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ABSTRACT

Langevin differential equations with fractional orders play a significant role due to their applications in
vibration theory, viscoelasticity and electrical circuits. In this paper, we mainly study the explicit analyt-
ical representation of solutions to a class of Langevin time-delay differential equations with general frac-
tional orders, for both homogeneous and inhomogeneous cases. First, we propose a new representation of
the solution via a recently defined delayed Mittag-Leffler type function with double infinite series to
homogeneous Langevin differential equation with a constant delay using the Laplace transform tech-
nique. Second, we obtain exact formulas of the solutions of the inhomogeneous Langevin type delay dif-
ferential equation via the fractional analogue of the variation constants formula and apply them to
vibration theory. Moreover, we prove the existence and uniqueness problem of solutions of nonlinear
fractional Langevin equations with constant delay using Banach’s fixed point theorem in terms of a
weighted norm with respect to exponential functions. Furthermore, the concept of stability analysis in
the mean of solutions to Langevin time-delay differential equations based on the fixed point approach
is proposed. Finally, an example is given to demonstrate the effectiveness of the proposed results.
© 2021 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

generalizations of LEs have been introduced and studied in terms
of various kinds of differential and integral operators of

In recent decades, fractional differential equations (FDEs) have
attracted growing attention due to their extensive applications in
mechanics (Mahmudov et al, 2020), time-delay systems
(Huseynov and Mahmudov, 2020), electrical circuits (Ahmadova
and Mahmudov, 2021), stability analysis (Cong et al., 2018), and
stochastic analysis (Ahmadova and Mahmudov, 2020).

The classical Langevin equations (LEs) were proposed by a
French physicist Paul Langevin in 1908 and he gave an exhaustive
overview of Brownian motion. In the theory of Brownian motion,
the classical Langevin equations are the important differential
equations describing the progression of physical phenomena in
fluctuating environments. However, for systems in complex media,
the classical LEs cannot provide a sufficient and correct description
of the dynamics. To deal with such problems, various
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fractional-order. The fractional Langevin equations (FLEs), which
are a generalization of the classical LEs, are of great interest not
only from the point of view of the theory of stochastic processes
(Mainardi and Pironi, 1996), but also by means of physical applica-
tions (Ahmadova and Mahmudov, 2021; Kobelev and Romanov,
2000).

FDEs containing not only one fractional derivative but also more
than one fractional derivative are intensively studied in many com-
plex systems. Recently, the physical processes have been repre-
sented by two main mathematical ways: multi-term equations
(Camargo et al., 2009; Luchko and Gorenflo, 1999; Bazhlekova,
2013; Zhang and Hou, 2020) and multi-order systems (Wang and
Ren, 2020; Huseynov et al., 2020; Ahmadova et al., 2021). Multi-
term FDEs have been studied due to their applications in modelling
and solved by various mathematical methods. In Luchko and
Gorenflo (1999), Luchko and Gorenflo solved the multi-term FDEs
with constant coefficients and with the Caputo fractional deriva-
tives by using the method of operational calculus. Furthermore,
in Bazhlekova (2013), Bazhlekova has considered the multi-term
fractional relaxation equations with Caputo derivatives using the
Laplace transform technique and studied the fundamental and
impulse-response solutions of the initial value problem (IVP).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In terms of numerical methods, Edwards et al. (2002) and Diethelm
and Luchko (2004) considered the IVP for the general linear multi-
term FDEs.

As one of the important special cases of multi-term DEs, FLEs
with two different fractional derivatives have been discussed in
Ahmadova and Mahmudov (2021), Cong et al. (2018), Ahmadova
and Mahmudov (2020), Mainardi and Pironi (1996), Kobelev and
Romanov (2000), Camargo et al. (2009), Luchko and Gorenflo
(1999), Bazhlekova (2013), Zhang and Hou (2020), Wang and Ren
(2020), Huseynov et al. (2020), Ahmadova et al. (2021), Edwards
et al. (2002), Diethelm and Luchko (2004), Wang et al. (2020),
Fazli et al. (2020), Baghani and Nieto (2019), Darzi et al. (2020),
Baghani et al. (2021), Baghani (2017), Ahmad et al. (2012), Lim
et al. (2008). Nowadays, the existence and uniqueness problem
of solutions of initial and boundary value problems for nonlinear
FLEs is extensively studied in Fazli et al. (2020), Baghani and
Nieto (2019), Darzi et al. (2020), Baghani et al. (2021), Baghani
(2017), Ahmad et al. (2012).

In Fazli et al. (2020), Fazli et al. have investigated the existence
and uniqueness results for the following Cauchy problem of FLE
involving two various fractional orders in sequential sense using
the fixed point theorems of Banach and Weissinger:

D! (D§: + A)x(r) =f(r.x(r)), 0<r<1,
DL x(0) = w;, 0<i<l (1.1)
D}y D% x(0) = v;, 0<i<n,

where Dg: () and D§+x(~) are Caputo fractional derivatives of orders
o and p in different intervals

m-—1<a<mand n—1<p<n with | =max{m,n} where
m,n € N,x(r) is the particle displacement, 4 € R is the friction coef-
ficient, and f:[0,1] x R — R is a Lebesgue measurable function
which represents a noise term.

In Baghani and Nieto, 2019, Baghani and Nieto have studied the
existence and uniqueness results for the following boundary value
problem of FLE involving two various fractional orders in sequen-
tial sense:

D} (D% + 2)x(r) = f(r,x(r)), 0<r<1,
X(0) = x(1), (12)
D2*x(1) + DZ.x(1) = 0,

where D} x(-)and Dg+x(-) are Caputo fractional derivatives of orders
o and g in different intervals 0 <« <1 and 1< f<2,A1€R, and
f:]0,1] x R — R is a continuous function.

Furthermore, Darzi et al. (2020) have considered the existence
and uniqueness of initial value problem for nonlinear Langevin
equation involving three fractional orders. In Baghani et al.
(2021), Baghani et al. have analyzed existence, uniqueness and
Hyers-Ulam stability results of solutions for the nonlinear frac-
tional Langevin equation involving two fractional orders with
three-point boundary conditions with the help of Krasnoselskii’s
fixed point theorem with respect to an appropriate weighted
Banach space. In Baghani (2017), Baghani has mainly discussed
the existence and uniqueness of a solution for the IVP of LEs. In
Ahmad et al. (2012), Ahmad et al. discussed the nonlocal boundary
value problem for nonlinear FLEs with two various fractional
derivatives in different intervals. In accordance with an essential
role of FLEs in applied sciences, these equations are extensively
analyzed from analytical and numerical points of view. By means
of analytical methods, in Lim et al. (2008), Lim et al. have studied
the explicit analytical representation of solutions for a new type
of FLEs with two Weyl fractional derivatives with the aid of Gauss’s
hypergeometric functions. In Ahmadova and Mahmudov (2021),
Ahmadova and Mahmudov provide explicit formulas of solutions
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for linear FLEs with general fractional differential operators of
Caputo type using Mittag-Leffler (M-L) type functions and studied
their applications of FLEs to electrical circuit theory.

Fractional delay differential equations (FDDEs) are differential
equations covering fractional-order differential operators and
time-delays. Delay differential equations (DDEs) with fractional-
order have gained considerable attention due to their applications
in science, engineering and physics using appropriate numerical
methods and graphical tools. Recently, the theory of FDDEs has
also been well-established by means of analytical methods. Ini-
tially, Khusainov et al. (2005) has provided an analytical represen-
tation of the solution of a linear homogeneous matrix DE with
permutable matrices in terms of infinite series. Note that the frac-
tional analog of the same problem was considered by Li and Wang
(2017), in particular in the case of A = ®, where © is a zero matrix.
In another work, Li and Wang (2018) introduced a concept of
delayed M-L type matrix function via a two-parameter M-L func-
tion and presented finite-time stability results for nonlinear FDDEs
in the same special case. Mahmudov (2018) proposed a newly
defined explicit formula to linear homogeneous and inhomoge-
neous fractional time-delayed systems via two-parameter M-L per-
turbation in the general case (i.e., A and B are arbitrary constant
matrices). Huseynov and Mahmudov (2020) have provided a new
representation of a solution through a delayed analog of three-
parameter M-L functions under the assumptions in which A and
B are commutative matrices. Moreover, Langevin type time-delay
differential equations with two Riemann-Liouville fractional
derivatives have considered by Mahmudov (2020). In Mahmudov
(2020), Mahmudov has introduced an exact analytical formula
for the solution of linear inhomogeneous FLE with a constant delay
and studied the stability results of the solutions by means of a fixed
point approach.

Stability analysis for fractional-order dynamical systems has
been discussed over many years as one of the most essential topics
in control engineering. During the last decades, a large number of
papers related to stability theory have been published in the sense
of Ulam-Hyers (Wang and Zhang, 2014; Mahmudov and Al-
Khateeb, 2020; Ahmadova and Mahmudov, 2021; Peng and
Wang, 2015). Wang and Zhang (2014) have studied Ulam-Hyers
stability results of nonlinear FDEs with Hadamard fractional
derivative in the weighted space of continuous functions. In
Mahmudov and Al-Khateeb (2020), Mahmudov et al. have
obtained several existence and Ulam-Hyers results for an IVP of
time-delay Hadamard-type FDEs using a delayed perturbation of
the M-L matrix functions with logarithms. In Ahmadova and
Mahmudov (2021), Ahmadova and Mahmudov have studied stabil-
ity results in Ulam-Hyers sense for the nonlinear fractional
stochastic neutral differential equations system with the aid of
weighted maximum norm and Itd’s isometry in finite dimensional
stochastic setting. Furthermore, Peng and Wang (2015) have stud-
ied stability results in terms of Ulam-Hyers for a multi-term FDEs
using direct analysis methods.

Applications of FDEs include the study of vibration theory as a
part of mechanical physics. In Liu and Duan (2015), Liu and Doan
have discussed the asymptotic behavior of fundamental solutions
of the fractional vibration equations (FVEs) where the damping
term is characterized by means of Caputo type fractional derivative
of order o satisfying 0 < o < 1 or 1 < o < 2. A detailed analysis for
the analytical solutions is carried out via the Laplace integral trans-
form and its complex inversion integral formula. In Gomez-Aguilar
et al. (2012), Gomez-Aguilar et al. analyzed the analytical solutions
of the mass-spring and spring-damper with regard to the classical
M-L functions. In Wang and Hu (2010), ZaiHua and HaiYan have
studied the asymptotic stability analysis of zero solution of a linear
vibration system with fractional-order derivative of order
0 <o < 2. In Hong et al. (2006), Hong et al. have proposed an
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analytical scheme for a dynamic oscillatory system with a single
degree of- freedom whose damping is described by fractional-
order derivative of order g with 0 < 8 < 1. Its analytical solutions
are expressed by means of two-parameter M-L functions with
the aid of fractional Green'’s function and Laplace transform tech-
nique. The solution in Hong et al. (2006) takes the form of a single
power series and a generalized M-L function, but unlike Hong et al.
we find an explicit analytic solution of the Cauchy problem for the
following vibrational equations with two fractional orders
1<a<2,0<pB<1 and a constant delay in terms of a new
delayed analogue of M-L type function:

{M(CDg+y)(r) + C(CDg,y) (N +Ky(r—1) =F(r), r>0, 7>0,
yr)=o@(),-1<r<0.

In the same vein as the above articles, our aim is to investigate
an IVP for the following in-homogeneous Langevin time-delay DEs
involving general fractional orders in Caputo sense as below:
€(0,T], 7>0,

{ (DG y)(1) = 1 (Dhy) (r) = 2y(r = 7) = (1),

yr =e), -t<r<o,
(13)

where (“D§.y)(-)and (CDg+ y)(-) are Caputo fractional derivatives of

orders o and g in different intervals m—-1<a<m, m-2<
p<m—1, with m=2, ¢:[-1,00 >R is an arbitrary
(m — 1)-times continuously differentiable real-valued function that
determines initial conditions, g : [0, T] — R is a continuous function,
7, pare real numbers and T = nt for a fixed n € N.

Furthermore, unlike the above papers (Baghani and Nieto, 2019;
Darzi et al., 2020), we present several important results on the
existence & uniqueness, and Ulam-Hyers stability of solutions to
fractional-order delayed Langevin equation with a constant delay
by using the explicit analytical representation of solutions and
properties of newly defined delayed Mittag-Leffler type scalar-
valued functions whilst their technique is based on converting
the fractional differential equation into the equivalent Volterra
type integral equation:

{ (D5 y)(1) — 1(Dhy ) () — ay(r = 1) = g(r,y(1)),
Y =), -T<r<o,

€ (0,T], >0,

(1.4)

where m—1l<oa<mm-2<pB<m—-1,mz>2 with «—p>1
and g:[0,T] x R x R — R is a nonlinear perturbation.

The structure of our research paper is outlined as follows. Sec-
tion 2 is a preparatory section where we recall the main defini-
tions, results and necessary lemmas from fractional calculus,
special functions and FDEs. Section 3 is devoted to finding the ana-
lytical solutions of the homogeneous linear Langevin type time-
delay DEs (1.3) with general fractional orders and we derive a spe-
cial case when 1 <« <2 and 0 < 8 < 1 with the help of Laplace
transform technique. In Section 4, we propose the structure of
the analytical representation of solutions to the Cauchy problem
for inhomogeneous time-delay FLEs using recently defined delayed
M-L type functions. Moreover, we show that our analytical results
in terms of M-L type functions coincides with the solutions in
terms of Fox-Wright functions for delay-free systems. In Section 5,
we prove the existence and uniqueness results of nonlinear frac-
tional Langevin type DEs with a constant delay using the new
appropriate norm concerning the exponential function in the
weighted space of continuous functions. Section 6 is devoted to
the presentation of the stability analysis of solutions of nonlinear
FLEs with a constant delay in terms of Ulam-Hyers sense based
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on a fixed point approach. In Section 7, we present an application
in the vibration theory and compare results for an external force
Fe(r) in several interesting cases. To verify our main results
obtained in Section 5, we present an example in Section 8, and Sec-
tion 9 is devoted to the conclusion and future work.

To accomplish the introductory section, we present some nota-
tions which are used through the paper. Let C([0, T], R) be endowed
with the maximum norm, i.e., ||y| = max{|y(r)|,r € [0, T]}for all
y(r) € R and C™([0, T}, R) be the space of m times (m € N) continu-
ously differentiable functions on a finite interval [0, T] of the real
line with the norm
m=0,1,2,...,

[¥llem = Z max |y® ¥llco = [1¥lle-

0<r<T

2. Preliminaries

We embark on this section by briefly introducing the essential
structure of fractional calculus, special functions and FDEs (for
the more salient details on the matter, see the textbooks (Kilbas
et al., 2006; Podlubny, 1999). We begin by defining the basic
gamma and beta functions which are playing a fundamental role
for fractional calculus.

Definition 2.1 Whittaker and Watson, 1927. The Euler’s gamma
function is defined as:

I(a) :/ % le'dr, o >0. (2.1
0

Definition 2.2. (Whittaker and Watson, 1927) The beta function is
defined as below:

1
B(c,d) = / 11 -1 'dr, c,d>0. (2.2)
JOo

Furthermore, the beta function can be expressed with the aid of
gamma functions (Whittaker and Watson, 1927) as below:

B(c,d) = c,d>0. (2.3)

Definition 2.3 (Kilbas et al.,, 2006; Podlubny, 1999). The Riemann-
Liouville (R-L) fractional integral of order « > 0 for a function
g € C([0,00); R)is defined by:

Iig)(r) = ﬁ /Or (r— s)“’lg(s) ds, r>0. (2.4)

Definition 2.4 (Kilbas et al, 2006; Podlubny, 1999). The R-L frac-
tional derivative of order o > 0 for a function g € C™([0, c0); R)is
defined by:

(D38)(r) = S (3 *) (1)
~ o e |, 9 g,

m—-l<oa<m, r>0. (2.5)

Definition 2.5 (Kilbas et al., 2006; Podlubny, 1999). The Caputo
fractional derivative of order o >0 for a function
g € C"(]0,00); R)is defined by
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m
m—o—1 d

D520 = " () (0= g [ (= 9™ (91

m-1l<a<m, r>0. (2.6)

The R-L fractional integral operator and the Caputo fractional
derivative have the following properties for a function
g € C"(]0,00); R) (Kilbas et al., 2006; Podlubny, 1999):

Ig’ (CD(O)(‘g)(r) :g(r) - F(l:il)g(k)(o)v m-1<a < m, 1> 07

“Dg: (I5-g)(r)
The relationship between the R-L and Caputo fractional deriva-

tives of order m — 1 < o < m (Kilbas et al., 2006; Podlubny, 1999) is
as follows:

=g(r),

m-1 k—or
(‘D5-g)(r) = (Dg-g)(r Zrk—a+1 gh), r>0. (2.7

k=0
The following results are useful in solving FDEs.
Definition 2.6 Whittaker and Watson, 1927. A function g on

[0, o) is said to be exponentially bounded if it satisfies an inequality

of the form
g <Le”, r>T,

for some real constants g,L >0 and T > 0.

Definition 2.7 Whittaker and Watson, 1927. If g: [0,00) — R is
measurable and exponentially bounded on [0, co) , then the Laplace
transform £{g(r)}(s) defined by

G@zﬁ@mﬂwzﬁwﬁ@mm,sea

exists and is an analytic function of s for Re(s) > 0.
The time shift property of the Laplace transform is defined by

L{g(r — ayH(r — a)}(s) = exp(—as)G(s). (2.8)
The inversion Laplace integral formula is defined by
LYG(s)}r) = qllmL /Hm e’G(s)ds, r =0, (2.9)
100 2701 Jo_iy ’

where G(s) = £{g(r)}(s),s € C.

Definition 2.8. [Kilbas et al., 2006; Podlubny, 1999] The Laplace
transform of Caputo fractional derivative of general order
m—1 < a < mis given by

Zsozkl

where Y(s) represents the Laplace transform of the function y(r) and
®(0),k =0,1,...,m — 1 represent initial values of y(r) at r = 0.

£{(“Dgy)(r) }(s)

Remark 2.1. In the special cases, the Laplace integral transform of
the Caputo type fractional differential operator is defined by

e If o € (0,1], then

L{(“Dg-y)(r)}(s) = s"Y(s) —s* "y, where y, =y(0).
o If 0 e (1, 2] then

L{(Dg.y)(r) }(s) ="Y(s) — s* 'y — "%y, Wwhere y,

=¥(0), ¥, =Y'(0).
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Definition 2.9. [Whittaker and Watson, 1927] The convolution of
two functions g(r) and h(r), given on [0, ), is defined by the fol-
lowing integral

gxh:=(g«h)(r

/g (r—s)ds, for r >0, (2.10)

which has the commutativity property

gxh=h=xg

Theorem 2.1. [Whittaker and Watson, 1927] The Laplace transform
of convolution of two functions g(r) and h(r), given on [0,c0), is
defined by

L{(gxh)(r)}(s) = seC.

L{g(r)}s)L{h(r)}s), (2.11)

Lemma 2.1 Whittaker and Watson, 1927. Assume that Q is a linear
and bounded operator defined on a Banach space with ||Q|| < 1. Then,

(I — Q)" is linear and bounded such that
-9 =30
=0

The M-L function is a generalization of the exponential function,
first introduced by Gosta Mittag-Leffler by using a single series
(Mittag-Leffler, 1903). Extensions to two or three parameters are
well known and thoroughly studied in textbooks such as
Gorenflo et al. (2014), but these still involve single power series
in one variable. Extensions to two or several variables have been
studied more recently (Huseynov et al., 2020; Ahmadova et al,,
2021; Saxena et al.,, 2011; Fernandez et al., 2020; Ozarslan and
Fernandez, 2021).

Definition 2.10 Mittag-Leffler, 1903. The classical M-L function is
defined as

Zr(kourl o>0, ucR. (2.12)

The two-parameter M-L function (Gorenflo et al., 2014) is
defined by

Zrkwﬁ a>0, feR, uek (2.13)

The three-parameter Mittag-Leffler function (Prabhakar, 1971)
is defined as
>0, B,0eR,

ueER,  (2.14)

kzr koc+ﬁ k“

where (9), is the well-known Pochhammer symbol denoting "*".

These series are convergent, locally uniformly in u, provided the
o € R with o > 0 condition is satisfied. Note that
El_,}(u) = Eo{,/ﬁ(u% E(x,l (U) = Eot(u)7 E] (u) = exp(u)7

The next lemma includes Laplace transform of three-parameter
M-L function which will be used throughout the proof of Lemma
3.2.

uecR.

Lemma 2.2. Fora > pg>0,u e R,1e Ny ={0,1,2,..

I+p
-1 1 a1 pPrP—h)
£ {(Si—ysﬁ)lﬂ}(r) e Z ( ) P+ 1))

r+1o— lElo:r]ﬁ 1

.}, we have

(ur*="), Re(s) > 0.
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Proof. By using the Taylor series representation of ,H ,1 € Ng of

the form:
1 < /l+p
rer a0 LR
p=

we achieve that

1 1 1 < /l+p n = /l+p w
= o )I+1 = s+ Z( ) (S“ /r) = p;(I] ) Sp(a(—/l)+(l+1)x :

(51 7}15/{)144 (S )l+1 (] - =

Taking inverse Laplace transform of the above function, we
obtain that

1
N0

I+p
Zﬂp < > {m}(r)
_ Z p l+ p rP=p)+ (1)1
=2H P T(p(o—p(+1)2)

p=0
I+1)o—1 1+1
= rVE T (U P).

We have required an extra condition on s such that
"> |l

for proper convergence of the series. But, this condition can be
removed at the end of calculation since analytic continuation of
both sides, to give the desired result for all s € C which satisfying
Re(s) > 0. O

Definition 2.11 Fernandez et al., 2020. We consider the bivariate
Mittag-Leffler function defined by

o, p >0,

5 _ e (5)I+k M
Espy (4, 0) = ,Z,Z Tla+ k=) Tk

0
Y,0€eR, uveR (2.15)

If we write u = /t* and v = ut” for a single variable t, and mul-
tiply by a power function t’~!, we derive the following univariate
version

-1 () o« B = N I+k /“tu ¢lotkpy-1
£ 1ES . (A%, ut?) _erlwkﬁw) T . (216)

1=0 k=0
Note that when 6 =1,

Wy 2k tlotkpey-1
T(lo+kp+y) k!

NgE

Ey (%, uth) =

Il
o

I+k)! Atk
Ikt T(lo+kp+7y)

I+k L uk tlotkpy-1
k T(lo+kp+y) :

For simplicity, we denote E;/,.y(it“,utﬁ) = E, 5, (A", ut”) in our
results for this paper.

Now, we consider another special function which will be intro-
duced later in Section 4.

tloc+k/i+y—1

A\

3

I
VNN

L

Il
o
I
o

k

Definition 2.12. Let Zisly € Ryoy, f € Rii=1,2,...,p,
j=1,2,...,q. Generalized Wright function or more appropriately
Fox-Wright function ,'¥;(-) : R — R is defined by
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T+ ok)
rk
H.

F(u,+ﬁ, )

(i,

Y () =, [(M]’ﬁ]) (2.17)

|-

:e e

[
I
—_

This Fox-Wright function was established by Fox (1928) and
Wright (1935). If the following condition is satisfied:

q p
S B o> -1,
= i=1

then the series in (2.17) is convergent for arbitrary r € R.

In terms of Laplace integral transform method, Kilbas et al.
(2006) have considered the Cauchy problem for (1.3) without delay
by using generalized Wright functions, in both homogeneous and
inhomogeneous cases. It is necessary to note that our results by
means of a recently defined M-L type functions with double infi-
nite series are identical with the results in terms of Fox-Wright
functions in Kilbas et al. (2006).

3. Exact analytical solution of linear homogeneous FLE with a
constant delay: delayed M-L type function approach

Definition 3.1. [Mahmudov, 2020] Delayed analogue of M-L type
function generated by A, ueR of three parameters
B py(4 1) : R — R is defined by:

I+p A
i) = S350 ) i

1=0 p=0

Io) PPty — ),

a>0, ByeR,

(3.1
where H(-) : R — R is the Heaviside function defined as follows
1, r=0,
H(r) =4
™) {O, r<0.

Lemma 3.1. Let E; ;. (4, ;1) be defined by (3.1). Then the following
statements hold true:
(i) If =0, then

By py (% 0:1) =& (A1), (32)

where &, .(/;-) : R — R is the delayed analogue of classical M-L type

function of two parameters;
(ii) If 2 = 0, then

Espy (0, p57) =17 Eg,, (), 1 >0. (3.3)

Proof. (i) If u =0, then E; ; (4,0;r) coincides with &, (%;1):

0 I,L_)locﬂ'
1 (
) 0;1) [E A loc )

Furthermore, this case was considered in Huseynov and
Mahmudov (2020), Li and Wang (2017), Li and Wang (2018).

(ii) If =0, then E; ;. (0, ;1) coincides with classical Mittag-
Leffler type function of two parameters r’~'Eg, (ur) for r > 0.
Trivially, from the definition of [E;M(/l, 1;1), we have

Zu

H(r —It) =&, (47).

rpp+y-1

p/3+y r>0.

E5 (0, 1) H(r) = 1 Eg (),
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In addition, this case was investigated in Kilbas et al. (2006). O

Lemma 3.2. For o> 0,00 > f,00 > 7,4, i € R, the following result
holds true:

-1
L {57 ,us/‘ e ‘f}

H(r —It)

i l+p /'uprh_upxlwx
ZZ T'(lo+p(a—p)+a—y)

=0 p
[szly Bo— v( 7#7 )-; Re(s) > 0

Proof. In accordance with the well-known Neumann series (2.1),
can be written via a series expansion as follows:

sV
s%—psh—)e=sT

s B 57 i Mersy
_ ‘us/f — Je—st Ms/i 1-— q [45/’ - MS[; l+1 .

Then applying Lemma 2.2 to the last expression, we acquire
that

s’
3 ,#S/i —,e-sT

-y < - > et
p sEDa+pla—p)-y *
Since the time delay property of the Laplace integral transform
(2.8), we have
L{g(r — TYH(r — T)}(s) = e 'G(s).

Then, by taking inverse Laplace transform of the aforemen-
tioned function, we attain

-1
L {57 /45/‘ Je~ 51}

TM@% gMg

> /l+p st

E ( )4 L {W}(r)

p=0

o0 [+p p( lo+p(ot—p)+o—y—1
b (r=lt)

§ ( ) WH

0 p=0

(r-1Ih)

’_—ﬂ

a,a—{;,u_y( , W T').

We have required extra conditions on s, namely:
s >|u and |s* — usf| > |2e,

for convergence of the series. However, these conditions can be
removed at the end of evaluation by analytic continuation, to get
the desired result for all s € C with Re(s) > 0. The proof is com-
plete. O

The following lemma will be of significance for the results of
next theorem.

Lemma 3.3. For any r € R and any parameters o, f8,7,v,T, A, U € R
satisfying o, B,v,7 > 0 and y — 1 > |v], we have:

D (B (1 159)) (1) = £, pir)

Proof. We will make use of the well-known formula (Kilbas et al.,

2006)
cpr s r(f-—,jm &>,
Do+<m>(r): 0, £=0,1,2,.... [, (3.4)
undefined, otherwise.

Therefore, given the condition y — 1 > |v], we can obtain that
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cpy N ﬂ.’ p (4p)! (s— Io)P PP 15— 1)
b | DDA S | (D)
i)l p( CD‘ (s—10)"* PPy (s—I) (T)
1 0 pp )
=0

o0 o]
_ Lp)! A b (r=lr)P PPy ig)
- ZZ Iip! L(lotpp+y-v)
= [E;./E,y—v(lvﬂ?r)v
This completes the proof. O

reR.

Now, we discuss an IVP for the following linear homogeneous
FLE with a constant delay:

{ (DG y) (1) = 1(“Dp.y) (1) = 2y(r 1) = 0,
yny=oer), -1<r<Qo,

€(0,T], 7>0,

35)
where involving general fractional orders as m—1 <o <m and
m-2<p<m-1,mz= 2.

Theorem 3.1. A unique analytical solution y € C" (|-, T,
Cauchy problem (3.5) has the following form:

y(T) (1 +)[ny /)’1+1(’“ wr— ))(Po (r+/“[E17 /ﬁ:x+2('17”;r7‘c))([)6

R) of the

+- +< m1)+’“[Ew pocem-1 (A 5T = )>q)gnz
min{r— 10}
B s [ BT = T - (s
Jot (3.6)
:Z[FU+1)+;[EGW Ifatbjbl(}' wr— )}q)o +[an /!m(’”ﬂ T') o

Jj=0

~min{r710)
/ 11 /u(l wr—
-1

+

—S)p(s)ds, r>0.

Proof. Let T = co. We suppose that (1.3) has a unique m times con-
tinuously differentiable solution y,g is continuous and exponen-
tially bounded, and CDQ, y (or ¢Dg.y) is exponentially bounded on
[0, ), then y and CDg+y (or ¢Dj.y) are exponentially bounded on
[0,00), thus their Laplace transforms exist. Then we can acquire
an integral representation of solution to the linear homogeneous
Langevin type time-delay equation with general fractional orders
in Caputo’s sense.

Firstly, we are applying Laplace integral transform to the both
sides of (3.5) with the aid of following relations:

L{(“Dg-y)(r)}(s) ZS“ “

m-1l<oa<m,

E{(CD/ﬂy)()} s) =s"Y( Zs/”” Py, m-2<p<m-—

and first, by using substitution r — T = 0, we obtain that
Ly —1)}s) = fy ey(r—1)dr=e=" [~ e~y(0)d0
—et (fo e"y(0)do + [;° e*”y(O)dO)
=eTY(s) + f e ST p(0)do.
Since T + 0 =r, we acquire that

LT —1)}s) =eTY(s) + [, eSto(r—T)dr
=eY(s)+ [y e p(r—1)dr
=eY(s) + L{p(r - T)}(s),
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where @(-) : R — R is the unit-step function defined as follows:

o) ={o), -1<r<0,0,

Then, we achieve the following result

r>0.

s*Y(s)

k=0
—A(eTY(s) + L{Q(r - )}(s)) "o
Next, we write above expression in the following explicit form
e Y (s) = (877" = pust ) g + (72 - psP ) g
o (2 - gt ) ot smtD - (3.7)
+2L{LPp(r —T)}(S).

[s* — s’ —

Then, we solve (3.7) with respect to Y(s),

T $2-2_yep-2

Y(S) =g 0o + 5w Po

stmel_pshmil(m_2) om
0

(m-1) C{p(r-T1)}(s)
et taes Po g S psF—ie 5

+ot

1 [SopP e T ase 2 [ pusl—ieStze s,
=5 [P g + s )

s%— sl —je~sT T

(1) [ —psb —se—T+ 05 —2) %m
roor e P gl
=5 [1 +S,ﬁ;"e,ﬂ}%+5’2[l +%}%
- -2 2-m L )
s {l + ;,5// e ﬂ] @5 + T o+ (j’psr/’ o
_ . —(m— 2) Je-st
:(Sl%H N L e !
s (m-1) (r-1)}(5)
o 00 A
In accordance with Lemma 2.1, we have
_ _ -1
(s — pist — je=st) " = (s* — us?) ](1 —A(s* — s’ 18’“)
=(s*—push)” (1 (5% — past) et (5% — push) Pt (st — pust) e s 4 )
=(s*— ,us/f)’1z/ll(saz _ ﬂSﬁ)’le—lsr _ ZMSI _ #Sﬁ)%lH)eng
1=0 1=0
(3.9)

By inserting (3.9) into (3.8), we achieve

. +s*(”'*”qog""2)}

0
o+ s,(m,”q)émfz)] Z;fﬂ (s* — Ms/i)*(”l)e—(lﬂ)sr

1=0

Y(s5) =[s 1y +5205+
+[s o+ 5205+
st sz

+§: (s

1=0

(m-1)

,U,Sﬁ (I+1) e ls‘r(po
— sty Ve bt {p(r —1))(s)

(m-2)

= [s*lqoo +572Qp + ...+ s M Vg
s 1z;l+1 ~ ush) (1)
4s ZZ)HI
.. s
454~ "‘Z/l’

s sty Ve L - 1)),

=0

(l+1)51(p0 (310)

gy — (1) (141
'us/ e~ (+1)st (pb

])ZAIH(

1=0

‘us/f) Hl)e (l+1)srq087'*2)

psh)” M)e””qof)mm

Taking inverse Laplace transform of (3.10) and applying Lemma
2.2, Lemma 3.2, and formulas (2.8) and (2.11), we find an explicit
representation of solution for a Cauchy problem (3.5):
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yr) = {Q)o QL+ 21 25 Zl]

> I+p Do p(a—p) 4oy
+AZ ( > A r=(1+1)0) H(r—(+1)7) o

Mx

T(la+pla—f)rat1) P,
0 p=0

g l+p A (L) PED e
Z Top(o—f+o+2) Po

p=0

I+p » Ie+p(a—p)roem—2
A (r— (1™ ™ H(r=(+1)1) - (m-2)
sz( A e

10 p=0

> X [l+p A =P (o)
ZZ T(lo+p(a—p)+m) Po

~0 p=0
x = (l+p Jlo+p(af) -1
T b (r—lr—s)"* PP )
+2 fy ZZ< Tl plo ) ) Lp(s — T)ds
1=0 p:
X [l+p I p(o—f) 2
_ 5 A (14 1)7) H(r-(1+1)7)
= (1 *’“ZZ( ) T+ plo—p)o+1) Po
= (l+p\ ot pla—p)+o+1
9 App (r=(1+1) )P H(r—(l+1)7) ’
+ (r + AZZ ( T(lo+p(o—p)+0+2) Po
x> > (l+p)\, \p(a—p)+arm—2
rm-2 AP (r—(41)7) H(r—(1+1)7) (m-2)
+oo 4 (n,,.,l) + AZ ( ) Tl pla—f)+atm-1) Po
= (1+p\ la-+p(o—)-+m-1,
e (r-1g) >+ H(r-lt) , (m-1)
*ZZ( > Tl plapem) Po

e l+p J P (r— (4 1)T—s) 2 PE P Ty () Ts) ~ (S)dS
[Ty E T PP ) ¢
1=0

1+ 2B, o pn (A T = ))(Po + (r+;“[E;xf/m+2(}~-ﬂ?r—T))Q%

M*‘

+4
=

N

~+

(3.11)

—~

(m-2) (m-1)

(l'm 1)+)[Eau Botm— 1()4‘?"*17))(/7 +IE;.5<7/i.m< LT g

f By po (s JiT =T = S)((s)ds
m-2

[ru+1 + Ay paen (B 5T — )}(Po + By pm (A 5T Py
j=

min{r-t.0}
i / Ef a7 — T = S)(s)ds.

(m-1)

where we have used the following results:

r=1t = / oc:x /foc) wr _S)Q)(S)

ds = / oc,oc—/i,oc( ,IM,T—‘L'—S)QD(S)C[S, (312)

and
r<t = /7 Epa g2 5T — T —S)Q(s)ds
— [ B -t 9)p(sds (3.13)

If we combine the above cases (3.12) and (3.13), we can derive
the following desired result:

[ Epalr— =905

min{r—t,0}
= / [E;m—/f.a (4, ;1

T

—S)¢p(s)ds. (3.14)

Verification by substitution. Having found explicit form for
y(r), it remains to verify that y(r) is an exact analytical solution
of (3.5), indeed. First of all, it should be noted that the Caputo frac-
tional derivative of constant function is equal to zero. Now, we will
apply Lemma 3.3 to show that y(r) is a solution of (3.5) by direct
substitution method. To do so, we compute the fractional differen-
tiation of y(r) by applying Lemma 3.3 and then starting from the
series (3.1) to the formula (3.4) and make the use of the following
eminent Pascal’s identity

<l+p> (l+p—1) <l+p—1
= +
p p p-1

as below

), for Lp>1,
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(DG Y1) =D (14 Ay O JsT = D) P + (7 2 (s fiT = 7)) 0
+ot (l"z::lil]) + ;“E;.ac—/f.wrm—l (4, psr — T)) (PE]"PZ]
min{r-7,0}

HE (A D)0V 44 / Bl ol T = T — S)(p<5)d5)

3

_cpr 14 N[ l+p P (r— (1411 PP 2y (141)7)
=5 |1+ T Thpa ey | Po
1=0 p=0 p
214D\ L pla—p)+o+1
P (r—(+1)7) Hr—(+1)7)
+ <r + )ZZ< ) b rar2) ?o
=0 p=o \P
x X /|4 p I+ p(et—f)+o-+m-2
Fm-2 A (r—(1+1)7) H(r—(+1)7) (m-2)
+...+ (l‘(m ot AZZ( ) T (la-+p(a—p)+orm—1) Po
1=0 p=
XN/ l+p-1 It p(a— ) +m-1 \
m-1(m-1) b r=In) H(r-It) ,(m-1)
+ <lr'(m) ZARED DY < p ) Tzpapem  Po
=1 p=0
X l+p -1\, I p(a—f)+m-1
L (r—1g) P H(r-lt) ,,(m-1)
+ZZ( 1 T Tlapa—pam) Po
=0 p=1 \P

min{r—7,0} a1
4 l/ (r—r—s)r(a);t(r—r—s)(p(s)ds

MOl SN (TP = T 1 o e 1 yes) 0P Ve 1)2s) $)ds
p T(lo+p(o—p)+0r) QD( )

+
—

T =1 p=0

+
o

min{r-7,0} o oo ’+p_] S lo+p(a—f)+a-1
P (r=( )19 PP gy (14 1)T-s)
S3(, e 9(s)ds

T 1=0 p=1

_ i ’+P>;,',w(r7<1+1)r)'““"“ LTS

T(lo+p(o—p)+1)

1=0 p=0
B l+p p lzp(a—f)+1
e r— (1)1 H(r—(14+1)7)
”ZZ( P T ThEp) ®o

+ +) N l+p JLP (r— (1 1)0) P2 (14 1)7) (m-2)
ZZ P T(le+p(o—p)+m—1) (2

=0 p=0
N /l+p-1 U (r— )l HPa-p)em-a-1
!y (r—It) H(r-It) (m-1)
+ZZ (p ) T(lo+p(o—p)-+m—o) Po
=1 p=0
S l+p b (r— )P ma1
P (r—In) H(r—lt) (m-1)
DRNMEARIE = el
=0 p=1 \P

T

minr-t0} > @ /|4 p 1\ 4 Ixpa-p)1,
P (r— (1 1) T P D (1))
+2 [ ZZ( ) TG ) Lp(s)ds.

f =0 p=1

min{r-7.0} l+p-1 [
! (r— (14 1) T—5)* PP (141) )
H / ZZ&( ) ‘ Ny @(s)ds

From now on, using again Pascal’s rule for binomial coefficients,
we find that

N/ l+p-1 i 14D~ F) (141
(‘Dgy)(m) = [}H (r-7)+ § E < ) = ru )pu DESH) T (et)
1 p=0

1+ p— 1 e lo+p(o—p)
P (- (141)7) Hr—(1+1)7)
+ZZ ( y(zreayey Po

1=0 p—1
X4+ p =1\ 1 lz4p(a-f)+1 )
N P (r—(1+1)7) Hr—(+1)7)
A= DHI-T) + ZZ( ) T2
=1 p=0 \P
XS l+p—1\ 1 l4p(a-—p)+1
PP (r—(14+1)7) H(r—(l+1)7) ’
+,Z(;Z (p 1 ) (o pa—F)+2) Po
0 =
- > > /l+p-1 Pl Lt pla- ) +m-2
Py s p r—(+1) )P Hr—(1+1)7)
oot A R =0 + ZZ( T pa pomT)
=1 p=0 \P
2N I4+p =1\ g o p(o-+m-2
P (r— (1) T) Hr—(I+1)7) | (m-2)
+IZZ(1,_] ) Tz pla—frm—1) (29
0 p-1

ii I A
T (lo+p(o—p)+m—o)
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e I+P—1 I (o) +m——
AP ()P (e | (m-1)

1=0 p=1
~min{r—7,0} oo I+p- M I 1
A ()T 0 P (1 1)ts)
+ |4 / T(loc+p(%—F)) p(s)ds
t e 0
min{r-7,0} oo l o lor+ 1
A (= (1) 7=5)" PE DV (r— (14 1) T—5)
+2 / P ( ) TP =) p(s)ds
- 1=0p=1 \P —
© x (l+Dp\ (+1 -~
2 (1120 VPR gy (142)7)
[}H )+ ZZ ( C((+Darp(a—p)+1)
© < (l+p\ i s+ Lot (p41) ()
AP r— (14 1)) P H(r—(l+1)7)
+ZZ ( ) Tt (p+1)(2—p)+1) Po
1=0 p=0

X H o x (] p A2 (r—(12)0) D g (142))
Ar=mHr -0+ Y T Do plaP2)

X X /l+p 1 L+ (p+1) () +1
1 (= (141)7) e+ gy (141)7)
‘*’ZZ( ) T I F72) ?o
p=

=}
m-: I+p (141)a+p(o—f)+m-2.
5 (r=17) r—(1+2)7) H(r—(1+2)1)
tot (4 r(m71> )+ ZZ( ) T((+1)otpa—f)+m—T)
10 p=0
& l+p S It (p41)(2—f) +m—2
Pt (- ()T Hr—(41)7) | o (m=2)
+22(p > T(pr D)o p)m-—T) Po
10 p=0
S VAR AV e (i pla- ) ma1
P (r—(14+2)7) H(r—(1+2)1)
* ZZ ) (@ T p G i)
1=0 p:
S l+p 1 et o p ) (o sma-1
(r=(l+1)7)! " H(r—(+1)7) (m—1)
+ZZ( > T (lo+(p+1) (o—f) +m—2) (pO
1=0 p=
min{r-.0} 2 o I+Dp\ 2 141 —p-1
A2 (r—(14:2)T—s) VPO N gy (142)7—s)
Jr/ ZZ( > T((+ 1) pla—f)) ¢@(s)ds
=0 p=0 \P
min{r-t0} 2e 0 /14 P i L4 (pi1) ()1
AP (r— (11 T—5) Py (141)—5)
* / > ( » ) T p 1)) (s)ds
1=0 p=0

= [AH(r—r)Jrﬁ[E;y post (A 5T =2T) +2UE; , 5, /f‘l(/tﬁu;r—‘t)] P

+ P(r —OH(r—1)+ By g2 (5T = 2T) + 2L, gy gy (2 J5T = T)] Po

+et P(' i H(r )+ B parim1 (Ao T = 2T) F AUE, gy g (s fliT — T)} (/’((JMJ)
+P[E“ s (A 5T — T)+ UE;, (A T — T)}Qo(m K
N min{r-7,0} min{r—7,0}
w2 [T B G- sptsds [E;.,,/(.,,,mu;r—r—s)w(s)ds}<
-t Jox

Similarly, we have

B(Dy) (1) =Dl (14 A g (T =) P + (T 2 0 (s BT = )P

+ +(ym2 +;[Eacx /fo(ml(’lﬂrf‘w) 2
min{r-7,0}

B pa( 5T =T =) rp(s)ds>

:)u“[E;z gt (A 6T = T) o + A, /m pr2(A T =T) @)
+j'lu|Eata Bo—p+m— 1(; ,Ll r— T)((J +:u[E7a p.m— /1’(/L M r— T)‘P

min{r-7,0}
b Gt - T-S0()ds,
-1

T |

J-1

(m-1)

and
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yr—-1) = {)H(r T)+A E, /,“1(),#;1”72‘5)}(/)0

M= =)+ B (i -20)|

2)

-2
+. +P(r ::1 1 H(r— T)Jr’ Eyo- paem-1 (A T = 2"7)](/),“

min{r-t,0}
Ve[ =t -9)pls)ds

T

+;“|E§.o(—/}m(/ Hr— T)q)

Taking a linear combination, we find that the following desired
result:

(D5 y)(r) = p(Dy.y) (1) = y(r=1) =0, r>0.

This completes the proof. O

4. Integral representation of solution to linear inhomogeneous
Langevin type DDEs with general fractional orders

In this section, we find the explicit formula of solutions to linear
inhomogeneous fractional Langevin type DDEs with constant coef-
ficients by applying the classical ideas to find solution of (1.3).

Consider the following two Caputo type FDDEs with constant
coefficients:

(“Dgy)(r) — (D y)(r) — Ay(r —7) = g(r), >0, T>0,
y(r =0, —-1t<r<o,
(4.1)
and
(“D§:y)(r) — WDy y)(r) = 2y(r—7) =0, >0, T>0,
yry =), -1t<r<Qo.
(4.2)

The following lemma plays a significant role in the proof of next
theorem which can be derived from classical ideas to find solution
of linear FDDEs.

Lemma 4.1. If y;(r) and y,(r) are the solutions systems (4.1) and
(4.2), respectively, then y(r) = y,(r) + y,(r) is the general solution of
system (1.3).

Note that the solution y,(r) of (4.2) have studied in Section 3. In
other words, to achieve our target we need to find y, (r) which is a
particular solution of (1.3).

Lemma 42. let m—-1<a<mm—-2<p<
Then, we have the following relation:

m—-1 for m> 2.

/ (r—s)™ " *(s—lt — n)lwp(zx—ﬁ)wqu
n

+lt

=(r—le—p)™PEPNBm o, (I+ Do+ plo— ), (43)

where B is a beta function.

Proof. By using the substitution u = and formula (2.2), we

achieve

rIT;

(r _ S)m—l—a(s - n)lot+p(oc—/f)+ot—lds

u)la+p(oc—/3)+a—l du

.];;Jrlr
— (1’ _Ir— ”)Iac+m+p(o<—[5)—l fol u”‘*”“(l _
= (r—lt— )™ ™PEDTBm — o, (1+ 1) + p(o — B)).

The proof is complete.
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Theorem 4.1. A solution y € C"([0,T],R) of (1.3) satisfying zero

initial conditions y(r)=0, re[-7,0), y®(0)=0, 0<k<m—1
has the following form:

r
90 = [ B polhir = 9igs)ds, >0, (44)

Proof. By using the method of variation of constants, any solution
y of inhomogeneous system should be satisfied the following form:

—$S)h(s)ds, r >0,

¥ = / T (45)

where h(s),
y(0) =0.

Because of these homogeneous initial values, it follows that in
this case, for any given order either in the interval of (m — 1, m] for
m > 2, the Caputo and R-L fractional derivatives are equal in
accordance with the relation (2.7). Therefore, in the work below we
will apply R-L fractional derivative instead of Caputo fractional
derivative one to verify the solution of differential equation with
fractional-orders. Having Caputo fractional differentiation on both
sides of (4.5) and in accordance with Lemma 4.2, we attain the
following result:

0<s<r is a sought after vector function and

(DG 9)(1) = (DE-I)1) =ty i Jo (=)™ Jo B (s 15 — MR()didls
=t Bv o Jo (r =)™ UEL, 5, (. i35 — () dnds

= am o J;;m (r =" "By, (2 s — mh(n)dyds

rm} ) ;:' o h ( 0+t (r—s" - "Eyn (% u:S*VI)dS)d'?
S (1) (57 e
p=
=i “ZZW"('”’ )& =
1=0 p=0
xB(m —at, (I + 1o+ p(ot — §))
=SS () gy e e sy
=0 p—0 p

With the aid of following binomial identity:

<l+p> :<l+p—1)+<l+p—1>7 Lp>1,
p p p-1

and applying Leibniz rule for higher-order derivatives (Huseynov
et al., 2021) (see Theorem 3.2), we attain

(D5 3)(r) = (D)) = o fy ™ h(p)dy
S (VP e ey
1=1 p=0
+gp§l;~'ﬂp<g+f7{ ) -l Wﬁw)dn
N+ ii/‘#"(”p ) Jo e R )iy
1=1 p=0
+§§l’u" (if_pf ! ) b ey O
— h(r) +ii2‘mﬂ (I+P) [ ot »zrl*,L’l*‘;(ip"x‘;:()r EDT) b gy dy
=0 p=0
: OPZ;) ! (:fp) Jo e G

=h(r) +4 jo o P JT =T = mh(n)dn + p J(; [E;.zf/!.xf//(;“‘ wr—mh(ndn
= WD I)(1) + 2y (r = T) + h(r) = ("D, §)(r) + Ay (r — T) + &().

Therefore, we acquire that h(r)
complete. O

= g(r) for r € [0, T]. The proof is

Finally, using Lemma 4.1 to combine the result of Theorem 3.5
with that of Theorem 4.1, we obtain the following general solution
of IVP for FLE with a constant delay.
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Theorem 4.2. A unique analytical solution y € C"([-1,T],
Cauchy problem (1.3) has the following form:

R) of the

) = (14 2 G 5T =) ) @0 + (4 7B (s 57— 1)) 9%

2
oot (l‘(m o + Ao poemo1 (s ,u,r—r))go’" '+ By 157) 04

~min{r-7,0}
+ /
-7

m
= _ZE] [rgil) + l[E;_%,/,_Hj,, (A 51— )} (/’0 +Epe pam (s r)(Pm
j

1)

B gl =t =9p)ds + [ €5, (r—sigeds g 60

1)

min{r-7,0} r
b [ Bt 90@ds + [ B, 0T -9 10

Proof. The proof of theorem is straightway. Hence, we pass over
it. O

Corollary 4.1. (The case of 7 = 0). The unique analytical solution
y € C"([0,T],R) of the following Cauchy problem for Langevin type
linear inhomogeneous FDE:

Dj-y)(r) — pu( DL, y(r)y=gr), re(0,T],
(D3) - 1(Dhy) ) - ) =g), re@T.
yo0)=y¥, o0<k<m-1,
can be represented by as follows
m-2 .
;[1‘011 + Ar*HE, a-patjr1 (A%, pr* ﬁ)}yé” +rm IEq.x—/Lm(Arluurx /{>y{)m7]) (48)
s lEx,x,,,_x(/L(r—s)“,,u(r—s)“’”)g(s)ds, r>0.

Proof. Using the formula (4.6), we derive the following explicit

representation of the solution to the Cauchy problem of the Lange-

vin equation with two incommensurate fractional-orders (4.7): O
pp rlep o)

x = (l+p
yr) = <1+22 Z( )W)J’o

I+ p A pprlesplo ot ,
Tlopa—prai2 | Yo
p
7T A Z Z

l+p bl pa-proim-2 (m-2)
Tlarpa—prarmT | Yo
1=0 p=0

yprlopOepm1 - (m_1)
T(lo+p(o—p)+m) 70

(g g

1=0 p=0

. ( o
(l+ p)
o\ P
I+p
s ()
1=0 p=0 p
= (1 + A*Eqapost (A%, 1™ 7))y, +
4t (I_ET”,';Z]) + /FLTHm’ZEm,/;.x-mq(U“ ur- /i))y
H B (A7, )y
+ o= )" Eaa g (2(r =), pulr = 5" )g(s)ds

m-2

=2 {% + By g (317, ﬂ"“iﬁ)]yg) AT Ey gy (AT, U )y,
=0

o

+3

=0

M2

8 T

L (r—s) Pt

T (lo+p(a—p)+0) g(s)ds (49)
(r+ A Ey g _poia (2%, ur=F))yg

(m-2)

(m—1)
0

[0 =) "Eyupa (i(r — )" u(r - s)“’”)g(s)ds, r>0.

It is important to note that these results (4.8) coincide with the
analytical solutions of Langevin FDE with general fractional orders
which considered by Ahmadova and Mahmudov in Ahmadova and
Mahmudov (2021) with the help of bivariate Mittag-Leffler type
functions. Furthermore, the authors in Ahmadova and
Mahmudov (2021) have investigated application of fractional-
order Langevin equations to the electrical circuit theory.
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Remark 4.1. The Cauchy problem (4.7) has also a solution in terms
of Fox-Wright functions below:

m2( 1+1,1)
r _ Al,—lfﬁ»j p I: ( ’ T /3:|
0 jzc;{zzo: T 1)
_ /r11+]+1 ﬁ (l+1 l) a—/i:| U)
“Z [(la+]+o¢ Bt gl (Y0
rlx+m1 (l+] 1) 0(7/}:| (m-1)
+Z [loc+moc )|,ur Yo
+f0 r*s ]Ga.ﬁ:/’.,ﬂ(rfs)g(s)ds', r>07
where
oA 1) o p
Gapou(r) = l; o [(loc+oc u—p) 'W }

Proof. Using the definition of Fox-Wright function (2.17) and
Pascal’s identity for binomial coefficients, we arrive at

m—2 00 00
_ Z ; ,—‘%H Z _ T(+14p)  pprPh
- T(lo+1-+p(a—p)) p!

j=0 { I=0 p=0

00
_ Z ;5 rla<+j+x B Z T(l+1+p) WP ()
,u T(loto— /f+j+l+p o—p)) p! yo

rh\m 1 T(l+1+p) )P rp(e—p)
+Z ‘ TGP m Bl
p=0
r o /I loc+a( 1 X I(l+1+p) U;g)ﬂ("*/‘) d
+f0 Z F (loe+p(o—p)+ p! g(s) S
=0 p=
_ m2f e > (14 D AP rlpa )t
- Z ZZ T(lo+p(a—p)+1+j+1)
=0 Zop=0 \P
O = l + p }_lupﬂ rlot(p+1)(-p)+j U)
722 T(l+(p+1)(=p)+j+1) (V0
=0 p=0 \P
o0 00 l Jr p |
/«.'uprlowp(az—/ﬁ)-m—l (m—l)
> ( Tl pa=p+m) Y0
=0 p=0 \ P

. oo 00 l -+ p ;‘l‘up(ris)lawp(u—/fﬂafl d
+hd D, el pa g 8(s)ds
=0 p=0 \ P

w2 o > (l+p-1Y\ v
= z i
- Z{FU'H) + ZZ( > T(lotp(a—pB)+H+1)

j=0 =1 p=0 \ P

& (l+p-1) , :
. < 1 Tl p—p)+1)

=0 p=1 \P —
ii('“’l) u”}yw

T(lo4p(o—p)+j+1) 0
Zop=1 \p—1
NN YAV
,‘_Hprloup(z pm-1_ (m—1)

+ZZ ( T (lo+p(o—p)+m) 70

1=0 p=0 \ P

2 & (1D
T ! ”p (r—s) o+-p(o—f)+o—1

+Jo ZZ( e 8(8)ds
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=2 F SN +p Al pa-p)iasi
=2 1‘u‘+1)+22 Tlatp P o) ¥y
= 170 p=0 \P
2 & Pl p(a— -t 1)
A pprlesplocpim-1 (m
S
1=0 p=0
= l+p Io+p(e—f)+
r Ay (r—s)trip)
o zz( )7 o asds
=0 p=o \P
m-2

j=0

AP E (A% Py (1 = $)* 7 By (A%, ur*)g(s)ds, 1> 0.

Therefore, our solution in terms of recently defined M-L type
functions coincide with the solution by means of Fox-Wright func-
tions shown in Kilbas et al. (2006) (see pp. 314 and 323). O

Corollary 4.2. (The case of 1= 0). The unique analytical solution
y € C™([0,T],R) of the IVP for following linear inhomogeneous FDE
with two incommensurate fractional orders

(DG y)(r) — 1(“Dp.y) (r) = &(r),
yo(r) m—1,

can be represented by as below

€01, (4.10)

:yg{>7 0<k<

m-2

yr) = FOH YO + 1 Ey g (r*P)yg"
=0

+ [y (r=5)

(4.11)

“Ey pa(pu(r —s)* "g(s)ds, 1> 0.

Proof. With the help of the formula (4.6), we derive the following
explicit representation of solution for a fractional-order dynamical
system (4.10):

Y0 = [yo+ o+t gy

uprpat p+m-1 m Z'up r— sP(1 B+o-1
+§ : p(o— ﬂ+m +f0 (o—p)+a)

m—

S

j=0

+ Jo (r = 5)" " Expa(u(r — 5)*)g(s)ds,

g(s)ds
(4.12)

(m-1)

M Es (U ")Yg

r>0.

It is interesting to note that these solutions (4.11) are identical
with the solutions of FDE in Caputo’s sense that considered by
Kilbas et al. (2006) by means of two-parameter M-L or Wiman'’s
functions. O

Corollary 4.3. (The case of y = 0). The unique analytical solution
y € C™([0, T], R) of the Cauchy problem for following linear inhomoge-
neous FDE with a constant delay

(‘Dg-y)(r) = 2y(r — 1) =g(r), r€(0,T], ©>0, (413)
yr) =), -1<r<o, '
can be expressed by as follows
m-2 )
YO = [+ g T = D)0 + €y (BT 0"
Jj=0
min{r—7,0}
+A/ E (T =T =5)(s)ds + [y €L, (4T —s)g(s)ds, 1> 0.
(4.14)
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Proof. With the aid of the formula (4.6), we obtain the following
explicit representation of solution for fractional-order time-delay
system (4.13):

y(r) = [% +TQy + -+ i (,H)]
i g,
+A§ )
ot AZ e et 110 =)
+ Z A g
H/m‘"“ WS Ar= @+ DT=9"" Hr - (1)1 =9) o
B 2 I(loc + o)
©_ 3 feha
. -/0' ; Ar-ir— ?(i;“+]o7;‘)(r —lr- S)g(S)ds

] I+
) Ar=(+1)1) H(r—(1+1)1)
+ E) T(locrace1) > Po

:<1

o A=) (1)t
+ <r + 4 ;) T(zro12) Po

! (4.15)
+o+ <r(ﬂ + E A= l+1)z)1';+:rm27:) (l+1)r)> qD(()mfz)
5 lotm-1, _
+Z -l la+m7<r It) (P[()m 1)
~min{r-7,0} oo A lot-0-1
, (I+1)t—5) H(r—(1+1)1t-35)
d
[ e otss
ro oo A rfl 75)1““%717'[(1‘711'73)
/ ,Z (o + o) 8(s)ds
= (1 + ﬂg;aﬂ (41— T)) Py + (T + ;“g;.curz (51— T)) @6
+. +(rmz + 28 ym 1(};1‘—‘5))(/) +g;m(/1 1;1)l (m-1)
min{r— rl)}
ﬂ/ E (T —T—5)0 ds+/£ (41 —s)g(s)ds
m-2 m-1)
Fard [FU+1) + )81 oHj+1 (’“? r— )] QOU + gam() T')QD
j=
min{r—7,0}
H/ E (BT =T —=5)¢ ds+/£ AT —s)g(s)ds, r>0.
-7

Furthermore, it should be noted that above results (4.14) are
the general case of the solutions of fractional-order time-delay dif-
ferential equation with constant coefficients which considered by
Li and Wang (2017) and Li and Wang (2018) in case of
ae(0,1. O

4.1. Special case: the solutions of delayed FLEs

In this subsection, we provide the special case of (1.3) where
l<a<2and0< < 1.

Firstly, we consider the homogeneous linear delayed FLE in the
following form

{ (D5y) (1) — p(D.y) (r) = y(r =) = 0,
yr)y =), -1t<r<Qo,

€ (0,T], >0,

(4.16)

as well as the corresponding in-homogeneous delayed FLE in the
form
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{(CDa‘av)(r)—u(CD{;‘y)(r)—Ay<r—r>:g<r>, re(©T. >0,
Y =), -T<r<o,
(4.17)

where ¢ € C'([-7,0],R) is an arbitrary continuously differentiable
real-valued function that determines initial conditions.

Theorem 4.3. The unique analytical solution y € C*([0,T],R) of the
Cauchy problem (4.16) for linear homogeneous FLE with a constant
delay can be represented by

V) = (1 ALy O 15T = ) @ + By (2 1) 0

min{r-7,0}
b BT g(sds. >0,

T

(4.18)

Theorem 4.4. A unique analytical solution y € C*([0, T, R) of the IVP
(4.17) for linear inhomogeneous time-delay FLE has the form:

V) = (V4 2By O BT = D)) P + By O J5T) PG
min{r—t,0}
+/1/ oo T =T = $)@(S)ds + [y E}, 4, (2, 157 — 5)g(s)ds, 1> 0.
(4.19)

Proof. The proofs of Theorem 4.3 and 4.4 are straightforward
approaches by following the general case above, so we omit it
here. O

5. Existence and uniqueness problem for nonlinear time-delay
FLE

In this section, firstly, we consider the Cauchy problem for non-
linear FLE with a constant delay:

(DG y)(r) = p(Dg-y)(r) = Ay(r — 7) = g(r.y(r)), r€(0,T], 7>0,
yry =), -t<r<o,

(6.1)

where m-l<a<mm-2<p<m-1mz>=2 with
o—p=1,y() € R,g(y(-):[0,00) x R — R is a nonlinear pertur-
bation and also a continuous function. Moreover, for definiteness,
we will also assume that

(r—g(r,0)) € C([0,0),R). (6.2)
Then, in accordance with Theorem 4.2, we acquire the solution
of nonlinear fractional Langevin type DDE (6.1) as follows:
m-2

[rur: 7T Z[Ei_x,/,,x,m(i‘u; r— )} (/’0 + B pan (2 r)(”
=0

(m-1)

min{r-t,0} .
A/ Eropo(d T =T =8)@(S)ds + [o B o (2, 1T — $)E(S,¥(5))ds, 1> 0.

J-ot

+

Lemma 5.1. The following estimation holds true:

|Enoporek (4 f157)| < 77 exp(|Afr* + |ur*") - for
k=0,1,...,m—1.

Proof. Firstly, we need to estimate E,, g, (4, /t;T) as below:

Journal of King Saud University — Science 33 (2021) 101596

=S I+p \/\ ! [P rlzpa—p)+ak-1
|[Ewc /ioc+k ) ,uv ZZ T (lop(a—p)+o+k)

=0 p=0

— potk-1 p rletpa—f
=T ZZ Ip! |A| I T(loctp(o—p)+o-+k) *

1=0 p=0

Since m-1<a<mm-2<pB<m-1 and a—-p=>1 for
m > 2, we have

Tlo+pla—p)+oa+k)>T(+p+1)=(+p)!
It follows that

o0 o0
I B)
|[Ea.a—ﬁ,a+k(;v’ ,l,l; ) < r1+k ZZ T’;’i‘;
1=0 p=0
o0 [o ]
— k- ZZ\ \H\Ifll\p rlo+p(o—p)

T
S
I

S

p

o0 o0
_ park=1N AN P
=T I p!
1=0 p=0

= 1k exp(|7]r*) exp(|ajr*")

= Texp((Alr + ().

The proof is complete. O

Corollary 5.1. For m > 2, the following result holds:
[Exirpom (2, 157 < P70 exp(|2)r* + afr* ),

Theorem 5.1. Suppose that the following assumptions hold true:

(Hy) g:[0,T] x R — R be a continuous function;
(Hy) there exists Ly >0 such that g satisfying the Lipschitz
condition:

lg(r,y) —&(r,2)| < Lgly — 2|,¥(r,y), (1,2) € [0,T] x R;

Then, the problem (6.1) has a unique global continuous solution on
[0,T].

Proof. Let a ball be defined as Bg:=q{y € C([0,T],R) : |||, <
R, > O}where R is positive constant with

Klpg|o* + T le‘W |+ NC@) (A, + M)

k= — NI'(o)Lg

(6.3)

where
m-2 T )
K= ]Zo: (F(]+1) + MTWN) ., M
= max {%,0 <r< T}, N = exp(|A[T* + |u|T*7).
Now, we define an integral operator P on By as follows:
P:C(0,T,R) > Br 2y = P(y) := (r = (Py)(r)) € C([0, T], R),

via the following formula

= ;] [[U 1) +A[Escx /u+;+1(/“ H,r T)} (Po +[E14 /rmu' ,LL r)(pm

1)

min{r-7,0}
+A/ B pa(lfiT =T =5 (p(s)ds+/ o pa(l T —5)g(s,y(s))ds, 0<r<T.
-7
(6.4)

12
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It is evident that P is well-defined due to (H;). Thus, the exis-
tence of solution of the Cauchy problem (6.1) is equivalent to that
the integral operator P has a fixed point on Bz. We will apply con-
traction mapping principle or Banach’s fixed point theorem to
prove that P has a unique fixed point.

However, we will not use maximum norm on C([0,T], R).
Because, the selection of maximum norm only derives us to a
local solution defined on the subinterval of [0, T]. Let C([0, T], R) be
endowed with the weighted maximum norm | - ||, where @ > 0
with regard to exponential function, defined as:

lleo

y(r)]
Wl = ama{ KDL weconm
Since two norms |-||, and | .||, are equivalent,
(C([0,T],R), | - |l,,) is also a Banach space. The proof is divided into
two steps:

Step 1: We prove that P(Bg) C Bg.
Now take Vr € [0,T] and Vy € Bg. By using (H;) via Lemma 5.1
and Corollary 5.1, we acquire:

[(Py)(r)|
exp(wr) Sep@n exp(wr

exp[wr) r+}'ﬂza.x—/f.1+2<;"nu:r_f ‘W)O
m-2 1 . (m-2)
l'{m—l) +/“[E§,a—[m+m—1 (4 51 —1) “‘Po ‘

o pm (A J5T) ) )(pgﬂm ‘

1428, ot (A 3T — T)||(/)0

+

4+ 4

S
exp(wr)

+

min{r-t,0}
+exp}wr) j'/ Ez.a—/i.xunu?r_T_S)(p(s)ds'
-7
+ exp}zur; If(r] [E;z—/f.az (4, psr — s)g(s,y(s))ds\

<10l 412 E g (57 =0 0]

[E;.x—/f.wrz (2,57 =7) ‘ ol

5 -2
Ero- /fx+m—1(A7”;r_T)||q7(()m )l

71|+ 4]

ym-2

+ e

log™ 21+ 121

B pm (A 15T “‘pom ‘)‘+ex1:‘|€lr)rf By o ,,1(),,11:1’7’[75)‘\(/)(5)\(.‘15
+W/o B po (2 57 =) [1((8(5,(5)) — 8(5,0)) +8(5,0))Ids

<|@ol+ |2l exp(|2[r* + | u|r* ) gy
71 o] + [Alr* T exp(|A|r* + | 1lr* ) g

o e O A2 exp (A + i) o
e exp(Ar -+ ulr g |
0
171 | P s EXP(ws)
+exp((,,,>[1(r T—5)" exp(|A(r—Tt—s)"+|u/(r—t-5) )exp(ws) (s)|ds
1 " _ o)1 9 _e\* _o\* B exp(a)s) _
g || (=5 R —5)"+ l(r ") S ES (sy(5)) (5. 0) s

exp(|l(r =)+ |ul(r —)"") 5y 18(5,0) ds

exp ws)

1 (T -1
+ exp(wr) J 0 (T - S)

By making use of the substitution r — s = u and Lipschitz condi-
tion (H,), we obtain:

()]
EXP r)

< Z rmlod |+ Z [Alrd exp(|2]r*] + pr* ") g |

o7 exp(r + g

0 a1 o _
+3 uﬁvaw‘mgwomxamwuwwm
1 0 7 [ 401 _
+ g o = 8)7 7 2RO |y (s)|ds x exp(|Ar* + |ulr*F)

1 (T a—1 exp(ws)
+ &p@n (wr J (T - S) exp(w )

< _Z i o9 + Z AT exp(2/T* + [T ") g |
far]

)1g(s,0)|ds x exp(|a|r* + |ur**)

+T" " exp(|2|T” + |,u\T“‘”)|qu )
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+

Jo (r=s)"!

— S)x

(s — r))dsmax{ lo(r)

0<r<T | &XP! (cr)

exp(wr) exp( } exp(‘}lTaC + |:u‘Tx /f)

L T
+exp(inr) f(] (r

1 T
+exp(o)r fO (T

)
exp(wr)

exp(ws)dsngi)%{

} exp(AIT" + T ")

—s5)* exp(ws)dsmax{ 80

O<r<T | eXp(or)

5} exp(AIT + T ")

I+ZMIT“’N\% |+ T "Njog™ "

=0
r 1
exp(wr fO 1 EXp dSH(p”(u
r -1
exp((m fO 1 eXp dSHyHm + exg”z\j)r {0 EXp(COS)dS
m-2

=3 (el + ATIN) )|+ T Nl |
J

Iy
o

N
exp(wr)

+ et Jo U exp(or) exp(—wu)du| )|,

+

exp(wr [0 u* 1exp(a)r)exp( wu)dully||,,

+exp(mr Jo u*" exp(wr) exp(—wu)du

= Klog'| + T" 'Nigg™ | + NIJ| g u*" exp(~ou)dul o],

+LgN [y u*~! exp(—ou) dtuHw +MN fju*" exp(—cu)du

=K|@d| + TNy V| + 2 [ o 1eXP v)do|ell,
4l g exp(fz/)dv||waHﬂiV " v 1exp(—v)dv

=Kl |+ T" 'Njog" V| + 2 3" v* ' exp(—v)do(|All @], + Lelyl,, + M)

v)dv (||, + Lllyll, + M)

u)’
|+ ar Jo v exp(=
U+ 552 (A1l + eyl +M)
2 (120l + LR+ M).

<Klpg'| + T’"*W\qo(”’*
=Kl |+ T"'Ngg™

<Kl | + T 'Njgg" V| + 5

(/)"

Taking maximum over [0, T] and using the inequality (6.3), we
acquire the following relation:
IPyll, <R

Therefore, P : Bx — Bg. In other words, P is well-defined on Bk.

Step 2: We show that P is a contractive mapping.

We need to show that P is a contraction on Bg. To see this, let
Vy, z € Bg. Note that

(Py)(r) — (Pz)(r) :/ 2opal A 5T = 5)(&(S,¥(5))
—g(S,Z(S)))dS,

Thus, for any r € [0, T], from Lemma 5.1 and (H,)-Lipschitz con-
dition, it follows that

[(Py)(r)=(Pz)(r)|
exp(wr)

r>0. (6.6)

&(5,2(s)))ds|
&(s, Z(S))IdS
(s)|ds

= atan o Eopa s 157 = $)(E(5,¥(5)) —
< exp}(ur) f{)\[E;_L/[_q (o 7 = 5)| Sl

xbig 8(5,¥(5)) —
< Lgexp(|2]r* + pr*F)

o1 exp(ws)
exp(ws) ‘y (s) -

Wy(r)-z(r)|
exp(ws)ds(r)’r(le% {W}

1 T
exp(wr) fo(r - s)

< Lg exp(|21r* + W) gt Jo(r =)

= Ly exp(|2r” + U™ ") gt Jo [o(r—s)"" exp(ws)ds x ||y - 2|,

= Lg exp(|Ir* + | W) gt Jou™ ™ exp(cor) exp(~cou)du x [ly - z]l,,

= Ly exp(|2|r* + |ulr*=F) fgu“ " exp(-owu)du x [ly -2,

= Ly exp(|2]r* + |ufr*#) 2 [0 v*  exp(—w)do x |ly — 2],
< Lgexp(|afr* + |ur=") & [§ v*- ' exp(-v)dv x |ly — 2],
= exp(|2[r* + [ulr* ) 22 < |ly — 2],
< exp(IUT* + [T =52 x |ly - ]|,
=Ml )y — g,

Taking maximum over [0, T], we achieve the following result:
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NL r()

IPY) =P@)l < (6.7)

ly -zl

If we choose o > (NLgl"(oc))W, then P is a contraction. So, by

Banach'’s fixed point theorem, there exists a unique fixed point of
P which is just the unique global continuous solution of the IVP
(6.1) as a desired result. The proof is complete. [

Remark 5.1. In the proof of Theorem 5.1, the existence interval
[0,T] does not depend on the parameters of (6.1). Therefore, by
repeating the arguments, it can be easily seen that if the assump-
tions (Hy) and (H,) satisfy for all ¢ € [0, 00), then the assertion of
this theorem hold on the half real line R,, that is, for any
(m—1)-times  continuously  differentiable  initial  data
® : [-7,0] — R, the nonlinear fractional-order LE with a constant
delay (6.1) has a unique global continuous solution on [0, ).

6. Ulam-Hyers stability analysis on FLE with a constant delay

In this section, we are going to discuss stability of the Langevin
type DDE (6.1) with two different Caputo fractional derivatives in
Ulam-Hyers sense on the time interval [0, T].

Let ¢ > 0. Consider the Cauchy problem for Caputo type frac-
tional Langevin DDE (6.1) and following inequality:

|(“Dg-2)(r) = u(“Dg,2)(r) —
<g¢, for re|0,T).

Az(r—1)

—g(T’,Z(T))|
(7.1)

Definition 6.1. The Eq. (6.1) is Ulam-Hyers stable if there exists
0 > Osuch that for each ¢ > 0 and for each solution z € C([0, T], R)of
the inequality (7.1) there exists a solution y € C([0, T], R) of the Eq.
(6.1) satisfying the inequality with respect to a weighted norm:

€0, (7.2)

Iy =z, < b,

Remark 6.1. A function z € C([0, T}, R) is a solution of the inequal-

ity (7.1) if and only if there exists a function f € C([0, T], R) which
satisfying the following conditions:

M Ifm<e

(i) (DG 2)(r) — DG, 2)(r) — sz(r — T) —g(r,2(r)) :==f (1), r€[0,T].

According to the Remark 6.1, the solution of following

equation:
(D5 2)(r) — W(“Dh,2)(r) — iz(r — T) = g(r,2(r)) +f(r), 1€[0,T],
(7.3)
can be represented by
= Jg [l‘u+l + )ny B, 1+)+1(;[7 wr— T)} (Pg>
+EL, /im() wr )(p<"1 1) JrMmm{r 7.0} ., M( ST —T—8)p(s)ds (7.4)

+f0 0,0~ /}1 2 ﬂ r— s)g(s,z(s))ds + fg[E;a—ﬁ,ac(;‘# ,LL r— S)f(s>ds

= (P2)(1) + [oEL g pu(Z pisT —)f(s)ds, O<r<T.
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By using Lemma 5.1, the difference z(r) —
ated as follows:

|z(r) = (P2)(r)]

(Pz)(r) can be evalu-

S 5 = 5)f (5)ds|
< fO“E(XGt Bo )”7 wr S)Hf(S)|dS
< er*texp(|A|r* + |p|r*F) fods
< eT* exp(|AT* + [UT* 7)== eT*N.

Eventually, we are ready to state and prove the Ulam-Hyers sta-
bility result for FLE with a constant delay:

Theorem 6.1. Assume that (Hy) —
(6.1) is Ulam-Hyers stable on [0, T).

(Hy) are satisfied. Then the Eq.

Proof. Suppose that z € C(|0, T}, R) is a solution of the inequality
(7.1). Let y be a unique solution of the Cauchy problem for Langevin
type fractional-order DDE (6.1), that is

m-2

y(r): Z {1‘(} 1) +/“Exy ﬂ7+j+l() I r—T)](/’o
j=0
By pm (2 5T Q’ "+ fmm(r o

+f0 z.af/i.oc( ”Huv r— S)g(svy( ))ds = (Py>( )-,

[Egu /fy(/“v wr—1— S)@(S)ds
0<r<T.
(7.6)

By using estimation (6.7) and (7.5), we have:
= exp(wr ‘(PY)< ) fo 0,00—, /iaz /“ u;r—s)f(s)ds\

<exp ) I(PJ')( ) — ( \+fo|[E“ pa(As 57 = 5)[f (5)]ds
+|,MIT’ Dy = 2ll, + eT” exp(|2(T* + | T*")

LgNl'

)=z
exp(wr)

!y = 2]l,, +T*N.
Taking maximum over [0, T], we acquire

<Dy ), +erN,

llo <

ly —

that yields that
T*N
W =2l < &y

w*

By choosing o > (I'(a)Lg N) which implies that

Hy _ZH(/) < be (77)
where
T*N

w*

The proof is complete. O

Remark 6.2. In the proof of Theorem (6.1), the Ulam-Hyers stabil-
ity interval [0, T] does not depend on the parameters of (6.1) and
(7.1). Therefore, by repeating the arguments, it can be easily seen
that if the assumptions (H;) and (H) satisfy for all t € [0, o), then
the assertion of this theorem hold on the half real line R, that is,
for any (m — 1)-times continuously differentiable initial data
@(-): [-7,0] — R, the fractional nonlinear delayed LE with two
incommensurate fractional-orders (6.1) is stable in Ulam-Hyers’s
sense on [0, co).
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7. Application to the vibration theory: spring-mass-damper
systems

In this section, we discuss fractional-order vibration systems
which is widely used in physics and mechanical engineering
sciences.

For the sake of a physical law, it is known that the spring force is
defined by

[FS = _Ky(r)7
and the damping force is given by

Cmdy),r>a 0<p<1

where K - is a constant of spring stiffness, C -
cous damping.

If there exist three kinds of forces namely: F;, [F; and the
external force F., then in accordance with the Newton's second
law, the motion of the mass M along a vertical straight line is illus-
trated by the following fractional-order vibration DDE with a single
degree of freedom:

My"(r) + C(CDg-y) (N +Ky(r—1)=F(r), r>0, 17>0, (8.1)

r>0,

Fg=—

is a constant of the vis-

with initial condition
y(r) = o(r),

where CD{; yis the fractional derivative of order 8 € (0, 1] in Caputo’s

sense of the displacement y. In the particular case, CDg+y can be
reduced to the ordinary differential operator whenever g = 1. In
such case, we acquire the following classical vibration DE with a
constant delay:

—-1<r<0, (8.2)

My"(r)+CyY'(r) + Ky(r — t) = Fe(r), r>0, T>0, (8.3)
with initial condition
Y =or), —T<r<o. (8.4)

The simplest model of fractional vibration system with linear
viscous damping (8.1) can be demonstrated as shown in Fig. 1. Fur-
thermore, in Fig. 1 we have considered forced vibrations with
fractional-order linear viscous damping under disturbing external
force F, on the vibrating body. In the special case, if an external force
equals to zero i.e., F.(r) =0 this system so-called free vibrations
with viscous damping.

Here the coefficients of mass (M), spring stiffness (K) and viscous
damping (C) are connected as positive real constants.

7.1. A new representation of the solution of fractional vibration
differential equation (FVE) with a constant delay

The second order in-homogeneous ODEs with fractional-order
are arising in the field of vibration theory based on the well-
known principle of Newton’s second law (William, 1983). Our tar-
get is model the physical problem with an IVP such that we can
determine the replacement of mass y in the spring-mass-damper
systems.

Consider the vibration system characterized by fractional-order
linear viscous damping, associated with three elements, i.e., mass,
spring-pot and dash-pot see Fig. 1.

We study an IVP for the generalized form of FVE with a constant
delay in the special case where fractional orders 1< o <2,
0<p<1:
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{@Gmyxn+bcmdyn+

-1<r<o,

y(r) = (),

where /;,

Ay(r—1) =f(r),

i=1,2,3 are positive real numbers.

r>0, 7>0,

(8.5)

To find the displacement y(r), we apply Laplace transform tech-
nique to both sides of (8.5):

I3[s*Y(s) —

gy 5"

20,] + 22[s"Y(5) — " ]

+alY(s)e™ + L{Q(r—1)}(s)]

=F(s).

From above equality, we find Y(s):

I35+ 14 )psh1

Y(s) =
+iq

J38%+7o5P+71e75T (Po
L{P(r=1)}(s)

-2
+ 73 /35"+/25/f+/1e ST (pO

+—_fu

- 1+/zs/1 1

1 7557 1 iysP+7 et

J38%+7psP+/1e-5T

§%—2

Sac+’25/f+’le—sr

+ sty ’ZS// /]e st Po

1 Fo

1 _L{QI—1)}(s)
3 04725 4 o5t
3 3

73 504250 4 st
RSty

o1 /1 9—51 s*-2
=s'1-
|: 3 s°‘+ s/f e st Po + 51+ s/‘ e st Q)o
+4a L{p(r— T)}(S) 1 F(S)
3 51+ s/{ e st /3 51+ s/! e st

N

B W N L

(8:6)

Fig. 1. Single of freedom vibration system.
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Since Lemma 2.2, we have

(s"+jf—zs/’+’f‘e’”)4 = s“+’ls/‘)4 (1+’4(s"+’fls/‘) le’”)f1
3 /3 /3 73 73

s* +is/')7] (1 7’37'(s°‘+’3725/‘)7]e*“

43 43 43

)2 o | J2of -2 25T ‘|l o J2cf - Ist

i 2 - _h 2 -
+(;3) (S +;3$) e +.“+( 23) (S +;ZS) e +> (87)
_ (sy+is,,)*‘i(,ﬂ)’(sugsﬁ)*’e st
= 73 s 73 73

Plugging the above relation (8.7) in (8.6), we attain that
o0 5 I+1 ; G
51 +571;<_ i) (Soz +isﬁ) e (l+1)sr:| ®,
s 22( /1) (Sac +/:-_zs/§)7(l+1
/3
A 7 N A ! o 2 of ol
+EL{P(r - r)}(s)Z(— Z) (s +3s )

=0

0 N\ ) —(I+1)
1 _A o 4 %2 g —Ist
FS)E ( za) (s +/;35) et

=0

Y(s) =

) I
€ ¥O

])e—ls‘c

Then applying inverse Laplace transform, Lemma 3.2 and Pas-
cal’s rule, we acquire

x oo I+p 1 I loetplo—f) o
y<r—{ & )zz( )(,)H

1=0 p=0

(r(1+1)f)} Po

(71‘_‘)’(7;)!’ (r—lyHpa-p+t

H(r—It)pq

T(lo+p(o—p)+2)

(I+1)T—5)(p(s)ds

o oo [l4+D\ 4l ap s pa—p) -1
i T (=70 (=32) (r=(1)T—s)
*ake ZZ( ) TP H(r—

© % l+p il g P It p(a—f)ia1
. () (FB) (=l i
1 (T 7 7
+5 0o ZZ( e Hr—lt=s)f(s)ds

[]*7 opai (= % /2 iT— T)](/)O+[E11 /fz(** -# r>(/’0

=351 =5)f(s)ds,

37

. min{r-7.0} . . .
i T i M. 1 T ~
[ B a0 L (2,

J-t

where @(-) : R — R is the unit-step function defined as follows:
~ (p(r)7 —T<r< 07

Tr) =
) { 0, r>0.

In the particular case, if we take o =2, p€(0,1] and
J3=M, J=C, i =K, we derive vibration time-delay equa-
tion with single fractional-order damping term:

{My”(r) + C(CD§+y)(r) +Ky(r—1)=Fe(r), 1>0, T>0,

y(r) =), -t<r<o,

(8.9)

with its exact analytical representation of solution

yr) = [1 75[}3.2—/}.3(7%77%”.7 T)] Po + [Ez.zf/;.z(*%yfﬁi,r)(/’b
min{r—7,0} 8.10
[ Bapf—fr-t-sesds 610
-7
+ f(; [Eg.zf/x.z(_%a —§:T—S)Fe(s)ds, r>0.
We consider the values of each parameter such as

«=2,=0.7,M=2,C=10,K =50 in Fig. 2 and 3. Since a natural
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frequency of fractional-order vibration system defined by v = \/%

then for the given values of K and M, we find v = 5. To compare
results under harmonic excitation in the form of a exponential func-
tion i.e., F.(r) = Foexp(vr); two kinds of periodic external forces
Fe(r) = Focos(vr) and F.(r) = Fosin(vr) of disturbing force [F.(r),
we provide three interesting cases for a replacement of mass y(r)
with respect to time r.

The plot of displacement y(r) will be demonstrated with Fy
and v = 5 in the following cases:

Case1l: If F.(r) = Foexp(vr) , then see Fig. 2 (a);

Case2: If F.(r) = Focos(vr) , then see Fig. 2 (b);

Case3: If [, (r) = Fo sin(vr) , then see Fig. 2 (c).

To see comparison clearly in Fig. 2 [(b) and (c)], we describe two
plots (b and c) in the same graph in Fig. 3.

=25

8. An example

In this section, we provide an example to verify our major the-
oretical results stated in Section 5 and 6. To show the existence and
uniqueness and stability analysis of solutions in the following
example, we need to apply Theorem 6.1.

Let =12, =08, 7=2, m=2and T =2. Consider
the following IVP for fractional Langevin DE with a constant delay:

{ (<D32y) (1)~ 3(Diy ) r) — Sy(r-2) =
yry=r+5, -2<r<Q0,

cos(y(r)
r2+1

0<r<2,

(8.11)

with constants 2 =5, u =3 and ¢(r) = + 5 is continuously differ-
entiable function for re[-2,0] and nonlinear perturbation

g(r,y(r)) = ¥ s continuous on a Cartesian product [0,2] x R.
Since y(0) = 6, and y’(0) = 1, the exact analytical representation

of solution of (8.11) can be represented as follows:

2
V) = [5+258,040,(5.3r=2)] + JE (53:n)

2
min{r-2,0} E
+5 f 12,0412

(5,3;1 =2 —s)p(s)ds

T 2
E r>0.
+o 120412

(5,3;1 = 9)g(s,y(5))ds,

It is not difficult to see that condition (H,) holds. By mean value
theorem, for Vy, z € R, there exists ¢ € (y,z) such that

80ry) ~ g(r2) = | CCHT—COC, Ny,
<ly—z[, vrelo0,2].

Then (H;) holds with L, = 1. By Theorem 6.1 and 6.1, the non-
linear FLE with a constant delay (8.11) has a unique solution which
is stable in Ulam-Hyers sense on [0, 2].

9. Conclusions and future work

In recent years, the time-delay theory for Langevin equations in
the fractional sense has not been able to get substantial develop-
ment. As an urgent problem to be solved, we have investigated
explicit analytical solutions for linear homogeneous and inhomo-
geneous Langevin time-delay DEs with general fractional orders
in general and special cases via a newly defined delayed analogue
of bivariate M-L functions. In the application of vibration theory,
we acquire the solution of Langevin type DDE with two fractional
orders of 1 < « < 2 and 0 < < 1 and compare results of displace-
ment of mass y under various kinds of external forces F.. The main
contributions of our research work are as below:
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0.6

(a) y(r) = Fo exp(vr)
10
0.8
0.6

0.4
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> X 1 1 - 1 1 1 1 1 1
0.6 \ 0.8

N\

(b) y(r) = Fo cos(vr)

(c) y(r) = Fosin(vr)

Fig. 2. The plots of displacement of mass y(r) involving varying functions F(r).

(=]
in

Fig. 3. Displacement of mass (y(r)) vs time (r) graph involving two various
functions for F(r).

we introduce the exact analytical representation of homoge-
neous and inhomogeneous Langevin type time-delay equations
with general fractional orders by means of a newly defined
delayed M-L type function via double infinite series;

we estimate a new delayed M-L type function with respect to
exponential function;

we introduce a new weighted maximum norm with regard to
exponential function in C"([0,T],R),m > 2 and prove sufficient
conditions to provide the existence and uniqueness of global
solution on [0, T] for nonlinear Langevin equations with a con-
stant delay and general fractional orders in Caputo sense;

we verify that our solutions with regard to M-L type functions
are identical with the results by means of generalized Wright
functions for delay-free systems;

we study stability problem for the solutions of time-delay FLEs
in Ulam-Hyers sense in a weighted space of continuous
functions;

17

e we propose a new representation of solutions to the fractional-
order vibration equations with a constant delay.

There are a number of potential directions in which the results
acquired here can be extended. Our future work will proceed to
study the asymptotic stability of the trivial solution with the help
of the Lyapunov methods and relative controllability results of
solutions with the aid of Gramian matrix and rank criterion to
the FLEs with a constant delay.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

References

Ahmad, B., Nieto, ].J., Alsaedi, A., EI-Shahed, M., 2012. A study of nonlinear Langevin
equation involving two fractional orders in different intervals. Nonlinear Anal.
Real. World. Appl. 13, 599-606.

Ahmadova, A., Mahmudov, N.I., 2020. Existence and uniqueness results for a class of
fractional stochastic neutral differential equations. Chaos Soliton Fract. 139.
https://doi.org/10.1016/j.chaos.2020.110253..

Ahmadova, A., Mahmudov, N.I,, 2021. Langevin differential equations with general
fractional orders and their applications to electric circuit theory. J. Comput.
Appl. Math. 388,. https://doi.org/10.1016/j.cam.2020.113299 113299.

Ahmadova, A, Mahmudov, N.I, 2021. Ulam-Hyers stability of Caputo type
stochastic neutral differential equations Statist. Prob. Lett. 108949. https://
doi.org/10.1016/j.spl.2020.108949.

Ahmadova, A., Huseynov, LT., Fernandez, A, Mahmudov, N.I, 2021. Trivariate
Mittag-Leffler functions used to solve multi-order systems of fractional
differential equations. Commun. Nonlinear Sci. Numer. Simul. 97C, 105735.


http://refhub.elsevier.com/S1018-3647(21)00258-5/h0005
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0005
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0005
https://doi.org/10.1016/j.cam.2020.113299
https://doi.org/10.1016/j.spl.2020.108949
https://doi.org/10.1016/j.spl.2020.108949
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0025
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0025
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0025

LT. Huseynov and N.I. Mahmudov

Baghani, 0., 2017. On fractional Langevin equation involving two fractional orders.
Commun. Nonliear Sci. Numer. Simul. 42, 675-681. https://doi.org/10.1016/j.
cnsns.2016.05.023.

Baghani, H., Nieto, JJ., 2019. On fractional Langevin equation involving two
fractional orders in different intervals. Nonlinear Anal.- Model. 24 (6), 884-897.

Baghani, H., Sun, H., Nieto, ].J., 2021. New existence and stability results for
fractional Langevin equation with three-point boundary conditions. Comput.
Appl. Math. 40, 48.

Bazhlekova, E., 2013. Properties of the fundamental and the impulse-response
solutions of multi-term fractional differential equations. Complex Analysis and
Applications’13 (Proc. Intern. Conf. Sofia), Bulg. Acad. Sci. Sofia. 55-64..

Camargo, F.R.,, Chiacchio, A.O., Charnet, R., Oliverira, E.C., 2009. Solution of the
fractional Langevin equation and the Mittag-Leffler functions. . Math. Phys. 50,
063507.

Cong, N.D., Doan, T.S., Tuan, H.T., 2018. Asymptotic Stability of Linear Fractional
Systems with Constant Coefficients and Small Time-Dependent Perturbations.
Vietnam J. Math. 46, 665-680. https://doi.org/10.1007/s10013-018-0272-4.

Darzi, R., Agheli, B., Nieto, JJ., 2020. Langevin equation involving three fractional
orders. J. Stat. Phys. 178, 986-995.

Diethelm, K., Luchko, Y., 2004. Numerical solution of linear multi-term initial value
problems of fractional order. J. Comput. Anal. Appl. 6, 243-263.

Edwards, ].T., Ford, N.J., Simpson, A.C., 2002. The Numerical solution of linear multi-
term fractional differential equations: systems of equations. Manch. Cent.
Numeric. Comput. Math. 148, 401-418.

Fazli, H., Sun, H., Nieto, ].J., 2020. Fractional Langevin equation involving two
fractional orders: existence and uniqueness. Mathematics 743, 1-10. https://
doi.org/10.3390/math8050743.

Fernandez, A., Kiirt, C., Ozarslan, M.A,, 2020. A naturally emerging bivariate Mittag-
Leffler function and associated fractional-calculus operators. Comp. Appl. Math.
39. https://doi.org/10.1007/s40314-020-01224-5.

Fox, C., 1928. The asymptotic expansion of generalized hypergeometric functions.
Proc. London Math. Soc. 27, 389-400.

Gomez-Aguilar, J.F., Rosales-Garcia, ].J., Bernal-Alvarado, ]J., Cordova-Fraga, T.,
Guzman-Cabrera, R., 2012. Fractional mechanical oscillators. Revis. Mexic.
Fisica. 58, 348-352.

Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V., 2014. Mittag-Leffler Functions,
Related Topics and Applications. Springer-Verlag, Berlin.

Hong, D., Kim, Y., Wang, J., 2006. A new approach for the analysis solution of
dynamic systems containing fractional derivative. ]J. Mech. Sci. Technol. 20,
658-667. https://doi.org/10.1007/BF02915983.

Huseynov, I.T., Mahmudov, N.I,, 2020. Delayed analogue of three-parameter Mittag-
Leffler functions and their applications to Caputo type fractional time-delay
differential equations. Math. Meth. Appl. Sci. 1-25. https://doi.org/10.1002/
mma.6761.

Huseynov, L.T., Ahmadova, A., Fernandez, A., Mahmudov, N.I., 2020. Explicit analytic
solutions of incommensurate fractional differential equation systems. Appl.
Math. Comp. 125590. https://doi.org/10.1016/j.amc.2020.125590.

Huseynov, LT., Ahmadova, A., Mahmudov, N.I, 2021. Fractional Leibniz integral
rules for Riemann-Liouville and Caputo fractional derivatives and their
applications. arXiv:2012.11360..

Khusainov, D.Ya., Ivanov, A.F., Shuklin, G.V., 2005. On a representation of solutions
of linear delay systems. Dif. Eq. 41, 1054-1058.

Kilbas, A.A., Srivastava, H.M., Trujillo, ].J., 2006. Theory and Applications of
Fractional Differential Equations. Elsevier, Amsterdam.

Kobelev, V., Romanov, E., 2000. Fractional Langevin equation to describe anomalous
diffusion. Prog. Theor. Phys. 139, 470-476.

Li, M., Wang, J.R, 2017. Finite time stability of fractional delay differential
equations. Appl. Math. Lett. 64, 170-176.

18

Journal of King Saud University — Science 33 (2021) 101596

Li, M., Wang, J.R., 2018. Exploring delayed Mittag-Leffler type matrix functions to
study finite time stability of fractional delay differential equations. Appl. Math.
Comput. 324, 254-265.

Lim, S.C,, Li, M., Teo, L.P., 2008. Langevin equation with two fractional orders. Phys.
Lett. A 372, 6309-6320. https://doi.org/10.1016/j.physleta.2008.08.045.

Liu, L., Duan, J., 2015. A detailed analysis for the fundamental solution of fractional
vibration equation. Open Math. 13, 826-838. https://doi.org/10.1515/math-
2015-0077.

Luchko, Y.F., Gorenflo, R, 1999. An operational method for solving fractional
differential equations with Caputo derivatives. Acta Math. Vietnam 24, 207-
233.

Mahmudov, N.I, 2018. Delayed perturbation of Mittag-Leffler functions and their
applications to fractional linear delay differential equations. Math. Meth. Appl.
Sci. 1-9. https://doi.org/10.1002/mma.5446.

Mahmudov, N.I,, 2020. Fractional Langevin type delay equations with two fractional
derivatives. Appl. Math. Lett. 103,. https://doi.org/10.1016/j.am1.2020.106215
106215.

Mahmudov, N.I., Al-Khateeb, A., 2020. Existence and stability results on Hadamard
type fractional time-delay semilinear differential equations. Mathematics 8,
1242.

Mahmudov, N.I,, Huseynov, L.T., Aliyev, N.A., Aliyev, F.A., 2020. Analytical approach
to a class of Bagley-Torvik equations TWMS. J. Pure Appl. Math. 11, 238-258.

Mainardi, F., Pironi, P., 1996. The fractional Langevin equation: Brownian motion
revisited. Extr. Math. 10, 140-154.

Mittag-Leffler, G., 1903. Sur la nouvelle fonction E_o(x))C.R. Acad. Sci. Paris 137,
554-558.

Ozarslan, M.A., Fernandez, A., 2021. On the fractional calculus of multivariate
Mittag-Leffler functions. Int. J. Appl. Comput. Math. https://doi.org/10.1080/
00207160.2021.1906869..

Peng, Sh., Wang, J., 2015. Existence and Ulam-Hyers Stability of ODEs Involving Two
Caputo Fractional Derivatives. Elect. J. Qual. Theo. Dif. Eq. 52, 1-16.

Podlubny, I., 1999. Fractional Differential Equations. Academic Press, New York.

Prabhakar, T.R., 1971. A singular integral equation with a generalized Mittag-Leffler
function in the kernel. Yokohama. Math. J. 19, 7-15.

Saxena, RK., Kalla, S.L., Saxena, R, 2011. Multivariate analogue of generalised
Mittag-Leffler function. Integr. Transf. Spec. F. 22, 533-548.

Wang, Z,, Hu, H., 2010. Stability of a linear oscillator with damping force of the
fractional-order derivative. Sci. China Phys. Mech. Astron. 53, 345-352. https://
doi.org/10.1007/s11433-009-0291-y.

Wang, G., Ren, X, 2020. Radial symmetry of standing waves for nonlinear fractional
Laplacian Hardy-Schrédinger systems. Appl. Math. Lett. 110,. https://doi.org/
10.1016/j.am1.2020.106560 106560.

Wang, J., Zhang, Y., 2014. Ulam-Hyers-Mittag-Leffler stability of fractional-order
delay differential equations. Optimization 63, 1181-1190.

Wang, G., Qin, J., Zhang, L., Baleanu, D., 2020. Explicit iteration to a nonlinear
fractional Langevin equation with non-separated integro-differential strip-
multi-point boundary conditions. Chaos Solitons Fract. 131,. https://doi.org/
10.1016/j.chaos.2019.109476 109476.

Whittaker, E.T., Watson, G.N., 1927. A course of modern analysis.
University Press, Cambridge.

William, T., 1983. Theory of vibration with applications. George Allen and Unwin,
London.

Wright, E.M., 1935. The asymptotic expansion of the generalized hypergeometric
function. J. London Math. Soc. 10, 286-293.

Zhang, L., Hou, W., 2020. Standing waves of nonlinear fractional p-Laplacian
Schrédinger equation involving logarithmic nonlinearity. Appl. Math. Lett. 102,.
https://doi.org/10.1016/j.am1.2019.106149 106149.

Cambridge


https://doi.org/10.1016/j.cnsns.2016.05.023
https://doi.org/10.1016/j.cnsns.2016.05.023
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0035
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0035
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0040
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0040
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0040
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0050
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0050
https://doi.org/10.1007/s10013-018-0272-4
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0060
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0060
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0065
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0065
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0070
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0070
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0070
https://doi.org/10.3390/math8050743
https://doi.org/10.3390/math8050743
https://doi.org/10.1007/s40314-020-01224-5
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0085
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0085
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0090
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0090
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0090
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0095
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0095
https://doi.org/10.1007/BF02915983
https://doi.org/10.1002/mma.6761
https://doi.org/10.1002/mma.6761
https://doi.org/10.1016/j.amc.2020.125590
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0120
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0120
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0125
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0125
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0130
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0130
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0135
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0135
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0140
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0140
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0140
https://doi.org/10.1016/j.physleta.2008.08.045
https://doi.org/10.1515/math-2015-0077
https://doi.org/10.1515/math-2015-0077
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0155
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0155
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0155
https://doi.org/10.1002/mma.5446
https://doi.org/10.1016/j.aml.2020.106215
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0170
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0170
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0170
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0175
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0175
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0180
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0180
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0185
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0185
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0195
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0195
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0200
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0205
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0205
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0210
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0210
https://doi.org/10.1007/s11433-009-0291-y
https://doi.org/10.1007/s11433-009-0291-y
https://doi.org/10.1016/j.aml.2020.106560
https://doi.org/10.1016/j.aml.2020.106560
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0225
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0225
https://doi.org/10.1016/j.chaos.2019.109476
https://doi.org/10.1016/j.chaos.2019.109476
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0235
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0235
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0240
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0240
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0245
http://refhub.elsevier.com/S1018-3647(21)00258-5/h0245
https://doi.org/10.1016/j.aml.2019.106149

	A class of Langevin time-delay differential equations with general fractional orders and their applications to vibration theory
	1 Introduction
	2 Preliminaries
	3 Exact analytical solution of linear homogeneous FLE with a constant delay: delayed M-L type function approach
	4 Integral representation of solution to linear inhomogeneous Langevin type DDEs with general fractional orders
	4.1 Special case: the solutions of delayed FLEs

	5 Existence and uniqueness problem for nonlinear time-delay FLE
	6 Ulam-Hyers stability analysis on FLE with a constant delay
	7 Application to the vibration theory: spring-mass-damper systems
	7.1 A new representation of the solution of fractional vibration differential equation (FVE) with a constant delay

	8 An example
	9 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	References


