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Ege University, Department of Mathematics, 35100 Bornova, _Izmir, Turkey
Received 30 June 2010; accepted 6 July 2010
Available online 27 July 2010
*

E

10

El

Pe

do
KEYWORDS

The Smoluchowski coagula-

tion equation;

Homotopy perturbation

method;

Approximate solution;

Error analysis;

Maple software package
Corresponding author.

-mail address: ahmet.yildirim

18-3647 ª 2010 King Saud

sevier B.V. All rights reserve

er review under responsibilit

i:10.1016/j.jksus.2010.07.007

Production and h
@ege.ed

Universit

d.

y of King

osting by E
Abstract The Smoluchowski coagulation equation is a mean-field model for the growth of clusters

(particles, droplets, etc.) by binary coalescence; that is, the driving growth mechanism is the merger

of two particles into a single one. In this study, we consider obtaining approximate solutions of the

Smoluchowski’s coagulation equation using the homotopy perturbation method. The numerical

solutions are compared with the exact solutions. Results derived from our method are shown graph-

ically.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Smoluchowski’s equation is widely applied to describe the time

evolution of the cluster-size distribution during aggregation
processes. Analytical solutions for this equation, however,
are known only for a very limited number of kernels. There-
fore, numerical methods have to be used to describe the time

evolution of the cluster-size distribution. A numerical tech-
nique is presented for the solution of the homogeneous Smolu-
chowski’s coagulation equation with constant kernel.

In this paper, we will consider the following Smoluchow-
ski’s coagulation equation (Ranjbar et al., in press; Filbert
and Laurençot, 2004):
u.tr (A. Yıldırım).

y. Production and hosting by

Saud University.
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@tfðx; tÞ ¼ CþðfÞ � C�ðfÞ; ðx; tÞ 2 R2
þ; ð1Þ

fðx; 0Þ ¼ f0; x 2 Rþ; ð2Þ

where

CþðfÞ ¼ 1

2

Z x

0

Kðx� y; yÞfðx� y; tÞfðy; tÞdy; ð3Þ

C�ðfÞ ¼
Z 1

0

Kðx; yÞfðx; tÞfðy; tÞdy ð4Þ

and f0 is a known value. f(x, t) is the density of cluster of mass
x per unit volume at time t.

Clusters of masses x and y coalesce by binary collisions at a

rate governed by a symmetric kernel K(x,y). The coagulation
kernel K(x,y) characterizes the rate at which the coalescence
of the two clusters with respective masses x and y produces a

cluster of mass x+ y and is a non-negative symmetric function

0 6 Kðx; yÞ ¼ Kðy; xÞ; ðx; yÞ 2 R2
þ: ð5Þ

The integral in Eq. (3) accounts for the formation of the

cluster of mass x resulting from the merger of two clusters with
respective masses y and x � y, y 2 (0,1). The integral in
Eq. (4) describes the loss of the cluster of mass x by coagula-

tion with other clusters. Problems involving Smoluchowski’s
equation have received a considerable amount of attention in
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the literature (Drake, 1972). Eq. (1) has been used in a wide

range of applications, such as the formation of clouds and
smog (Friedlander, 1977), the clustering of planets, stores, gal-
axies (Silk and White, 1978), the kinetics of polymerization
(Ziff, 1980) and even the schooling of fishes (Niwa, 1998)

and the formation of marine snow (Kiorbe, 2001). Also, an
influential survey article by Aldous summarizes the recent state
of affairs (Aldous, 1999). It is well known that during each

coagulation event, the total mass of clusters is conserved while
the number of clusters decreases. In terms of f, the total num-
ber of clusters N(t) and total mass of clusters M(t) at time

t P 0 are obtained by

NðtÞ :¼
Z 1

0

fðx; tÞdx; ð6Þ

MðtÞ :¼
Z 1

0

xfðx; tÞdx: ð7Þ

While it is easy to check that N(t) is a non-increasing function
of time, it is well known that M(t) might not remain constant
throughout time evolution for some coagulation coefficient

K(x,y) (Ernst et al., 1984). Recently, Filbert and Laurençot
(2004) used a numerical scheme for the Smoluchowski coagu-
lation equation, which relies on a conservative formulation

and a finite volume approach. Also Ranjbar et al. (in press)
used Taylor polynomials and radial basis functions together
to solve the equation. In this paper, we will use the homotopy
perturbation method for solving the Smoluchowski’s coagula-

tion equation.
He (1999, 2003, 2006a) proposed a perturbation technique,

so called He’s homotopy perturbation method (HPM), which

does not require a small parameter in the equation and takes
the full advantage of the traditional perturbation methods
and the homotopy techniques. Relatively recent survey on

the method and its applications can be found in Dehghan
and Shakeri (2008a), Dehghan and Shakeri (2008b), Saadat-
mandi et al. (2009), Yıldırım (2008a,b, 2009a), Dehghan and
Shakeri (2007), Shakeri and Dehghan (2008), Yıldırım

(2009b), Koçak and Yıldırım (2009), Yıldırım (2008c, 2009c),
and He (2008a,b, 2006b,c).

2. The homotopy perturbation method

Consider the following nonlinear differential equation:

AðuÞ � fðrÞ ¼ 0; r 2 X ð8Þ

with boundary conditions

B u; @u=@nð Þ ¼ 0; r 2 C; ð9Þ

where A is a general differential operator, B is a boundary
operator, f(r) is a known analytic function, and C is the bound-

ary of the domain X.
The operator A can, generally speaking, be divided into two

parts L and N, where L is linear and N is nonlinear, therefore
Eq. (8) can be written as,

LðuÞ þNðuÞ � fðrÞ ¼ 0: ð10Þ

By using homotopy technique, one can construct a homot-
opy vðr; pÞ : X� ½0; 1� ! R which satisfies

Hðv; pÞ ¼ ð1� pÞ½LðvÞ � Lðu0Þ� þ p½AðvÞ � fðrÞ� ¼ 0 ð11aÞ

or
Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ p½NðvÞ � fðrÞ� ¼ 0; ð11bÞ

where p 2 [0,1] is an embedding parameter and u0 is the initial
approximation of Eq. (8) which satisfies the boundary condi-

tions. Clearly, we have

Hðv; 0Þ ¼ LðvÞ � Lðu0Þ ¼ 0 ð12Þ

or

Hðv; 1Þ ¼ AðvÞ � fðrÞ ¼ 0 ð13Þ

The changing process of p from zero to unity is just that of

v(r,p) changing from u0(r) to u(r). This is called deformation,
and also, L(v) � L(u0) and A(v) � f(r) are called homotopic
in topology. If the embedding parameter p (0 6 p 6 1) is con-
sidered as a ‘‘small parameter’’, applying the classical pertur-

bation technique, we can assume that the solution of Eq.
(11) can be given as a power series in p, i.e.,

v ¼ v0 þ pv1 þ p2v2 þ � � � ð14Þ

and setting p = 1 results in the approximate solution of Eq. (8)
as

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � ð15Þ
3. Numerical results and comparison with explicit solutions

Example 1. We first consider Eqs. (1)–(4) with constant kernel
K(x,y) = 1 and f0 = exp(�x) (Ranjbar et al., in press),

@tfðx; tÞ ¼
1

2

Z x

0

fðx� y; tÞfðy; tÞdy�
Z 1

0

fðx; tÞfðy; tÞdy; ð16Þ

fðx; 0Þ ¼ expð�xÞ; ð17Þ

which has exact solution as follows (Ranjbar et al., in press):

fðx; tÞ ¼ N2ðtÞ expð�NðtÞxÞ with NðtÞ

¼ 2M0

2þM0t
and M0 ¼ 1 ð18Þ

for ðx; tÞ 2 R2
þ, where N(t) is the total number of particles de-

fined by Eq. (6). In order to solve Eqs. (16) and (17) by the

homotopy perturbation method, we construct the following
homotopy

@fðx; tÞ
@t

¼ p
1

2

Z x

0

fðx� y; tÞfðy; tÞdy�
Z 1

0

fðx; tÞfðy; tÞdy
� �

:

ð19Þ

Assume the solution of Eq. (16) in the form:

fðx; tÞ ¼ p0f0ðx; tÞ þ p1f1ðx; tÞ þ p2f2ðx; tÞ þ p3f3ðx; tÞ þ � � �
ð20Þ

Substituting (20) into (19) and collecting terms of the same

power of p give:

p0 :
df0ðx; tÞ

dt
¼ 0; f0ð0; xÞ ¼ fðx; 0Þ;

p1 :
df1ðx; tÞ

dt
¼ 1

2

Z x

0

f0ðx� y; tÞf0ðy; tÞdy

�
Z 1

0

f0ðx; tÞf0ðy; tÞdy; f1ðx; 0Þ ¼ 0;



Figure 1 (a) xf(x, t), (b) x�fðx; tÞ and (c) xfðx; tÞ � x�fðx; tÞ
�� ��.
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p2 :
df2ðx; tÞ

dt
¼ 1

2

Z x

0

ðf0ðx� y; tÞf1ðy; tÞ þ f1ðx� y; tÞf0ðy; tÞÞdy

�
Z 1

0

ðf0ðx; tÞf1ðy; tÞ þ f1ðx; tÞf0ðy; tÞÞdy;

f2ðx; 0Þ ¼ 0;

p3 :
df3ðx; tÞ

dt
¼ 1

2

Z x

0

ðf0ðx� y; tÞf2ðy; tÞ þ f1ðx� y; tÞf1ðy; tÞ

þ f2ðx� y; tÞf0ðy; tÞÞdy�
Z 1

0

ðf0ðx; tÞf2ðy; tÞ

þ f1ðx; tÞf1ðy; tÞ þ f2ðx; tÞf0ðy; tÞÞdy;
f3ðx; 0Þ ¼ 0;
. . .

solving above equations by MAPLE yields:

f0ðx; tÞ ¼ expð�xÞ;

f1ðx; tÞ ¼
1

2
ðx� 2Þ expð�xÞt;

f2ðx; tÞ ¼
1

8
ð6� 6xþ x2Þ expð�xÞt2;

f3ðx; tÞ ¼
1

48
ð�24þ 36x� 12x2 þ x3Þ expð�xÞt3;

. . .
and so on, other components are easily obtained by using

(19) and MAPLE. A few terms approximation to the solu-
tion of Eqs. (16) and (17) can be obtained by setting p = 1
in (20). We get the third-order approximation solution as

follows:

�fðx; tÞ ¼
X3
i¼0

fiðx; tÞ ¼ expð�xÞ

� 1þ 1

2
ðx� 2Þtþ 1

8
ð6� 6xþ x2Þt2

�

þ 1

48
ð�24þ 36x� 12x2 þ x3Þt3

�
: ð21Þ

Figs. 1 and 2 show that the numerical approximate solution
has a high degree of accuracy. As we know, more the terms

added to the approximate solution, more the accurate it will
be. Although we only considered third-order approximation,
it achieves a high level of accuracy.

Example 2. We now consider Eqs. (1)–(4) with the multiplica-
tive coagulation kernel K(x,y) = xy and f0 = exp(�x)/x
(Ranjbar et al., in press),



Figure 2 (a) f(x, t), (b) �fðx; tÞ and (c) fðx; tÞ � �fðx; tÞ
�� ��.
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@tfðx; tÞ ¼
1

2

Z x

0

ððx� yÞyÞfðx� y; tÞfðy; tÞdy

�
Z 1

0

ðxyÞfðx; tÞfðy; tÞdy; ð22Þ

fðx; 0Þ ¼ expð�xÞ=x; ð23Þ

which has exact solution as follows (Ranjbar et al., in press):

fðx; tÞ ¼ expð�TxÞ I1ð2xt
1=2Þ

x2t1=2
; ð24Þ

where

T ¼
1þ t; t 6 1;

2t1=2; otherwise

�
ð25Þ
and I1 is the modified Bessel function of the first kind

I1ðxÞ ¼
1

p

Z p

0

expðx cos hÞ cos hdh: ð26Þ

For this solution, the total volumeM1(t) defined by (7) satisfies

M1(t) = 1 if t 2 [0,1] and M1(t) = t�1/2 if t P 1 (and the gela-
tion phenomenon takes place at t = 1).

Similar to previous example, we construct the following
homotopy

@fðx; tÞ
@t

¼ p
1

2

Z x

0

ððx� yÞyÞfðx� y; tÞfðy; tÞdy
�

�
Z 1

0

ðxyÞfðx; tÞfðy; tÞdy
�
: ð27Þ



Figure 3 (a) xf(x, t), (b) x�fðx; tÞ and (c) xfðx; tÞ � x�fðx; tÞ
�� ��.
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Assume the solution of Eq. (27) in the form:

fðx; tÞ ¼ p0f0ðx; tÞ þ p1f1ðx; tÞ þ p2f2ðx; tÞ þ p3f3ðx; tÞ
þ � � � ð28Þ

Substituting (28) into (27) and collecting terms of the same
power of p give:

p0 :
df0ðx; tÞ

dt
¼ 0; f0ð0; xÞ ¼ fðx; 0Þ;

p1 :
df1ðx; tÞ

dt
¼ 1

2

Z x

0

ððx� yÞyÞf0ðx� y; tÞf0ðy; tÞdy

�
Z 1

0

ðxyÞf0ðx; tÞf0ðy; tÞdy; f1ðx; 0Þ ¼ 0;
p2 :
df2ðx; tÞ

dt
¼ 1

2

Z x

0

ððx� yÞyÞðf0ðx� y; tÞf1ðy; tÞ

þ f1ðx� y; tÞf0ðy; tÞÞdy�
Z 1

0

ðxyÞðf0ðx; tÞf1ðy; tÞ

þ f1ðx; tÞf0ðy; tÞÞdy; f2ðx; 0Þ ¼ 0;

p3 :
df3ðx; tÞ

dt
¼ 1

2

Z x

0

ððx� yÞyÞðf0ðx� y; tÞf2ðy; tÞ

þ f1ðx� y; tÞf1ðy; tÞ þ f2ðx� y; tÞf0ðy; tÞÞdy

�
Z 1

0

ðxyÞðf0ðx; tÞf2ðy; tÞ þ f1ðx; tÞf1ðy; tÞ

þ f2ðx; tÞf0ðy; tÞÞdy; f3ðx; 0Þ ¼ 0; . . .

solving above equations by MAPLE yields:



Figure 4 (a) f(x, t), (b) �fðx; tÞ and (c) fðx; tÞ � �fðx; tÞ
�� ��.
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f0ðx; tÞ ¼ expð�xÞ=x;

f1ðx; tÞ ¼
1

2
ðx� 2Þ expð�xÞt;

f2ðx; tÞ ¼
1

12
xð6� 6xþ x2Þ expð�xÞt2;

f3ðx; tÞ ¼
1

144
x2ð�24þ 36x� 12x2 þ x3Þ expð�xÞt3;

. . .

and so on, other components easily obtained by using (27)
and MAPLE. A few terms approximation to the solution

of Eqs. (22) and (23) can be obtained by setting p = 1 in
(28). We get the third-order approximation solution as
follows:
�fðx; tÞ ¼
X3
i¼0

fiðx; tÞ

¼ expð�xÞ 1

x
þ 1

2
ðx� 2Þtþ 1

12
xð6� 6xþ x2Þt2

�

þ 1

144
x2ð�24þ 36x� 12x2 þ x3Þt3

�
:

Figs. 3 and 4 show that the numerical approximate solution
has a high degree of accuracy.
4. Conclusions

In this paper, we used HPM for solving the homogenous
Smoluchowski’s coagulation equation with constant kernel.
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Numerical results obtained show high accuracy of the method

as compared with the exact solution. The solution obtained by
HPM is valid for not only weakly nonlinear equations but also
strong ones. The method gives rapidly convergent successive
approximations and handles linear and nonlinear problems

in a similar manner.
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Koçak, H., Yıldırım, A., 2009. Numerical solution of 3D Green’s

function for the dynamic system of anisotropic elasticity. Physics

Letters A 373, 3145–3150.

Niwa, H.S., 1998. School size statistics of fish. Journal of Theoretical

Biology 195, 351–361.

Ranjbar, M., Adibi, H., Lakestani, M., in press. Numerical solution

of homogeneous Smoluchowski’s coagulation equation. Interna-

tional Journal of Computer Mathematics. doi:10.1080/

00207160802617012.

Saadatmandi, A., Dehghan, M., Eftekhari, A., 2009. Application of

He’s homotopy perturbation method for non-linear system of

second-order boundary value problems. Nonlinear Analysis: Real

World Applications 10, 1912–1922.

Shakeri, F., Dehghan, M., 2008. Solution of the delay differential

equations via homotopy perturbation method. Mathematical and

Computer Modelling 48, 486.

Silk, J., White, S.D., 1978. The development of structure in the

expanding universe. Astrophysical Journal 223, L59–L62.

Yıldırım, A., 2008a. Solution of BVPs for fourth-order integro-

differential equations by using homotopy perturbation method.

Computers and Mathematics with Applications 56, 3175–3180.

Yıldırım, A., 2008b. The homotopy perturbation method for approx-

imate solution of the modified KdV equation. Zeitschrift für

Naturforschung A – Journal of Physical Sciences 63a, 621–626.

Yıldırım, A., 2008c. Exact solutions of nonlinear differential-difference

equations by He’s homotopy perturbation method. International

Journal of Nonlinear Sciences and Numerical Simulation 9, 111–

114.

Yıldırım, A., 2009a. Application of He’s homotopy perturbation

method for solving the Cauchy reaction–diffusion problem. Com-

puters and Mathematics with Applications 57, 612–618.

Yıldırım, A., 2009b. Homotopy perturbation method for the mixed

Volterra–Fredholm integral equations. Chaos, Solitons & Fractals

42, 2760–2764.

Yıldırım, A., 2009c. An algorithm for solving the fractional nonlinear

Schrödinger equation by means of the homotopy perturbation

method. International Journal of Nonlinear Sciences and Numer-

ical Simulation 10, 445–451.

Ziff, R.M., 1980. Kinetics of polymerization. Journal of Statistical

Physics 23, 241–263.

http://dx.doi.org/10.1080/00207160802617012
http://dx.doi.org/10.1080/00207160802617012

	Series solution of the Smoluchowski’s coagulation equation
	Introduction
	The homotopy perturbation method
	Numerical results and comparison with explicit solutions
	Conclusions
	References


