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Heavy metals are mostly discharged from several anthropogenic sources in the lower Gangetic delta.
They are a matter of great concern due to their non-conservative nature. Heavy metals Zn, Cu, and Pb,
were analyzed in the estuarine water and thallus body tissue of Enteromorpha compressa from 10 differ-
ent stations in the lower Gangetic delta complex through three seasons. The levels of heavy metals varied
as per the order Zn > Cu > Pb in both the aquatic phase and biological sample, irrespective of stations. The
maximum concentration of Zn was observed in Kakdwip (Stn. IV) and both Cu and Pb in Nayachar Island
(Stn. III). The minimumwas observed in Bagmara (Stn. X) for all metals in the seaweed sample through all
the seasons. The levels of all dissolved heavy metals were maximum in Nayachar Island (Stn. III) and low-
est in Bagmara (Stn. IV). A distinct seasonal pattern is observed for all the selected metals with the high-
est value during monsoon, followed by postmonsoon and premonsoon. The Bioaccumulation Factors
(BAF) computed for all the selected heavy metals exhibit the highest value for Pb, followed by Zn and
Cu. The highest BAF observed for Pb is an issue of grave concern due to its toxic nature compared to
Zn and Cu. ANOVA computed on the data sets of dissolved and bioaccumulated heavy metals and BAFs
exhibit significant Spatio-temporal variation, suggesting the need for seasonal and station-wise monitor-
ing, preferably in context to the BAF. The spatial variation in the level of heavy metals in the seaweed
species Enteromorpha compressa is due to differences in activities and sources of pollution in these
regions. The overall result suggests that seaweed may be a potential bio-purifier in the coastal area
mainly exposed to many anthropogenic activities.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heavy metals are discharged in the lower Gangetic delta by a
wide range of anthropogenic activities and pose a severe threat
to the ecosystem (Mitra, 2019). These metals are persistent, bioac-
cumulative, transferred to the next trophic level, and interfere in
biological processes, causing toxicity (Unlu and Gumgum, 1993;
Censi et al., 2006). Although Cu and Zn are components of many
oxidative enzymes and occur naturally in the environment,
increased levels of Cu and Zn can cause acute or chronic toxicity
to aquatic plants and animals. Several anthropogenic activities
such as electroplating, mining, textile factory effluents, pesticides,
paint, and pigment industries are responsible for the rising concen-
tration of Cu in the environment. Zn is released from various indus-
tries like refineries, brass manufacture, metal plating, and
plumbing (Alluri et al., 2007). Pb occurs naturally in the environ-
ment in small concentrations. However, manufacturing andmining
activities and the burning of fossil fuels increase the concentration
and lead to acute or chronic toxicity (Seiler et al., 1994; Deng et al.,
2006). The heavy metals (Hg, As, Pb, Ni, Cd, Cu, Zn) cause toxicity
by entering the biological system (Misra and Gedamu, 1989; Pan
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et al., 1994; Garty, 2001; Bañuelos et al., 2015; Sharma et al., 2015).
They displace the original metals required for various enzymatic
functions from their protein binding sites, causing enzymatic dis-
ruption and cell distortion (Jaishankar et al., 2014). Oxidative stress
is also caused by heavy metals (Mudipalli, 2008), leading to cellular
damage and, eventually, death of the cell (Das et al., 2008;
Krystofova et al., 2009; Sánchez-Chardi et al., 2009). The two crit-
ical factors, duration of exposure and concentration, are essential
in the manifestation toxicity (Marschner, 1995).

Phytoremediation is an eco-friendly and cost-effective tech-
nique to remove pollutants from soil, water, and sediments
(Negri et al., 1996; Vyslouzilova et al., 2003; Cho-Ruk et al.,
2006). The lower Gangetic delta located at the apex of the Bay of
Bengal is stressed due to anthropogenic pressure. The ability of
seaweeds to bioaccumulate and absorb heavy metals makes it a
suitable biomarker of heavy metal pollution (Rybak et al., 2012;
Gresswell et al., 2014; van Ginneken and de Vries, 2018;
Yozukmaz et al., 2018; Anbalagan and Sivakami, 2018; Asiandu
and Wahyudi, 2021; Danouche et al., 2021; Foday Jr et al., 2021;
Rakib et al., 2021; Znad et al., 2022). The biosorption of heavy met-
als in seaweeds occurs in two stages. In the first phase, absorption
occurs on the surface and then accumulation in the cell in the next
stage (Monteiro et al., 2011). Seaweeds are benthic macroalgae
inhabiting the marine and brackish water. They are non-
flowering plants and thallophytic in nature. Their thallus body is
different from plants in vegetative parts, consisting of the holdfast,
stipe, and blade instead of root, stem, and leaf. Seaweeds are
attached to hard substrata like boulders, rocks, and even on the
pneumatophores of the mangrove species. In Indian Sundarbans
and surroundings, seaweeds are widely available in the intertidal
zone. Based on the presence of pigments, seaweeds are categorized
Table 1
The geographical location of study sites.

Stations Coordinates

Canning (Stn. I) 22⁰19003.2000N; 88⁰41004.4300E
Gosaba (Stn. II) 22⁰09059.2000N; 88⁰47052.0000E
Nayachar Island (Stn. III) 21⁰57038.8900N; 88⁰03028.4800E
Kakdwip (Stn. IV) 21⁰52026.5000N; 88⁰08004.4800E
Chemaguri (Stn. V) 22⁰38027.5000N; 88⁰08047.9200E
Sagar South (Stn. VI) 21⁰39002.1100N; 88⁰02047.3100E
Jambu Island (Stn. VII) 21⁰35042.0300N; 88⁰10022.7600E
Frasergunge (Stn. VIII) 21⁰34039.8400N; 88⁰14044.3200E
Bali Island (Stn. IX) 22⁰05046.1100N; 88⁰41049.5700E
Bagmara (Stn. X) 21⁰39004.4500N; 89⁰04040.5900E

Fig. 1. Map showing study sites in the lower Gangetic De
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into three groups, namely Chlorophyceae (green seaweed), Phaeo-
phyceae (brown seaweed), and Rhodophyceae (red seaweed).
Among the dominant seaweed species in Indian Sundarbans,
Enteromorpha compressa (green seaweed) is one of them. It belongs
to the Ulvaceae family and is abundantly found in almost all the
islands of Sundarbans (Mitra, 2013; Mitra and Zaman, 2015;
Mitra and Zaman, 2016; Mitra, 2020).

Since seaweeds are benthic, they accumulate heavy metals from
the ambient environment and act as excellent agents of biofiltra-
tion. Their absorption ability depends on the availability of the
toxic substances from the ambient aquatic sub-system and the
sediments, which is expressed as BAF. It is an index of the degree
of accumulation of a pollutant or contaminant in an organism rel-
ative to its ambient environment. The study was undertaken to
analyze the concentrations of selected heavy metals (Cu, Pb, and
Zn) in the thallus body of E. compressa and ambient aquatic media
collected from 10 different stations in the lower Gangetic delta
complex through three seasons in 2019. The metals were selected
based on their abundance in the present geographical locale, as
pointed out by earlier workers (Mitra et al., 2011; Barua et al.,
2011; Mitra and Banerjee, 2011; Mitra et al., 2012a; Mitra et al.,
2012b; Ray Chaudhuri et al., 2014; Zaman et al., 2014; Das et al.,
2015; Ghosh et al., 2016a,b; Mitra, 2019; Mitra and Zaman,
2021). The stations were selected to get a comparative spatial pic-
ture of bioaccumulation as Stn. I (Canning), Stn. III (Nayachar
Island), Stn. IV (Kakdwip), Stn. VI (Sagar South), and Stn. VIII
(Frasergunge) is exposed to highly high anthropogenic stress than
Stn. II (Gosaba), Stn. V (Chemaguri), Stn. VII (Jambu Island), Stn. IX
(Bali Island), and Stn. X (Bagmara) is located in the mangrove belt
and can be considered a control site. The BAF has been used to
determine the potential of seaweed to act as a bio-purifier in the
coastal regions heavily impacted by human intervention.
2. Materials and methods

2.1. Study site

The Gangetic Delta (21�300N to 24�400N latitude and 88�000E to
91�500E longitude) is located at the apex of the Bay of Bengal and
covers an area of 60,500 sq. km in the state of West Bengal, India,
and Bangladesh. It is the dwelling place of more than 60 million
people, and many towns and cities (Calcutta now Kolkata, Nadia,
Jessore, Khulna, etc.) have flourished here. One of the World’s most
extensive mangrove forests, the Sundarbans, is situated in the
southern coastal part of the delta.
lta. Source: Google Map (Software used by Mapmaker).
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Ten different stations were selected from Indian Sundarbans on
the northeast coast of the Bay of Bengal to collect seaweed E. com-
pressa samples. The ten stations in the study were Canning (Stn. I),
Gosaba (Stn. II), Nayachar Island (Stn. III), Kakdwip (Stn. IV), Che-
maguri (Stn. V), Sagar South (Stn. VI), Jambu Island (Stn. VII),
Frasergunge (Stn. VIII), Bali Island (Stn. IX) and Bagmara (Stn, X)
(Table 1; Fig. 1).
2.2. Sampling and heavy metals analysis in ambient media

The analysis of dissolved heavy metals was done with water
samples collected through three seasons during high tide condi-
tions from all the selected ten stations. The collected water sam-
ples were filtered through a 0.45 lm Millipore membrane and
stored in clean TARSON bottles until analysis. The water samples
from each station were preconcentrated using APDC-MIBK extrac-
tion procedure as per the standard method (Apha, 1989). The
resulting solution was aspirated to the Atomic Absorption Spec-
trophotometer (Perkin Elmer, Model 3030) fitted with an HGA-
500 graphite furnace atomizer. The data were expressed in ppm
units. The process of preparing the analytical blank was similar,
and analyses were done in triplicate. The accuracy of the dissolved
heavy metal determinations was indicated by the excellent agree-
ment between our values with certified reference seawater mate-
rial values (CASS 2) (Table 2).
2.3. Sampling of seaweed and heavy metals analysis in body tissue

Enteromorpha compressa species were collected from each sta-
tion during premonsoon, monsoon, and postmonsoon in 2019
and washed with distilled water. Each 10 mg of the washed sea-
weed sample was taken in a petri-dish, then these samples were
heated overnight in a hot-air oven at 60⁰C. 1 gm of the dried sam-
ple was digested using a mixture of hydrogen peroxide and nitric
acid, followed by hydrochloric acid (Kumar et al., 2012). Pb, Cu,
and Zn were analyzed through Atomic Absorption Spectropho-
Table 2
Analysis of reference material for near-shore seawater (CASS 2).

Element Certified value (lg l�1) Laboratory results (lg l�1)

Zn 1.97 ± 0.12 2.01 ± 0.14
Cu 0.675 ± 0.039 0.786 ± 0.058
Pb 0.019 ± 0.006 0.029 ± 0.009

Fig. 2. The concentration of dissolved heavy metal
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tometer (Perkin Elmer, Model 3030) fitted with an HGA-500 gra-
phite furnace atomizer using a blank.

2.4. Assessment of BAF

BAF is a ratio of the concentration of heavy metal in tissue to the
concentration of heavy metal in ambient aquatic media, and it is
determined using the formula given below:

BAF ¼ ðContissue=ConwaterÞ
where Contissue = concentration of heavy metals in tissue, Contissue =
concentration of heavy metals in water.

2.5. Statistical analysis

The analysis of Variance (ANOVA) was performed to determine
the variation of selected heavy metals between seasons and sta-
tions using SPSS 16.0. P < 0.01 was considered statistically
significant.

3. Results

3.1. Dissolved heavy metals

The concentration of dissolved heavy metals during the three
seasons is highlighted in Fig. 2. The concentration of heavy met-
als was Zn > Cu > Pb, and seasonal variation was monsoon >
postmonsoon > premonsoon. The highest concentrations of all
the three selected dissolved heavy metals (Zn, Cu, Pb) were found
at Nayachar Island and the lowest at Bagmara. The concentration of
dissolved Zn and Cu followed the order Nayachar Island >
Kakdwip > Frasergunge > Sagar South > Jambu Island > Canning >
Chemaguri > Gosaba > Bali Island > Bagmara. However, the concen-
tration of dissolved Pb followed the order Nayachar Island >
Kakdwip > Sagar South > Frasergunge > Jambu Island > Canning >
Chemaguri > Gosaba > Bali Island > Baghmara.

3.2. Accumulated heavy metals in body tissue

The concentrations of accumulated heavy metals Zn, Cu, and Pb
in the thallus body of E. compressa during three seasons are high-
lighted in Fig. 3. The order of accumulated heavy metals was
Zn > Cu > Pb, and the seasonal variation pattern was
monsoon > postmonsoon > premonsoon, which is similar to the
trend of dissolved heavy metals. The study showed that the
s (in ppm) during three seasons at study sites.



Fig. 3. Concentration of heavy metals in E. compressa (in ppm) during three seasons at study sites.

Fig. 4. BAF values for all selected heavy metals in all the study sites during three
seasons.
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maximum concentration of Cu and Pb in the body tissue was at
Nayachar Island, whereas the minimum was at Bagmara. In the
case of Zn, the maximum concentration was at Kakdwip and the
minimum at Bagmara. The order for Zn in the body tissue was
Table 3
ANOVA result showing a Spatio-temporal variation of heavy metals in thallus body, ambi

Parameters Variab

Thallus body Zn Betwee
Betwee

Cu Betwee
Betwee

Pb Betwee
Betwee

Ambient water Zn Betwee
Betwee

Cu Betwee
Betwee

Pb Betwee
Betwee

BAF Zn Betwee
Betwee

Cu Betwee
Betwee

Pb Betwee
Betwee

4

Kakdwip > Canning > Gosaba > Nayachar Island > Chemaguri >
Sagar South > Jambu Island > Frasergunge > Bali Island >
Bagmara. The trend for Cu in the body tissue was Nayachar
Island > Kakdwip > Sagar South > Canning > Jambu
Island > Chemaguri > Frasergunge > Gosaba > Bali Island >
Bagmara, whereas for Pb the order was Nayachar Island >
Kakdwip > Sagar South > Canning > Gosaba > Frasergunge
> Jambu Island > Chemaguri > Bali Island > Bagmara.
3.3. BAF

The BAF value for each metal through three seasons in all the
stations is shown in Fig. 4. The highest value was observed in the
BAF for Pb, followed by Zn and Cu. The BAF for Zn follows the order
Canning > Gosaba > Kakdwip > Bali Island > Chemaguri > Jambu
Island > Sagar South > Bagmara > Nayachar Island > Frasergunge
whereas the order for Cu is Kakdwip > Nayachar Island > Sagar
South > Canning > Chemaguri > Jambu Island > Gosaba > Bali
Island > Bagmara > Frasergunge. The order of BAF for Pb is
Gosaba > Canning > Bali Island > Chemaguri > Kakdwip> Bagmara
> Jambu Island > Sagar South > Frasergunge > Nayachar Island.
ent water, and BAF.

les Fobs Fcrit

n Stations 4.5432 2.4563
n Seasons 16.6895 3.5546
n Stations 8.8329 2.4563
n Seasons 10.2224 3.5546
n Stations 24.8926 2.4563
n Seasons 50.8025 3.5546

n Stations 897.4160 2.4563
n Seasons 549.9245 3.5546
n Stations 9566.2642 2.4563
n Seasons 2216.8024 3.5546
n Stations 160.5752 2.4563
n Seasons 128.0734 3.5546

n Stations 3.5924 2.4563
n Seasons 7.4790 3.5546
n Stations 2.3334 2.4563
n Seasons 6.2074 3.5546
n Stations 4.3821 2.4563
n Seasons 1.6350 3.5546
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3.4. Analysis of variance (ANOVA)

ANOVA results of dissolved and accumulated heavy metals
reveal significant variation between stations and seasons (Table 3).
ANOVA of BAF of Zn varies significantly between stations and sea-
sons, but in Cu and Pb, no significant variation was observed
between stations and seasons, respectively.
4. Discussion

The aquatic environment has become more contaminated due
to massive urbanization and industrialization, and the present geo-
graphical locale has no exception to this usual trend. The intense
technological development and urbanization of the cities like How-
rah, Kolkata, and the upcoming port-cum-industrial complex (Hal-
dia complex) in West Bengal are responsible for the substantial
imbalance in the area’s ecology. The Lower Gangetic delta region
is anthropogenically stressed because of tourism units, fish landing
stations, downstream industries, etc. Approximately 9000 trawlers
and fishing vessels ply in this region for fishing activities. These
trawlers and fishing vessels frequently use antifouling paints to
keep away the settlements of biofoulers on their body surface,
which are the sources of zinc, copper, lead, etc. (Fig. 5) (Mitra,
1998; Mitra et al., 2000; Das et al., 2005; Mitra et al., 2013;
Mitra, 2013; Mitra and Zaman, 2015, Mitra and Zaman, 2016;
Mitra and Zaman, 2020).

The metals released from these point sources either precipitate
on the sediment bed or remain dissolved from where they get
transferred to the body tissues of the organisms. The process of
transference/bioaccumulation is a function of several environmen-
tal variables like salinity, pH, and water temperature (Mitra, 2013).
The bioaccumulation of heavy metals also exhibited significant
seasonal variations with the highest values during monsoon,
followed by postmonsoon and premonsoon (Fig. 4). It may be
attributed to marked seasonal variations of dissolved heavy
metals (Fig. 2), exhibiting the trend monsoon > postmonsoon >
premonsoon. The highest value during monsoon may be attributed
to two factors viz i) maximum run-off during monsoon and ii) low-
ering of pH due to increased dilution that favors the dissolution
process from the sediment bed to the water column (Mitra, 2013,
2020). The significant positive correlations between dissolved
and bioaccumulated heavy metals (Zn dissolved � Zn tissue = 0.5201,
p < 0.05; Cu dissolved � Cu tissue = 0.5317, p < 0.05; Pb dissolved � Pb
tissue = 0.6108, p < 0.05). It supports the view of the accumulation
of heavy metals by E. compressa from ambient water. This is prob-
ably the cause for the highest accumulation and considerably high
Fig. 5. Use of antifouling paints on the fishing vessels and trawlers.
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BAF in monsoon compared to the other two seasons. The impact of
seasons on the bioaccumulation pattern of heavy metals in organ-
isms has also been documented by earlier workers in the present
geographical locale (Mitra et al., 2011, 2012a; Mitra, 2013, 2020).
It is well documented that mangrove and mangrove associate floral
species can bioaccumulate heavy metals in their body tissues
(Kraus et al., 1986; Kraus, 1988; Niyogi et al., 1997; MacFarlane,
2002; Banerjee et al., 2014; Chakraborty et al., 2014a,b; Nayak
et al., 2016).

Very few researchers have depicted the BAF of heavy metals in
the body tissues of the aquatic vegetation, which may act as a
proxy for the translocation of these heavy metals from the aquatic
phase to the plant body. The higher the value of the BAF, the
greater the potential of plant species to absorb the heavy metals
from the surrounding aquatic phase. In the present study, the
BAF is highest in the case of Pb, which implies that the species E.
compressa has the potential to purify the surrounding water from
Pb. In the study area, Pb originates from the antifouling paints used
for conditioning fishing vessels and trawlers, printing industries,
and battery manufacturing units. Most industries are concentrated
in the downstream region of the lower Gangetic Delta, in and
around the Haldia port-cum industrial complex.

ANOVA with our data sets on dissolved and bioaccumulated
heavy metals and BAF exhibited significant spatial-seasonal differ-
ences (except Cu and Pb), as shown in Table 3. These variations of
the stations in terms of contamination subsequent bioaccumula-
tion of the selected heavy metals by E. compressa. The variation
in bioaccumulation pattern was attributed to a different degree
of anthropogenic stress around the selected sites. Stn. 1 (Canning),
Stn. III (Nayachar Island), Stn. IV (Kakdwip), Stn. VI (Sagar South)
and Stn. VIII (Frasergunge) has high anthropogenic stress due to
fish landing stations, industrial units, shrimp culture farms, and
tourism units, whereas Stn. II (Gosaba), Stn. V (Chemaguri), Stn.
VII (Jambu Island), Stn. IX (Bali Island) and Stn. X (Bagmara) is
located in mangrove dominated region, which is relatively free of
anthropogenic activities except for occasional tourism.

Many more industries are in the pipeline, which implies that
the contamination of coastal zones due to heavy metals will soon
increase if there is no proper treatment plant. A Combined Effluent
Treatment Plant (CETP) is suggested for the region to minimize the
rate of toxic waste discharge.

All agricultural waste, industrial waste, municipal, nuclear and
domestic waste are ultimately deposited into the aquatic system.
The need of the hour is to remove the heavy metal toxicants by
using fast-growing plants for phytoremediation. This eco-friendly
Fig. 6. Traditional rope culture of seaweed.
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approach is a much-preferred alternative to chemical plants (Pilon-
Smits, 2005). The high value of BAF for heavy metals, preferably Pb,
confirms E. compressa as potential floral species for biopurification.
Seaweed culture by traditional rope culture method (Fig. 6) can be
a viable road map to reducing heavy metal pollution locally.

However, a limitation exists in this domain related to pH of the
aquatic phase or the seaweed-based biopurification system. A low
pH is to be maintained (compared to the average estuarine pH of
8.30) to transfer the heavy metals in the thallus body of E. com-
pressa. So, phytoremediation can be achieved by diluting the
biotreatment plant with harvested rainwater.

5. Conclusion

We can conclude from the values of the BAF so obtained that
the macroalgal species E. compressa needs to be cultured through
traditional rope culture in the vicinity of the industrial discharge
points. It might be an eco-friendly approach to cost-effectively pur-
ify contaminated water.
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