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Abstract The propagation of nonlinear ion-acoustic waves in magnetized plasma consisting of

cold ions, hot electrons and positrons has been studied. It is demonstrated that in the case of weak

nonlinearity the ion-acoustic waves are described by the Korteweg–de Vries (K-dV) equation. The

influence of finite positron density and temperature and external magnetic field on the properties of

soliton-like waves is discussed.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Study of linear as well as nonlinear wave phenomena in elec-

tron–positron (e–p) plasmas (Tsytovich and Wharton, 1978;
Berman et al., 1985; Tajima and Taniuti, 1990; Shukla and
Stenflo, 1993) attracted much attention during the last decade

due to their frequent occurrence in active galactic nuclei
(Miller and Witta, 1987), pulsar magnetosphere (Goldreich
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and Julian, 1969; Michel, 1982) and in solar atmosphere
(Tandberg-Hansen and Emshie, 1988). The electron–positron

(e–p) plasmas are also believed to play an important role in
understanding the early universe (Rees, 1983; Misner et al.,
1973). An important feature of e–p plasmas is that both
charged species are highly magnetized and are useful for the

investigation of plasma confinement. Electron–positron plas-
mas have not yet been created in the laboratory but large num-
bers of confined positrons have also opened up a new area of

positron annihilation research (Greaves et al., 1994). It is also
suggested that magnetospheres of neutron stars contain e–p
plasmas produced in cusp regions of stars due to intense elec-

tromagnetic radiations, where protons or other ions may be
present and three-component electron–position–ion (e–p–i)
plasmas can exist in such environments. Moreover, when pos-

itrons are used to probe particle transport in tokamaks, due to
their sufficient lifetime, two-component electron–ion (e–i)
plasma behaves as three-component e–p–i plasma (Surko
and Murphy, 1990). In the presence of ions in e–p plasmas,

ion-acoustic waves can exist. However, the properties of wave
motion are very much different from those in e–i plasmas
(Berezhiani et al., 1994).
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Most of the astrophysical plasma also contains ions in addi-
tion to electrons and positrons; therefore it is important to
study linear and nonlinear wave propagation in such plasmas

and several authors have studied linear and nonlinear wave
propagation in electron–positron–ion plasmas using different
models (Nejoh, 1997; Kakati and Goswami, 2000; Gedalin

et al., 1985; Jammalamadaka et al., 1996; Haque et al., 2002;
Salahuddin et al., 2002).

Mahmood et al. (2003) have studied large amplitude ion-

acoustic wave’s propagation in magnetized e–p–i plasma
using the Sagdeev potential approach. However, it must be
noticed that this method cannot yield evolution equation
for plasma system. On the other hand, the study of low-fre-

quency ion-acoustic wave propagation in plasma plays a key
role through the solution of Korteweg–de Vries equation.
Furthermore, the effect of the magnitude of external mag-

netic field on the amplitude and width of solitary waves
may not be investigated.

In this paper, the properties of the nonlinear waves propa-

gation of the small but finite-amplitude ion-acoustic solitary
waves in a magnetized e–p–i plasma are studied theoretically
and numerically by employing reductive perturbation method.

The manuscript is organized in the following fashion: In
Section 2, we present the relevant equations for nonlinear
ion-acoustic waves in magnetized e–p–i plasma and using
reductive perturbation method, the K-dV equation for de-

scribe this nonlinear waves is obtained. Finally, some conclu-
sion and discussions are given in Section 3.

2. Basic equations and K-dV equation

Let us consider an ideal homogeneous magnetized three-com-
ponent (e–p–i) plasma. The external constant magnetic filed is

directed along the z-axis, i.e. ~B0 ¼ B0ẑ. Since the electrons and
positrons are motive they are assumed to obey the Boltzmann
distribution, while the ions are treated as a cold fluid. Further-

more, the phase velocity of ion-acoustic waves is assumed to be
much larger than the characteristic ion thermal velocity but
much less than the electron (positron) thermal velocities, i.e.

vti << xci=k << vte; vtp so that vth;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Tj=mj

p
; j ¼ i; e; p.

Under these conditions the nonlinear dynamics of the low-
frequency ion-acoustic waves in the three-component plasma
are governed by the following equations:

@n

@t
þr � ðn~uÞ ¼ 0; ð1Þ

@~u

@t
þ ð~u � rÞ~u ¼ �r/þ �xð~u� ẑÞ; ð2Þ

r2/ ¼ ne � np � n; ð3Þ
ne ¼ a expð/Þ; ð4Þ
np ¼ b expð�d/Þ: ð5Þ

We have assumed that electrons and positrons are hot and
because me << mi, therefore ion Larmor radius is much larger

than the Larmor radius of electrons and positrons. Therefore
electrons and positrons are assumed to move almost parallel
to external magnetic field and follow the Boltzmann distribu-

tions in magnetized electron–positron–ion plasma. Quantities
a ¼ ne:0=n0, b ¼ np;0=n0, d ¼ Te=Tp and �x ¼ xci=xpi denote
plasma fractional parameters, namely, electron to ion equilib-

rium density ratio, positron to ion equilibrium density ratio,
electron to positron temperature ratio and the normalized
cyclotron frequency, respectively. Furthermore, ne;0ðnp;0; n0Þ
represents the unperturbed electron (positron, ion) densities.
The quasineutrality condition at equilibrium situation requires

that ne;0 ¼ np;0 þ ni;0.
All parameters are normalized to relevant parameters in

Eqs. (1)–(5). n is the ion number density normalized to n0; u

is the ion fluid velocity normalized to the ion-acoustic speed
Cs ¼ ðTe=miÞ1=2 : / is the electrostatic potential normalized
to ðTe=eÞ. The time and space variables are normalized to

ion plasma period xpi ¼ ð4pe2n0=miÞ1=2 and the Debye length
kD ¼ ðTe=4pe2n0Þ1=2, respectively.

To obtain the relevant nonlinear evolution equation for
small but finite-amplitude ion-acoustic solitary waves in mag-

netized e–p–i plasma, we define the independent variables in
the stretched coordinates as (Washimi and Tanuti, 1966)

n ¼ e1=2ðkxxþ kyyþ kzz� v0tÞ
s ¼ e3=2t;

ð6Þ

where e is a small parameter measuring the weakness of the
dispersion and v0 is the wave phase velocity normalized to
Cs; kx, ky and kz are the directional cosines of the wave vector

k along the x-, y-, and z-axes, respectively, so that
k2x þ k2y þ k2z ¼ 1. We can expand the perturbed quantities n,
uz, and / about their equilibrium values in power of e by fol-

lowing Ref. (Washimi and Tanuti, 1966). To obtain the x- and
y-components of polarization drifts, we can expand the per-
turbed quantities ux,y by following a standard technique where

the terms of e3=2 are included. Thus, the expansion of quantities
is as

n ¼ 1þ enð1Þ þ e2nð2Þ þ . . . ;

ux;y ¼ 0þ e3=2uð1Þx;y þ e2uð2Þx;y þ . . . ;

uz ¼ 0þ euð1Þz þ e2uð2Þz þ . . . ;

/ ¼ 0þ e/ð1Þ þ e2/ð2Þ þ . . . :

ð7Þ

It should be noted that Eqs. (6) and (7) obtain from the

expansion of the linear dispersion relation for k << 1 (see
Ref. Washimi and Tanuti, 1966; Infeld and Rowlands, 2000
for more details).

By using (6) and (7) in Eqs. (1)–(5), one can obtain from the
first-order continuity equation z-component of the momentum
equation and Poisson’s equation which, after simplification,
yields

nð1Þ ¼ kz
v0

uð1Þz ¼
k2z
v20

/ð1Þ;

v0 ¼
kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bþ bd
p :

ð8Þ

We can write the first-order x- and y-components of the
momentum equation as

uð1Þy ¼
kx
x
@/ð1Þ

@n
;

uð1Þx ¼
�ky
x

@/ð1Þ

@n
:

ð9Þ

These, respectively, represent the x- and y-components of

the electric-field drift. These equations are also satisfied by
the second-order continuity equation. Again, using (6) and
(7) in (2), and eliminating uð1Þx;y, we obtain the next higher-order

x- and y-components of the momentum equation as



Figure 1 The first-order solitary excitation of the potential – Eq.

(13) – for arbitrary value of d ¼ 1, kz ¼ 0:7, x ¼ 0:3, U ¼ 0:9 and

different values of b.

Figure 2 The first-order solitary excitation of the potential – Eq.

(13) – for arbitrary value of b ¼ 0:2, kz ¼ 0:7, x ¼ 0:3, U ¼ 0:9

and different values of d.
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uð2Þy ¼
kyv0
x2

@2/ð1Þ

@n2
;

uð2Þx ¼
kxv0
x2

@2/ð1Þ

@n2
:

ð10Þ

Similarly, one can from the next higher-order continuity
equation, z-component of the momentum equation and Pois-
son’s equation, using (8) and (10) obtain

@/ð1Þ

@s
þ A/ð1Þ

@/ð1Þ

@n
þ B

@3/ð1Þ

@n3
¼ 0: ð11Þ

This is the K-dV equation with the coefficients A and B gi-
ven by

A ¼ 3

2
kzS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bþ bd

p
;

B ¼ 1

2

kz

ð1þ bþ bdÞ3=2
1þ 1� k2z

x2

� �
;

S ¼ 1� ð1þ b� bd2Þ
3ð1þ bþ bdÞ2

:

ð12Þ

(we should note that the nonlinearity of coefficient A is inde-
pendent of external magnetic field). The steady-state solution
of this K-dV equation is obtained by transforming the inde-
pendent variable v ¼ n�Us where U is a constant velocity

normalized to Cs, and by imposing the appropriate boundary
conditions, viz /! 0; d/

ð1Þ

dv ! 0; d
2/ð1Þ

dv2 ! 0 at v! �1. Thus,
one can express the steady-state solution of this K-dV equation

as

/ð1Þ ¼ /ð1Þm sec h2
v
K

� �
; ð13Þ

where the amplitude /ð1Þm and the width K are given by

/ð1Þm ¼
3U

A
;

K ¼
ffiffiffiffiffiffi
4B

U

r
:

ð14Þ

It is obvious that to choose kz ¼ cos h, with h the angle be-

tween the directions of the wave propagation vector k and the
external magnetic field B0, as h! 90� the amplitude of the sol-
iton blows up while its width goes to zero, therefore the evolu-

tion equation is not valid at strictly perpendicular propagation.
For parallel propagation results are almost similar to unmag-
netized e–p–i plasma (Tiwari et al., 2007).
Figure 3 The first-order solitary excitation of the potential – Eq.

(13) – for arbitrary value of b ¼ 0:5, kz ¼ 0:7, d ¼ 1, U ¼ 0:9 and

different values of x.
3. Numerical solutions and conclusions

To infer the properties of ion-acoustic solitary waves in

magnetized e–p–i plasma, we have numerically solved Eq.
(13) for the electrostatic potential. The numerical results
are displayed in Figs. 1–3. Fig. 1 provides the form of the

first–order solitary excitation – Eq. (13) – for arbitrary value
of d ¼ 1, kz ¼ 0:7, x ¼ 0:3, U ¼ 0:9 and different values of
b. It is found that the amplitude and the width of the
ion-acoustic solitary waves decrease with increase in posi-

trons density. Fig. 2 shows how the width and the amplitude
of these solitary waves change with the temperatures ratio d.
It is clear that increase in temperatures ratio decreases the

amplitude and the width ion- acoustic solitary waves in
magnetized e–p–i plasma.
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It is seen that the magnitude of the external magnetic field
has no effect on the amplitude of the solitary waves. However,
it does have an effect on the width of these solitary waves. It is

shown that, as we increase the magnitude of the magnetic field,
the width of these solitary waves decreases, i.e. the external
magnetic field makes the solitary structures more spiky (see

Fig. 3).
In this paper propagation of the ion-acoustic waves in mag-

netized e–p–i plasma is investigated. Using reductive perturba-

tion analysis, from basic equations a K-dV equation is
obtained, however, not valid at strictly perpendicular
propagation.

We think that these results will be helpful in understanding

the nonlinear propagation of electrostatic perturbation in mag-
netized e–p–i plasmas which are believed to exist in the early
universe, active galactic nuclei and the pulsar magnetospheres.
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