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Abstract We have studied the production of key observed deuterium species for TMC-1, Orion,

L134N and W3IRS4 clouds, of densities 104, 104, 5 · 104, and 106 cm�3, respectively, by using

the pseudo-time dependent gas-phase chemistry. These clouds have temperatures in the range

10–70 K. The main results by using the more extensive chemical network with the most updating

reaction rates show that the most of calculated fractional abundances are in agreement with obser-

vations, and suggest that triply-deuterated ammonia could be detectable in dark clouds. Also our

models show that large abundance of NH2D and NHD2 can be produced in the interiors of cold

dense clouds at steady state time.
ª 2009 King Saud University. All rights reserved.
1. Introduction

Because deuterium-bearing molecules used to: probes of the
physics of interstellar clouds, study the relation of connection
between interstellar and cometary ices and understand the for-
mation mechanism of isotopic composition of interstellar mol-

ecules (Roberts and Millar, 2000a; Robets et al., 2002; Shah
and Wotten, 2001; van der Tak et al., 2002). Therefore many
theoretical and observational studies which have concerned

on the formation of deuterated molecules in interstellar clouds.
ity. All rights reserved. Peer-

d University.
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In the last few years the studying of doubly-deuterated mol-
ecules in the interstellar medium has gained considerable atten-

tion. This is due to a large amount of doubly-deuterated
formaldehyde, D2CO, and ammonia, NHD2, have been ob-
served towards low mass protostar IRAS16293-2422 (Ceccar-

elli, 1998), Orion cloud (Turner, 1990), very young
protostellar core 16293E (Loinard et al., 2001) and in the
molecular cloud L1689N (Ceccarelli et al., 2002; Loinard

et al., 2001). Also NHD2 observed in the molecular cloud
L134N (Roueff et al., 2000). While triply-deuterated ammonia,
ND3, observed in the low mass protostar NGC1333-IRAS4
(van der Tak et al., 2002), in the dark cloud B1 (Lis et al.,

2002). But the methanol observed in the low mass protostar
IRAS16293-2422 (Parise et al., 2002). All these observations
suggest that deuteration of formaldehyde and methanol is pro-

duced during the cold and dense cloud (Ceccarelli et al., 2001).
There are two chemical networks for the formation of the

deuterated molecules:

First, some deuterium-bearing molecules can be formed by
the gas-phase reactions (Millar et al., 1989; Rodgers and

http://dx.doi.org/10.1016/j.jksus.2009.07.001
http://www.sciencedirect.com/science/journal/10183647
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Millar, 1996; Roberts and Millar, 2000a; Robets et al., 2002).
At low temperatures 10–70 K, the H2D

+ species is the key of
gas-phase reaction to form DCO+ and N2D

+ (van der Tak

et al., 2002). By gas-phase network, Lis et al. (2002) explained
the observed abundance ratio of ND3 in B1 cloud. Similarly,
Tine et al. (2000) investigated the fractional abundance of

NH2D, which observed in L183 and TMC-1 clouds.
Second, the surface chemistry, in which deuterated mole-

cules can be formed on dust grains. The high abundances of

HDCO, D2CO and CH3OD in warm clouds are derived from
the occurrence of grain surface chemistry during an earlier cold
era followed by evaporation into the gas as temperature rise
(Ceccarelli et al., 2001; Caselli et al., 2002; van der Tak

et al., 2002; Parise et al., 2002). The formation of singly- and
doubly-deuterated isotopomers of formaldehyde and singly-,
doubly- and multiply-deuterated isotopomers of methanol on

dust grain has been studied by Caselli et al. (2002), with a
semi-empirical modified rate approach and Monte Carlo meth-
od in temperature range 10–20 K.

In the present work, we shall confine ourselves to calculate
the chemical abundances of key observed deuterium species, in
several different interstellar clouds and comparison with both

available observation and other theoretical models which are
given for justification. This paper is organized as follows, in
Section 2, chemical models are given. Section 3 contains a brief
description of our gas phase chemical models. The conclusions

are given in Section 4.
Table 1 Our models, where n is number density.

Model n (m�3) T (K) Average (mag.) Clouds

1 10 10 TMC-1

2 1 (4) 70 10 Orion

3 1 (4) 10 15 L134N

4 5 (4) 55 30 W3 IRS4

Table 2 Initial fractional abundances.

Species Model 1 Model 2 Model 3 Model 4

H2 0.5 0.5 0.5 0.5

C+ 7.3 (�5) 7.3 (�5) 7.3 (�5) 4.0 (�6)
O 1.7 (�4) 1.7 (�4) 1.7 (�4) 8.0 (�6)
N 2.14 (�5) 2.14 (�5) 2.14 (�5) 5.1 (�6)
S 1.0 (�7) 1.0 (�7) 1.0 (�7) 6.0 (�8)
Si 2.0 (�8) 2.0 (�8) 2.0 (�8) 1.5 (�10)
Fe+ 1.0 (�8) 1.0 (�8) 1.0 (�8) 1.5 (�10)
Mg+ 1.0 (�8) 1.0 (�8) 1.0 (�8) 1.5 (�10)
Na+ 1.0 (�8) 1.0 (�8) 1.0 (�8) 1.5 (�10)
H3+ 1.0 (�11) 1.0 (�11) 1.0 (�11) 0.0

HD 1.6 (�5) 1.6 (�5) 3.2 (�5) 5.0 (�6)
He 0.14 0.14 0.14 0.14
2. Chemical models

In order to interpret the behavior of deuterium-bearing mole-
cules on cold and warm interstellar clouds, we have carried a
number of a pseudo-time dependent chemical models, which

calculate the varying abundances of 408 species (130 of them
containing deuterium) linked by 5320 reactions.

Our gas-phase model considers a standard gas-phase chem-

istry, in which we consider only reactions between gaseous spe-
cies, with the exception that H2 and HD forming on the grain
surface, and we neglect the three body reactions.

Roberts and Millar (2000a,b) developed new models for the
chemistry of deuterium, to investigate the fractionation of dou-
bly-deuterated species, in interstellar molecular clouds. These
models depend on a wide range of physical parameters includ-

ing, density, temperature, elemental abundances and the freeze
out of molecules on the dust grains. Our model is partially
based on that part of gas-phase reactions of Roberts and Mil-

lar (2000a,b) for producing doubly-deuterated species. Our
model extended the models of Roberts and Millar (2000a,b)
to include multiply-deuterated ammonia.

The mono-deuterated reaction set is complete in the sense
that for every reaction containing a hydrogen-bearing mole-
cule there is an analogue reaction containing the equivalent
mono-deuterated species. If more than one reaction product

contains hydrogen atoms then uncertainly arises as to which
will be the deuterium-bearing product. Due to lack of compre-
hensive experimental data, the usual approach is to assume

statistical branching ratio between the various possibilities
(Millar et al., 1989; Rodgers and Millar, 1996).

In this study we were interested in the chemistry of doubly-

deuterated ammonia, NHD2. We also interested with multiply-
deuterated ammonia, which begin after the formation of NH3,
with deuterated ions XD+. In this model the metals (Fe, Mg,
Na and Si) play an important role in determining the ioniza-
tion fraction.

Since the chemical structure of interstellar clouds depends
on the temperature, the radiation field and density number,
then we have adopted four models of initial elemental (see

Table 1), to study the deuterium chemistry in TMC-1, Orion,
L134N and W3 IRS4 clouds. We have neglected the chemistry
of species of polycyclic aromatic hydrogen type and their reac-

tion with smaller molecules. As Herbst and Leung (1986) we
also neglected the effects of enhanced rate coefficient in ion-
polar neutral reactions. The chemical scheme used here is
based on that of the most recent UMIST rate file, RATE99

(Le Teuff et al., 2000), with updating the rate coefficients of
some modifications by Chastaing et al. (2001). We have
adopted the cosmic D/H ratio measured by Linsky et al.

(1995). We used a constant ratio for C/O. We neglect the effect
of X-ray ionization. The electron abundance is set equal to the
sum of the ion abundances.

3. Results and discussion

We have followed a large number of runs for the four models

listed in Table 1. Using a different initial elemental abundances
and cosmic ray ionization rate, the best initial elemental abun-
dances are given in Table 2.

The cosmic ray ionization rate of 1.3 · 10�17 s�1 is used for
models (1)–(3) and high cosmic ray ionization rate of
1.3 · 10�16 s�1 is used for model (4). The reduction of the ini-
tial elemental abundances and a high cosmic ray ionization

rate used in model (4) is in agreement with Amin (1999).
Tables 3–6 compare the molecular D/H ratios observed to-

ward the above four clouds, with the results from our gas-

phase models at both early (105 year) time and steady state
(100 million year) time, and other theoretical calculations.



Table 3 A comparison of abundance ratio measured in TMC-1 cloud with predictions from our model (1) and Roberts and Millar

(2000a).

Species Observation Our cal. M1 RM 2000 Ref.

Early Steady Early Steady

DCO+/HCO+ 0.02 0.018 0.082 0.019 0.087 Tine et al. (2000)

NH2D/NH3 0.009–0.014 0.086 0.029 0.084 0.028 Tine et al. (2000)

HDCO/H2CO 0.0059–0.11 0.043 0.056 0.042 0.055 Turner (2001)

DCN/HCN 0.023 0.006 0.022 0.009 0.025 Turner (2001)

DNC/HNC 0.015 0.015 0.015 0.015 0.015 Wootten (1987)

C2D/C2H 0.01 0.012 0.028 0.011 0.027 Millar et al. (1989)

C4D/C4H 0.004 0.004 0.027 0.004 0.029 Turner (1989)

N2D
+/N2H

+ 0.08 0.03 0.058 0.025 0.025 Tine et al. (2000)

C3HD/C3H2 0.08–0.16 0.007 0.027 0.006 0.02 Bell et al. (1988)

C3H3D/C3H4 0.054–0.065 0.082 0.098 0.083 0.099 Gerin et al. (1992)

DC3N/HC3N 0.03–0.1 0.008 0.026 0.007 0.026 Howe et al. (1994)

DC5N/HC5N 0.013 0.023 0.026 0.023 0.026 MacLeod et al. (1981)

HDCS/H2CS 0.02 0.04 0.05 0.04 0.046 Minowa et al. (1997)

Table 4 A comparison of abundance ratio measured in Orion cloud with predictions from our model (2) and Millar et al. (1989).

Species Observation Our cal. M2 M1998 Ref.

DCO+/HCO+ 0.002 0.002 8 (�4)–8 (�5) Penzias (1979)

NH2D/NH3 0.003 0.0029 4 (�4) Walmsley et al. (1987)

HDCO/H2CO 0.02 0.019 0.004–0.005 Loren and Wootten (1985)

DCN/HCN 0.006 0.0058 0.001–4 (�4) Wootten (1987)

DNC/HNC 0.01 0.043 9 (�4)–2 (�4) Wootten (1987)

C2D/C2H 0.045 0.032 0.003 Combes et al. (1985), Vrtilek et al. (1985)

CH3OD/CH3OH 0.01–0.06 0.005 0.003–0.004 Mauersberger et al. (1988)

HDO/H2O >0.002 0.001 0.001–2 (�4) Henkel et al. (1987)

Note: a (�b) stands for a · 10�b.

Table 5 A comparison of abundance ratio measured in L134N (Tine et al., 2000; Roueff et al., 2000) with predictions from our model

(3) and Millar (2002).

Species Observation Our cal. M2 M2002

Early Steady Early Steady

DCO+/HCO+ 0.18 0.026 0.17 0.016 0.047

NH2D/NH3 0.1 0.006 0.1 0.0075 0.02

NHD2/NH3 5 (�3) 2.3 (�5) 5.1 (�3) 1.3 (�4) 8.4 (�5)
N2D

+/N2H
+ 0.35 0.03 0.038 0.023 0.039
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The most important primary reactions to extract deuterium
from HD involve ion-neutral isotope exchange reactions:
Table 6 A comparison of abundance ratio measured in

W3IRS4 cloud by Helmich and van Dishock (1997) with

predictions from our model (4).

Species Observation Our cal. M2

HDS/H2S <9.1 (�2) 1.0 (�3)
HDCO/H2CO <3.8 (�2) 0.02

DCN/HCN <4.3 (�3) 0.001

DNC/HNC 7.1 (�3) 9 (�4)
C2D/C2H 0.045 0.032

CH3OD/CH3OH <7.1 (�2) 0.006

Note: a (�b) stands for a · 10�b.
Hþ3 þHD! HDþ þH2; ð1Þ
CHþ3 þHD! CH2D

þ þH2; ð2Þ
C2H

þ
2 þHD! C2HDþ þH2; ð3Þ

where the reaction exoergicities although small – DE1/

k= 220 K, DE2/k= 375 K, DE3/k = 550 K – are much larger
than the temperatures of cold interstellar clouds. At low tem-
peratures, the reverse reactions do not occur efficiently despite

the large abundance of H2. Once formed these deuterated ions
can pass on their enhanced deuterium content to other species
in chemical reactions (Millar, 2002). In addition to the forward
and reverse reaction in (1), H2D

+ can be destroyed by metals,

by dissociative recombination with electron,

Hþ2D þ e! HþHþD; ð4aÞ
H2D

þ þ e! H2 þD; ð4bÞ
H2D

þ þ e! HþHD ð4cÞ
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with total rate coefficient equal to 6 · 10�8(T/

300)�0.5 cm�3 s�1 (Larsson et al., 1996) and by reaction with
neutral molecules (CO, N2, H2D).

The reactions for CH2D
+ and C2HD+ are similar to that

of H2D
+, except that each of these ions undergo a radiative

association reaction with H2 (Millar et al., 1989; Herbst
et al., 1987)

CH2D
þ þH2 ! CH4D

þ þ photon; ð5Þ
C2HDþ þH2 ! C2H3D

þ þ photon: ð6Þ

Our calculated ratios for H2D
þ=H3;CH2D

þ=CHþ3 and

C2HDþ=C2H
þ
2 are all enhanced at low temperature, but

H2D
+ is responsible for D/H ratio other than the two mole-

cules. At high temperature H2D
+ is rapidly destroyed by H2,

so CH2D
+ and C2HD+ are responsible for D/H ratio.

Our calculated ratio of C2D/C2H is in agreement with
observations of TMC-1 at an early (105 year) time and higher
at the steady state (108 year) time. This result is the same as

that obtained by Roberts and Millar (2000a). The C2D species
is formed by:

C2HDþ þ e! C2DþH; ð7Þ
C2HþD! C2DþHþ 580 K ð8Þ

and is destroyed by

C2DþH! C2HþD: ð9Þ

In model (2) with temperature of 70 K, the neutral–neutral rate
coefficient of reaction (8) and dissociative recombination of
C2HD+, become more competitive, and fractional abundance

of C2D increases. This result agrees with that of Herbst et al.
(1987). Also C2D is formed from cosmic ray induced photodis-
sociation of C2HD. At steady state time our calculated C2D/
C2H ratio is in agreement with observations of Orion cloud

and greater than that obtained by Millar et al. (1989).
As Millar et al. (1989) C2H3D

+ is precursor to C2H2D,
so the reactions of C+ with C2H2D transfer fractionation to

C3-bearing hydrocarbons via

C2H2Dþ Cþ ! C3HDþ þH ð10Þ

and subsequently to C3D via dissociative recombination. The
C3H2 molecule is not transferred easily to the C3HD+ and
C3HD is formed as (see Bell et al., 1988);

C2HDþ Cþ ! C3D
þ þH; ð11Þ

C3D
þ þH2 ! C3H2D

þ þ photon; ð12Þ
C3H2D

þ þ e! C3HDþH: ð13Þ

Our calculated C3HD/C3H2 ratios in both an early and the
steady state times are not in agreement with observation of
TMC-1 cloud.

In our model C + 3H3D molecule is formed through the
CH2D

+ ion, by dissociative recombination of CH2DC2H
þ
2

and CH2DC3H
þ
2 ions, which are themselves formed from

CH2D
+ by ion-neutral reactions with small hydrocarbon spe-

cies like methane or acetylene. C3H3D is destroyed by atomic
and molecular ions, primarily Hþ3 and He+. Our calculated

C3H3D/C3H4 ratios at an early and the steady state time are
greater than the lower and upper limit of observations of
TMC-1 cloud. This results is the same as that of Roberts
and Millar (2000a).

In our model C4D species is formed by the following
reactions:
Cþ4 þHD! C4D
þ þH; ð14Þ

C4D
þ þH2 ! C4HDþ þH; ð15Þ

C3HDþ þ C! C4HDþ þH; ð16Þ
C4HDþ þ e! C4DþH ð17Þ

and is destroyed by

C4DþO! C3Dþ CO; ð18aÞ
C4DþHþ3 ! C4HDþ þH2; ð18bÞ
C4DþHCOþ ! C4HDþ þ CO; ð18cÞ
7C4DþH3O

þ ! C4HDþH2: ð18dÞ

At an early time our calculated C4D/C4H ratio is in agreement
with observations of TMC-1 clouds.

The D–N bond begins due to the lower proton (deuteron)
affinity of H2D

+, which reacts with N2 to form N2D
+ species,

H2D
þ þN2 ! N2D

þ þH2: ð19Þ

In addition to reaction (19), D atom can also react with N2H
+

to form N2D
+

N2H
þ þD! N2D

þ þH: ð20Þ

Reaction (20) has an exothermicity of about 550 K (Adams
and Smith, 1985). Due to the proton affinity of N2 is very
small, so that N2D

+ reacts with CH2D
+ and C2HD+.

IN our model N2D
+/N2H

+ ratios are less than the obser-
vations of TMC-1 and Orion clouds. This is because at dense
clouds N2D

+ condense onto grains, i.e. N2 D+is not easily

predictable by gas-phase reactions and its value must be
predicted through evaporation from the grain (Willacy and
Millar, 1998; Millar et al., 1989; Millar, 2002).

After NH3 is formed by the reaction sequence
N2 !

Heþ
Nþ !4H2

NHþ4 !
e
NH3, deuteron transfer reaction forms

NH3D
+ which can then recombine to give NH2D as;

NH3 þXDþþ ! NH3D
þ þXH; ð21Þ

NHþ3 þ e! NH2DþH; ð22Þ

where XD+ represents all species capable of transferring a

proton or deuteron to NH3, principally Hþ3 , N2H
+, HCO+

and their deuterated isotopomers. Successive deuteron transfer
reaction can lead eventually to NHD2 and ND3 as

NH2DþXDþ ! NH2D
þ þ þX; ð23Þ

NH2D
þ
2 þ e! NHD2 þH; ð24Þ

NHD2 þXDþ ! NHDþ3 þX; ð25Þ
NHDþ3 þ e! ND3 þH; ð26Þ
NHDþ3 þ e! NHD2 þD: ð27Þ

From the last reactions (21)–(27) the relative fractional abun-
dances depend on the XD+/XH+ and the branching ratio for

dissociative recombination of the deuterated ions.
By assuming the rate coefficients of reactions (26) and (27)

are equal, our calculated fractional abundances for ND3 is

about 2 · 10�11. This value is greater than that obtained by
Rodgers and Charnely (2001) by two times. The abundance
of ND3 in our model is in the same order of magnitude as

given by Lis et al. (2002) for B1 cloud. From this result we
can conclude that ND3 can be detected in L134N cloud.

One species for which time dependence significant is

DCO+. The species DCO+ is more readily observable than
N2D

+, because the abundance of CO is greater than that of
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N2 in interstellar clouds. So at low temperature the D–C band
begins with the reaction:

H2D
þ þ CO! DCOþ þH2 ð28Þ

at an early time. Also DCO+ is formed by:

Cþ þHDO! DCOþ þH; ð29Þ
HCOþ þD! DCOþ þH: ð30Þ

At the low temperature and density, the atomic deuterium is

very abundant, so reaction (30) proceeds very rapidly and
can further enhance the fractionation of DCO+.

At high temperature the abundance of CH4D
+ is greater

than H2D
+, then DCO+ is formed by,

CH4D
þ þ CO! DCOþ þ CH4: ð31Þ

In addition to this reaction, there are significant contributions
to DCO+ formation in the reactions

CH2D
þ þO! DCOþ þH2; ð32Þ

C2HDþ þO! DCOþ þ CH; ð33Þ
CDþO! DCOþ þ e; ð34Þ
CH2D

þ þO! DCOþ þH2: ð35Þ

The primary of D in dark clouds is the dissociative recombina-
tion of DCO+,

DCOþ þ e! COþD: ð36Þ

Our calculated DCO+/HCO+ ratio is in agreement with

observations of TMC-1 cloud at an early time. At the steady
state time it is in agreement with observations of Orion and
L134N clouds. This result differs than that obtained by Millar
et al. (1989) and Millar (2002).

The band between D–C–O begins by the formation of
deuterated formaldehyde, HDCO, which is formed from two
species derived from CH2D

+, CH4D
+ and CH2D, via the

reactions;

CH4D
þ þO! H2DCOþ þH2 ð37Þ

followed by dissociative recombination

H2DCOþ þ e! HDCOþH ð38Þ

and

CH2D
þ þO! HDCOþHþ: ð39Þ

HDCO also reacts with Hþ3 to form H2DCO+ which will then
recombine to HDCO. The calculated HDCO/H2CO ratio is in
agreement with observations of TMC-1, Orion and W3IRS4

clouds.
Also the band between D–C–N begins by the formation of

DCN, which is formed a derivative of CH2D
+;

CH2D
þ þ e! CHDþH; ð40Þ

CHDþ þN! DCNþHþ: ð41Þ

The main derives of DCN at high temperature is the neutral–

neutral reactions;

DCOþ þN! DCNþO; ð42Þ
HCNþ þD! DCNþH: ð43Þ

We found that the reaction

Hþ þDCN! HCNþ þD ð44Þ
can cycle deuterium between the atomic D and the DCN mol-

ecule. This result is in agreement with that of Schilke et al.
(1992) and Hatchell et al. (1998). As shown in Tables 3, 4
and 6 our calculated DCN/HCN is in agreement with observa-

tions of TMC-1, Orion and W3IRS4 clouds.
At the low temperature, the dominant route to deuterated

cyanoacetylene, DC3N, formation is thought to be

C3H2D
þ þN! HDC3N

þ þH ð45Þ

followed by

HDC3N
þ þ e! DC3NþH: ð46Þ

At the high temperature, the deuterated acetylene should form
deuterated cyanoacetylene through

C2HDþ CN! DC3NþH: ð47Þ

DC3N species is only observed in TMC-1 cloud, and our cal-

culated its ratio is in agreement with observations at steady
state time.

In our models we have assumed that the species CH3OD is

formed from the radiative association reaction

CHþ3 þHDO! CH3OHDþ þ photon ð48Þ

and

CH3OHDþ þ e! CH3ODþH: ð49Þ

The HDO species comes from the rapidly exothermic reaction

CH2D
þ þH2O! CH3 þHDO: ð50Þ

The calculated CH + 3OD/CH + 3OH ratio in our model dif-

fers from observations. This is because, at high densities most
molecules condense onto grain; i.e. CH3OH and CH3OD is not
easily predictable by gas-phase reaction and their values must
be predicted through evaporation from the grains surface

(Amin, 1999). Also our calculated ratio for HDO/H2O is
small, because the large value must be predicted by shock
chemistry (Amin, 2001; Parise et al., 2002).

When we compare our predicted gas-phase abundances
with those observed in TMC-1 and W3IRAS4 clouds, only
HDCS is in agreement and other species HDS is smaller than

observation. In our model after the formation of H2S by the
chain;

Sþ!H2
HSþ !H2

H3S
þ!e H2S;

(By the last chain the calculated fractional abundance of H2S is
small) deuteron transfer reaction forms H2DS+ which then

recombine to give HDS as:

H2D
þ þH2S! H2DSþ þH2; ð51Þ

H2DSþ þ e! HDSþH: ð52Þ

Also DCO+ and H2D
+ react with H2CS to form HDCS as;

DCOþ þH2CS! H2DCSþ þ CO; ð53Þ
H2D

þ þH2CS! H2DCSþ þ CO; ð54Þ
H2DCSþ þ e! HDCSþH: ð55Þ
4. Conclusions

With a more extensive chemical network, we made a detailed
study of a pseudo-time dependent chemical evolution of
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deuterium species in different interstellar clouds,TMC-1, Or-
ion, L134N and W3IRS4, with different densities and temper-
atures. This has been done using different initial elemental

abundances and without the temperature dependence of the
ion–dipole molecule collisions. We have shown that large
abundances of NH2D and NHD2 can be produced by gas

phase chemistry in cold dense clouds. Ammonia is deuterated
via deuteron transfer from species such as H2D

+, DCO+ and
N2D

+, followed by dissociative recombination. We predict the

abundance of ND3 is 2 · 10�11, by a assuming the rate coeffi-
cients of reactions NHDþ3 þ e! ND3 þH, and NHDþ3 þ e!
NHD2 þD are equal. So we suggest that triply-deuterated
ammonia could be detectable in L134N cloud. We have in-

cluded the fractionation of sulphur-bearing molecules and
found a good agreement with observation for HDCS. The very
slow formation rates of HDS in cold gas make this molecule

particularly useful in probing regions where grain surface
chemistry may be important. Reduction of the initial elemental
abundances and high cosmic ray ionization gave us good rela-

tive abundances for most of the observed deuterated species in
W3IRS4.
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