02925E—4 7.17550E—4
pa(7) 2.92738E—8 1.00574E—5 3.40898E—4 4.44356E—3 3.42980E—2
p3(7) 5.24351E—10 3.73261E—7 2.00047E—5 3.72887E—4 391183E-3
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5. Conclusion

In the present work, we proposed a combination of the
Laplace transform method and the homotopy perturbation
method to solve nonlinear systems of stiff Riccati differential
equations arising in finance. We have discussed the methodol-
ogy for the construction of these schemes and studied their
performance on one, two and three-factor diffusion models
with affine coefficients. The solution of these Riccati systems
of equations by means of the homotopy perturbation trans-
form method converges rapidly to the exact solution as the
number of truncated term increases. The HPTM is an effective
mathematical tool which can play a very important role in the
field of finance.
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