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Abstract In this article, Homotopy analysis method is successfully used to find the approximate

solution of fractional order Van der Pol equation. The fractional derivative is described in the

Caputo sense.The numerical computations of convergence control parameters for the acceleration

of convergence of approximate series solution are obtained by the analysis of minimization of error

for different particular cases and the results are depicted through graphs. The salient feature of the

article is the graphical presentation of achieving limit cycles for different parameters.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Van der Pol oscillator equation was first introduced in 1920 by
Vander Pol (1920) who introduced the equation to describe the

oscillation of triode in the electrical circuit. The mathematical
model for this system is a second order differential equation
with third degree of nonlinearity as

€uðtÞ � �ð1� u2ðtÞ _uðtÞ þ uðtÞ ¼ 0; ð1Þ

where � > 0 is a control parameter and €uðtÞ; _uðtÞ are the second
and first order derivative of u with respect to time. if � ¼ 0,
Eq. (1) represents the simple linear oscillator and for �� 1 it
represents relaxation oscillator. The equivalent state space for-
mulation of the Eq. (1) is

du1
dt
¼ u2;

du2
dt
¼ �u1 � �ðu21 � 1Þu2;

In the Eq. (1) for the small value of uðtÞ, the damping force is
negative i.e., �� _uðtÞ. Again if uðtÞ is bigger, it becomes domi-

nant and the damping is positive. Van der Pol oscillator is
an example of self oscillatory system which is now considered
as a very useful mathematical model. Eq. (1) is also known as
unforced Van der Pol equation. Van der Pol proposed another

version of the above equation by including a periodic forcing
term as

€uðtÞ � �ð1� u2ðtÞÞ _uðtÞ þ uðtÞ ¼ a sinwt ð2Þ

In 1945, Cartwright and Littlewood (1945) analyzed the Van

der Pol equation with large nonlinearity parameter. In 1949,
Levinson (1949) studied the Van der Pol equation and had
shown that the equation has singular solution. The equation
is considered as basic model for oscillatory process for
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Fig. 1 Plots of exact residual error Em versus �h for a ¼ 1; � ¼ 1

and a ¼ 1.

Table 1 Comparison of exact residual error for different

values of at a ¼ 1.

Order of

approximation

�h Em Em at �h ¼ �1

1 �1:02178 7:23448� 10�3 7:56674� 10�3

2 �0:729311 7:59265� 10�2 1:09266� 10�1

3 �0:76059 1:07886� 10�4 5:11962� 10�2

Table 2 Comparison of exact residual error for different

values of at a ¼ 0:75.

Order of

approximation

�h Em Em at �h ¼ �1

1 �1.04575 1:39174� 10�2 1:50387� 10�2

2 �0.624875 1:41559� 10�1 2:35311� 10�1

3 �0.758726 2:03645� 10�4 9:34828� 10�2

Table 3 Comparison of exact residual error for different

values of at a ¼ 0:5.

Order of

approximation

�h Em Em at �h ¼ �1

1 �1.09418 8:14262� 10�3 1:21135� 10�2

2 �0.550819 1:87993� 10�1 3:65587� 10�1

3 �0.725017 2:56436� 10�3 1:22567
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Physics, Biology, Electronics, and Neurology. Van der Pol

himself built a number of electronic circuits to model human
heart using the equation.

Many researchers have tried to solve and study the Van der

Pol equation in various forms. Mickens (2001) proposed the
study of a non-standard finite difference scheme for the
unplugged Van der Pol equation. In 2002, Mickens (2002)
studied numerically the Van der Pol equation using a non-

standard finite-difference scheme . In the same year, Mickens
(2002) proposed a step-size dependence of the period for a
forward-Euler scheme of the Van der Pol equation. In 2003,

Mickens (2003) proposed different forms of Fractional Van
der Pol oscillators. Researchers have tried many methods to
solve the Van der Pol differential equation using Energy bal-

ance method (Mehdipour et al., 2010; Younesian et al.,
2010), Parameter expanding method (He, 2006; Xu, 2007) etc.

The Fractional order differential equations have created
much interest to the researchers (Atangana and Secer, 2013)

due to the non local behavior of the operator which takes into
account the fact that future state depends on the present as
well as on the history of the previous states. Thus fractional

order derivatives are naturally related to the systems with
memory which prevails for most of physical and scientific sys-
tem models. Another advantage is fractional order system

response ultimately converges to integer order system
response. Leung et al. (2012) have used residue harmonic bal-
ance method for fractional order Van der Pol like oscillators.

Gafiychuk et al. (2008) have done the analysis of fractional
order Bonhoeffer Van der Pol oscillator. Leung and Guo
(2011) have used forward residue harmonic balance for auton-
omous and non autonomous systems with fractional derivative

damping. Guo et al. (2011) have given the asymptotic solution
of fractional Van der Pol oscillator using the same method.
Leung and Guo (2010) have used the method for discontinu-

ous nonlinear oscillator for fractional power restoring force.
Sardar et al. (2009) have found the approximate analytical
solution of multi term fractionally damped Van der Pol equa-

tion. Konuralp et al. (2009) studied numerical solution of Van
der Pol equation with fractional damping term. Pereira et al.
(2004) have proposed a fractional order Van der Pol equation
as

dkuðtÞ
dtk

� �ð1� u2ðtÞÞ duðtÞ
dt
þ uðtÞ ¼ 0; 1 < k < 2; ð3Þ

with the state space formulation as

du1
dt
¼ u2;

dku2

dtk
¼ �u1 � �ðu21 � 1Þu2;

which is obtained by introducing a capacitance by a fractance
in the nonlinear RLC circuit. Barbosa et al. proposed frac-
tional order Van der Pol equation by introducing a fractional
order time derivative in the state space equation of the classical

Van der Pol equation as

dku1

dtk
¼ u2;

du2
dt
¼ �u1 � �ðu21 � 1Þu2;

which gives us the Van der Pol equation as
d1þkuðtÞ
dtk

� �ð1� u2ðtÞÞ d
kuðtÞ
dtk

þ uðtÞ ¼ 0; 1 < k < 2; ð4Þ

In the present article authors have considered the two frac-
tional order time derivative in the state space equation as

dau1
dta
¼ u2;

dau2
dta
¼ �u1 � �ðu21 � 1Þu2; 0 < a < 1;

which generates the fractional order Van der Pol equation as



Fig. 2 Plots of exact residual error Em versus �h for a ¼ 1; � ¼ 1

and a ¼ 0:75.

Fig. 3 Plots of exact residual error Em versus �h for a ¼ 1; � ¼ 1

and a ¼ 0:5.
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d2auðtÞ
dta

� �ð1� u2ðtÞÞ d
auðtÞ
dta

þ uðtÞ ¼ 0; 1 < a < 2; ð5Þ

with uð0Þ ¼ a; _uð0Þ ¼ 0. Eq. (5) represents the classical Van der
Pol equation for a ¼ 1 . In 1992, the Chinese Mathematician
Liao (1992) proposed Homotopy Analysis Method (HAM)

using the Homotopy, a basic concept in topology. In the
method some parameter terms are used viz., auxiliary linear
operator, embedding parameter or Homotopy parameter, ini-

tial guess, convergence control parameter, auxiliary parameter
etc. In the method there are flexibilities to choose the auxiliary
linear parameter, initial guess, auxiliary function and the con-

vergence control parameter. Liao showed the advantages of
Fig. 4 Phase Portrait between u1 and u2 (a) for a ¼ 1; � ¼ 1 and a ¼
the method are it is independent of any small or large physical
parameters and also provides a convenient way to guarantee
the convergence for approximation of series solution. Due to

these advantages it can overcome the restrictions and limita-
tions of various existing traditional perturbation and non-
perturbation methods. The biggest advantage of the method

is the smooth construction of so called zero-th order deforma-
tion equation, which is a base of HAM to connect a given non-
linear problem and a relatively much simpler linear ones.
Keeping in mind these advantages and flexibilities of HAM,

the authors have made an endeavor to solve the fractional
order Van der Pol equation. The convergence of the series
solution (Liao, 2012; Atangana, 2014) with the proper choice

of optimal values of convergence control parameter and also
0:5 (b) for a ¼ 1; � ¼ 1 and a ¼ 0:75 (c) for a ¼ 1; � ¼ 1 and a ¼ 1.



Fig. 5 Phase Portrait between u1 and u2 for a ¼ 1; a ¼ 0:5 and

� ¼ 1; 2; 3; 4.

Fig. 7 Phase Portrait between u1 and u2 for a ¼ 1; � ¼ 8 and

a ¼ 0:75.
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the stability analysis of the Van der Pol equation for different
fractional order time derivatives through numerical and graph-
ical presentations for different particular cases is the striking
feature of this scientific contribution. The remarkable contri-

bution of the study is the presentation of oscillations of the
Fig. 6 Phase Portrait between u1 and u2 (a) for a ¼ 1; � ¼ 0:5 and a ¼
a ¼ 0:95.
system, which are depicted through phase portraits for various
values of control parameters and fractional order derivatives.
0:75 (b) for a ¼ 1; � ¼ 0:5 and a ¼ 0:85 (c) for a ¼ 1; � ¼ 0:5 and
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2. Solution of the Problem by HAM

The Eq. (5) can be rewritten as

D2a
t uðtÞ þ �u2ðtÞDa

t uðtÞ � �Da
t uðtÞ þ uðtÞ ¼ 0; 0 < a 6 1; ð6Þ

with uð0Þ ¼ a; _uð0Þ ¼ 0.
The linear auxiliary operator is

L½/ðt; qÞ� ¼ @
2a/ðt; qÞ
@t2a

; t > 0; 0 < a 6 1; ð7Þ

with the property that

L½c� ¼ 0 ð8Þ

where c is the integrating constant, /ðt; qÞ is an unknown
function.

The nonlinear operator is defined as

N½/ðt; qÞ� ¼ D2a
t /ðt; qÞ þ �/ðt; qÞ2ðt; qÞDa

t/ðt; qÞ
� �Da

t/ðt; qÞ þ /ðt; qÞ: ð9Þ

Hence the zero-th order deformation equation is

ð1� qÞL½/ðt; qÞ � u0ðtÞ� ¼ q�hN½/ðt; qÞ�; ð10Þ

where q and �h – 0 are the embedding and the convergence con-

trol parameters, u0ðtÞ is the initial guess of uðtÞ. For q ¼ 0 and
1 , Eq. (10) gives

/ðt; 0Þ ¼ u0ðtÞ; /ðt; 1Þ ¼ uðtÞ

The m-th order deformation equation is

L½umðtÞ � vmum�1ðtÞ� ¼ �hRmð u!m�1ðr; tÞÞ; ð11Þ

with initial condition

umð0Þ ¼ 0; ð12Þ

where

vm ¼
0; m 6 1;

1; m > 1:

�

Therefore solution of the deformation equation is

umðtÞ ¼ vmum�1ðtÞ þ �hJ2at Rm½ u!m�1ðtÞ� þ c; ð13Þ

where J2at ½fðtÞ� ¼ 1
Cð2aÞ

R t

0
ðt� nÞ2a�1fðnÞdn; c is the integration

constant determined from Eq. (12).

Thus, Rm½ u!m�1ðtÞ� ¼ D2a
t um�1ðtÞ þ �

Pm�1
i¼0 ð

Pi
j¼0ujui�jÞ

Daum�1�i � �Da
t um�1ðtÞ þ um�1ðtÞ.

Taking u0 ¼ a, we get

u1ðtÞ ¼
�ha

Cð1þ 2aÞ t
2a; ð14Þ

u2ðtÞ ¼
�hð�hþ 1Þa
Cð1þ 2aÞ t

2a þ �aða
2 � 1Þ�h2

Cð1þ 3aÞ t3a þ �h2a

Cð1þ 4aÞ t
4a; ð15Þ

u3ðtÞ ¼
�hð�hþ 1Þ2a
Cð1þ 2aÞ t

2a þ 2�aða2 � 1Þ�hð�hþ 1Þ
� � t3a

Cð1þ 3aÞ

þ h3aþ �2aða2 � 1Þ�h3 þ �h2ð�hþ 1Þa
� � t4a

Cð1þ 4aÞ

þ 2�a�h3ða2 � 1Þ þ 2�a3�h3Cð1þ 3aÞ
Cð1þ 2aÞCð1þ aÞ

� �
t5a

Cð1þ 5aÞ

þ �h3at6a

Cð1þ 6aÞ ; ð16Þ
u4ðtÞ ¼
�hð�hþ 1Þ3a
Cð1þ 2aÞ t

2a

þ 2�aða2 � 1Þ�h2ð�hþ 1Þ2 þ �h2ð1þ �hÞ2�aða2 � 1Þ
h i t3a

Cð1þ 3aÞ

þ �h3ð�hþ 1Þaþ �2aða2 � 1Þ2�h2ð�hþ 1Þ
h

þ2�2aða2 � 1Þ2�h3ð1þ �hÞ þ �h2ð1þ �hÞ2a
i t4a

Cð1þ 4aÞ
þ 2��h3ð�hþ 1Þaða2 � 1Þ þ �a�h4ða2 � 1Þ
�
þ �3aða2 � 1Þ3�h3 þ 2�aða2 � 1Þ�h3ð�hþ 1Þ

þ �h3ð�hþ 1Þ�aða2 � 1Þ þ 2�a3�h3ð�hþ 1ÞCð1þ 3aÞ
Cð1þ 2aÞCð1þ aÞ

þ 2a3�h3ð�hþ 1ÞCð1þ 3aÞ
Cð1þ aÞCð1þ 2aÞ

þ 2�h3ð�hþ 1Þa3Cð1þ 3aÞ
Cð1þ aÞCð1þ 2aÞ

�
t5a

Cð1þ 5aÞ

þ �h3ð�hþ 1Þaþ 2�2a�h4ða2 � 1Þ2 þ �h4aþ a�h3
h

þ�2a�h3ða2 � 1Þ2 þ �h3ð�hþ 1Þaþ 2�3�h4a3ðaþ 1ÞCð1þ 3aÞ
Cð1þ 2aÞCð1þ aÞ

þ 2�a3ða2 � 1Þ�h4Cð1þ 4aÞ
C2ð1þ 2aÞ

þ 2�a3�h4ða2 � 1ÞCð1þ 4aÞ
Cð1þ aÞCð1þ 3aÞ

�

� t6a

Cð1þ 6aÞ ða
2 � 1Þ�h4�aþ 2��h4aða2 � 1Þ

�

þ 2�a3�h4Cð1þ 3aÞ
Cð1þ 2aÞCð1þ 3aÞ þ

2��h4a3Cð1þ 5aÞ
Cð1þ 2aÞCð1þ 3aÞ

þ 2��h4a3Cð1þ 5aÞ
Cð1þ 4aÞCð1þ 5aÞ þ

��h3a3Cð1þ 5aÞ
C2ð1þ 2aÞCð1þ aÞ

�
t7a

Cð1þ 7aÞ

þ �h4a

Cð1þ 8aÞ t
8a: ð17Þ

Proceeding in a similar manner, we can calculate the other
components un; n > 4 and hence we get the series solution of
the considered problem as

uðtÞ ¼ lim
N�!1

/NðtÞ; ð18Þ

where /NðtÞ ¼
PN�1

n¼0 unðtÞ; N P 1. As given by Liao (2012),

at the m-th order of approximation, one can define the exact
square residual error as

Em ¼
Z

X
N
Xm
i¼0

uiðtÞ
" # !2

dt; ð19Þ

During numerical computation the limits of the Eq. (19) will

be taken from 0 to 1. The optimal value of Em will be obtained
by minimizing the so called exact residual error defined by Eq.
(19), corresponding to the nonlinear algebraic equation

dEm

d�h
¼ 0:

Theorem 2.1. (Convergence theorem) If the series solution

defined by the Eq. (18) is convergent then it converges to an
exact solution of the nonlinear problem (6).

Proof. See Theorem 4.21 and Theorem 4.22 in the monograph
of Liao (2012). h
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3. Numerical results and discussion

In this section, the numerical results of uðtÞ for the considered
non-linear fractional Van der Pol oscillator equation have been

obtained. The optimal values of �h, for comparison of minimum
residual errors for a ¼ 1; � ¼ 1 and various values of a are pro-
vided through Tables 1–3 and are displayed through Figs. 1–3.

It is observed from Tables 1–3 that with increase in the order
of approximations, the residual error is decreasing and optimal
value of �h goes away from �h ¼ �1 . Tables 1–3 also depict that
with decrease in the value of a , residual error is decreasing for

�h ¼ �1. The phase portraits between u1 and u2 are presented
through Fig. 4(a)–(c). It is observed that for � ¼ 1 and
a ¼ 0:5, system approaches towards an equilibrium point

whereas for � ¼ 1 and a ¼ 0:75 the system gives us a stable
limit cycle and with the increase of the values of a from 0:75
to 1, it is seen from Fig. 4(b) and (c) that amplitude of the limit

cycle is increasing. In Fig. 5 drawn for a ¼ 0:75 and � ¼ 1ð1Þ4
the same nature is found in the amplitude of the limit cycle.
When � ¼ 0:5, the system approaches towards the equilibrium

point at a ¼ 0:75 (Fig. 6(a)). An interesting phenomenon is
observed at � ¼ 0:5; a ¼ 0:85 and � ¼ 0:5; a ¼ 0:95 . In both
occasions limit cycles obtained are displayed through
Fig. 6(b) and (c). In the first case the path of the orbit

approaches towards the limit cycle from outside whereas in
the later one the nature is opposite. Again for � P 7, some
strange natures are found in the limit cycles at a ¼ 0:75
depicted through Fig. 7 which may be described as bad bands
(Guckenheimer, 1980).

4. Conclusion

There are two important goals that the authors have achieved
in the present article. First one is how the convergence of

approximate solution can be accelerated using convergence
control parameter which demonstrates computationally effi-
cient approximate solutions with low residual errors during

the solution of the historical nonlinear equation in fractional
order system. This clearly reveals the reliability and potential
of the method HAM during the solution of nonlinear partial
differential equations even in fractional order system. The sec-

ond one is the observation of limit cycles for small values of
when is close to the standard one, and also the large value of
when is close to 0.5, which clearly demonstrate the variations

of achieved stable limit cycles of the system with changes in
small value of control parameter and higher value of fractional
order time derivative to the large value of control parameter

and small value of fractional order derivative.
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