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The perturbed Boussinesq equation and the KdV-Caudrey-Dodd-Gibbon equation describe the character-
istics of longitudinal waves in bars, long water waves, plasma waves, quantum mechanics, acoustic
waves, nonlinear optics etc. Thus, the mentioned equations are clearly important in their own right. In
this article, the modified auxiliary equation technique has been put in use in order to ascertain exact soli-
ton solutions to the stated nonlinear evolution equations (NLEEs). We determine adequate soliton solu-
tions, explicitly, bell-shaped soliton, kink-soliton, periodic-wave, singular-kink, compacton-soliton and
other types. These solutions might play an important role in uncovering the underlying context of the
physical incidents. It is noteworthy that the executed method is skilled and effective to examine
NLEEs, compatible with computer algebra and provides wide-ranging wave solutions. Thus, the study
of exact solutions to other NLEEs through the modified auxiliary equation method is prospective and
deserves further research.

© 2020 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the current era, the nonlinear evolution equations (NLEEs)
have been continuously traced to many innovative applications
and remarkable progress has been made in the contribution of
the exact solutions for nonlinear partial differential equations,
which have been a basic concern for both mathematicians and
physicists (Yang et al., 2019, Ilie et al., 2018). Thus, the studies of
the soliton solutions (Drazin and Johnson, 1989) for NLEEs have
ample importance in searching the nonlinear natural events
(Akbar et al., 2019). The NLEEs have significant applications in
many disciplines, such as, plasma physics, mathematical physics,
optical fiber, mathematical chemistry, water wave mechanics, con-
trol theory, solid-state physics, meteorology, nonlinear optics, elec-
tromagnetic theory, mechanics, chemical kinematics, system
identification, biogenetics, etc. Due to the recurrent appearance
in various applications in physics, biology, engineering, signal pro-
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cessing, control theory, finance and dynamics, the exact solutions
to NLPDEs have attracted the attention of many studies. The exact
solutions of NLPDEs play an important role in the study of nonlin-
ear physical phenomena (Liu et al., 2019).

The studies of searching exact solutions to nonlinear equations
if exists, and the numerical solutions are very important for under-
standing the nonlinear tangible events. There are many investiga-
tions that provide explicit and numerical solutions for the
differential equations to be adopted. Researchers have developed
a number of methods in their various studies (Huseyin and
Zehra, 2018, Zehra and Turgut, 2015). As for instance, the first inte-
gral method (Zhang et al., 2019), the Hirota’s bilinear transforma-
tion method (Wang, 2009), the Backlund transform method
(Redkina et al., 2019), the exp-function method (Naher et al,,
2011), the sine-Gordon equation expansion method (Korkmaz
et al., 2020), the Jacobi elliptic function expansion method
(Alquran and Jarrah, 2019; Kumar et al., 2019), the Kudryashov
method (Alquran et al., 2020; Ali et al., 2019; Alquran et al,,
2019a,b), the unified method (Alquran et al., 2019a,b), the tanh-
function method (Jaradat et al., 2018; Alquran and Jaradat, 2019;

Irwaq et al., 2018), the (G'/G) -expansion method (Alquran and
Yassin, 2018; Inan, 2019), the modified extended tanh-function
method (Lv et al., 2018), the generalized and improved (G/G)-
expansion method (Naher et al., 2013), the variation of parameters
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method (Mohyud-Din et al.,, 2015), the improved exp(—q(¢))-
expansion method (Chen et al., 2018), the modified simple equa-
tion method (Roshid and Roshid, 2018), the Galerkin method
(Abbaszadeh and Dehghan, 2019a, b), the collocation technique
(Dehghan and Shokri, 2007), the meshless base numerical tech-
nique (Dehghan and Salehi, 2012), the local weak form meshless
technique (Abbaszadeh and Dehghan, 2019a, b), the homotopy
analysis method (Dehghan et al., 2010; Altaie et al., 2019), the dou-
ble auxiliary equation method (Moussa et al., 2019), the exponen-
tial rational function method (Bekir and Kaplan, 2016), the Riccati
equation mapping method (Javeed et al., 2019) etc.

The study of exact solutions of NLEEs has become an outstand-
ing interest and deserves further investigation by mathematicians
and physicists. The perturbed Boussinesq equation (BE) and the
KdV-Caudrey-Dodd-Gibbon (KdV-CDG) equation arise in long
water waves, elasticity for longitudinal waves in bars, plasma
waves, quantum mechanics, acoustic wave, nonlinear optics etc.
The modified auxiliary equation technique is compatible, effective
and provides ample exact soliton solutions in a unique approach. In
this article, our objective is to establish broad-ranging, typical,
applicable and comprehensive solutions to the formerly declared
equations through putting in use of the modified auxiliary equa-
tion method.

2. The modified auxiliary equation method
Let us consider the general nonlinear evolution equation

G(v, Vr, Ux, Uy, Uz, Vit Ui +) =0 (2.1)

where G is a nonlinear function of ¢’s and v = v(x,y,z,t) is the
wave function that we have to calculated.
Step 1: We consider the traveling wave variable of the form

v(x,y,z,t) =V(n),n =Ix + my + nz— wt. (2.2)

The wave transformation (2.2) modifies the nonlinear partial
differential Eq. (2.1) into the subsequent ordinary differential
equation (ODE):

Q(v, VvV ) -0 (2.3)

wherein prime stands for the derivative with respect to #.
Step 2: In accordance with the modified auxiliary equation
method, the exact soliton solution of Eq. (2.3) is assumed to be

V() = XN:Ajaig(ﬂ) (2.4)
=0

where A, A, ---,Ay are constants to be calculated, such that Ay 0
and g(n) is the solution of the nonlinear equation

g = ﬁ {ba " 4 ¢ + das™}. (2.5)

Step 3: In order to find the positive integer N appearing in Eq.
(2.4), the balancing principle is to be used.

Step 4: Setting the solution (2.4) including (2.5) into equation
(2.3) gives a polynomial of @¢®, (j=0,1,2,--.). Assigning each
coefficient of the ensuing polynomial to zero yields a system of
over-determined algebraic equations. Unraveling this system of
equations, the values of A;, I, m, n, w etc. can be determined.

Substituting the solutions of g(x) obtained from (2.5) and the
values of the constants A;, b, c and d gained in step 4 into the solu-
tion (2.4) gives abundant explicit soliton solutions to the general
nonlinear evolution Eq. (2.1).

3. Formulation of the soliton solutions

In this section, we establish the typical, pertinent and wide-
ranging explicit soliton solutions to the perturbed BE and the
KdV-CDG equation by means of the introduced method. We first
establish the solutions to the perturbed Boussinesq equation.

3.1. The perturbed Boussinesq equation

Mathematical models of tangible events related to solitons
involve nonlinearity and dispersion (Wazwaz, 2009). In this sub-
section, we examine explicit soliton solutions to the strongly per-
turbed Boussinesq equation which is given by (Ebadi et al., 2012).

Qi — Kl + P(0*) o, + T = Bl + Prer (3.1.1)

where j represents the coefficient of dissipation and p is the higher
order stabilization term. Solitons are localized waves that propagate
without change of their shape and velocity properties and are stable
against mutual collisions (Dehghan et al., 2010), i. e. a soliton is a
solitary wave that behaves like a particle or elastic. A soliton moves
from the asymptotic state at ¢ — —oo to the other asymptotic state
at ¢ — oo is localized in ¢&. Since we are searching for solitary waves
in this article, therefore, the used boundary conditions are u(¢) — 0,
W& —0,u"® -0, - etc. as ¢ — +oco. The Boussinesq equation is
one of the celebrated nonlinear evolution equations which is an
effective shallow water wave model which also serves as a relevant
model in many fields of physics. The Boussinesq-type equations are
also works as models in many branches of science and engineering.
These equations are often used in coastal engineering.
Now, we introduce the travelling wave variable

q(x,t) =u(n),n =x—vt. (3.12)

The wave variable (3.1.2) modifies perturbed Boussinesq equa-

tion into the subsequent ODE

Z/ZUH _ kzu// +p(u2)// + rulm — Bu/r + pu//// (313)

where it is assume that n = 1. Integrating (3.1.3) twice and consid-
ering the integration constants to zero, since we are searching soli-
ton solutions, the equation (3.1.3) turns into
(V* =k = Pu+pu® + (r— p)u’ = 0. (3.1.4)

The balancing principle between the highest order derivative
term v’ with the highest power nonlinear term u?, gives N = 2.

Therefore, for N = 2, from (2.4) we obtain the solution of equa-
tion (3.1.4) of the form

u(n) = Ao + A a8 + A, a8 (3.1.5)

where g(#) is the solution of the nonlinear Eq. (2.5).
Inserting the solution (3.1.5) and using (2.5) into the equation
(3.1.4), with the help of Maple we obtain
a*sm {pA% +6Ax(r— p)dz} +a%m {ZpAqu +2(r—p)Ard® +10(r - p)Azccl}
+a%m {Az (vz K- /;) + DA% + 2pAoAs +3(r — p)Arcd +4(r — p)Arc? +8(r— p)Azbd}
+ { (vz - ﬁ)/h +2pAoA; + (r— p)Aic® +2(r— p)Ar1bd +6(r — p)Azbc}ag(”)
+{(zﬂ —12 75)/\0 + DA%+ (r— p)Arbc+2(r — p)A,b*} =0.

Setting the coefficients of @ (j = 0,1,2,3,4) to zero leads to
the following algebraic system:

PA2 + 6A,(r — p)d® =0

2pA1A; + 2(r — p)Ard® +10(r — p)Ayed = 0
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A (1/2 o /3) +PA? + 2pAohy +3(r — p)Arcd
+4(r — p)Ayc?* 4+ 8(r — p)Abd = 0

(vz —K - ﬂ>A1 + 2pAoA;1 + (r — p)Aic® 4+ 2(r — p)Abd
+6(r— p)Abc=0
(u2 - ﬁ)Ao +pA% + (r — p)Aibc +2(r — p)A,b* =0

Solving the above algebraic equations with the aid of Maple, we
obtain

v= i\/frcz +4rdb — 4pdb + § + pc + K,
~ 6db(r — p) ~ 6dc(r - p)

Ap =
0 p

>A1 =

7A2:7

and v = i\/rcz —4rdb +4pdb + f — pc2 + K, Ag = — 220

2
A, :_6cd(r—p)7A2:_6d (r—p).

p p
Now, we will make use the values of the constants scheduled in
(3.1.6) and (3.1.7) and the solutions g(n) of the Eq. (2.5) obtained
for different constraints on the involved parameters.
Case 1: When ¢? — 4bd < 0 and d # 0, using the values sched-
uled in (3.1.6), from solution (3.1.5) we attain

(3.1.7)

u(n) = 3(r2; P) (¢ _ 4bd) sec? (Wq) (3.1.8)
And
u(mn) = 3(r2; P) (c* — 4bd)csc? (V‘”’gcz ,1) , (3.1.9)

On the other hand, using the values scheduled in (3.1.7), from
solution (3.1.5) we attain

u(n) w{l + 3 tan? (7'4bd_cz;7>} (3.1.10)

2p 2
and
u(n) = W {1 +3cot? (“‘”";CZ;O } (3.1.11)

Case 2: When ¢? — 4bd > 0 and d # 0, by means of the values
assembled in (3.1.6), from solution (3.1.5) we obtain

P p)é;z —4bd) o2 <\/c2 . 4bd 11) 5112)
And
u(m) = —%:;_%d)csch2 <C2+4bdn>. (3.1.13)

Furthermore, by means of the values assembled in (3.1.7), from
solution (3.1.5) we obtain

2p 2
and
un) = (r‘p)(ch“”’d){l - 3coth’ (C;‘“’dn>} B.1.15)

Case 3: When ¢2 + 4b® < 0, d# 0 and d = —b, inserting the val-
ues of the parameters arranged in (3.1.6), the solution (3.1.5)
becomes

2 —(c2+4b°
u(n):%i%secz #n (3.1.16)

2 —(c2+4b°
u(n):3(r_p)2(;2+4b ) ese? ( : >;1 (3.1.17)

Again, inserting the values of the parameters arranged in (3.1.7),

the solution (3.1.5) becomes
- <c2 + 4b2)

(r— p)(c® +4b%)

u(n) = 2 1+ 3tan? 5 n
(3.1.18)
and
_ 2 2 —(c? +4b2
u(n) :%p—&-élb) 1 + 3cot? #”I
(3.1.19)

Case 4: When ¢2 +4b® >0, d # 0 and d = —b, making use of
values organized in (3.1.6), from (3.1.5) we achieve

2 / 2
u(n) = L= ”)(326; 126 ey (#n) (3.1.20)
and
2 2
ugp) = = p><32c; +126%) o (m ; 4b n>. 5121)

On the contrary, making use of values organized in (3.1.7), from
(3.1.5) we achieve the subsequent solution

u(n) :W{l — 3tanh’ <C22+4bz,7)} (3.1.22)
and
u(n) %;sz){l ~ 3coth’ (@O}. (3.1.23)

Case 5: When ¢? — 4b® < 0 and d = b, plugging in the parame-
ters set out in (3.1.6), into solution (3.1.5), we derive

3(r— p)(c® — 4b%) (- a)

u(n) = 2 sec? e (3.1.24)
and

2 —(c2 - 4b2
u(y) = 2P~ 4T o ( ) (3.1.25)

2p 2 g

Alternatively, plugging in the parameters set out in (3.1.7), into
solution (3.1.5), we derive
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2 —(c2 - 4b2
u(n) = % sec? #n (3.1.26)
and

2 —(c2 - 4b2
u(n) = (r=p)(c —4b ) ese? ( ) nl. (3.1.27)

2p 2

Case 6: When ¢2 — 4b*> > 0 and d = b, putting the values of the
unknown constants presented in (3.1.6), the solution (3.1.5) devel-
oped into

2 2
u(n) = - p)z(:‘; —4b )sech2< C2;4b 11) (3.1.28)
and
3(r—p)(c2—4b*) o[V —4b’
u(n) = — T csch 5 n|. (3.1.29)

Moreover, putting the values of the unknown constants pre-
sented in (3.1.7), the solution (3.1.5) developed into

2 2
u(n) = % {1 — 3tanh’® (%10 } (3.1.30)

2 p
u(m:(r—p)(zt?;—élb){] — 3 coth® <C22_4b;7>} (3.1.31)

Case 7: When c? =4bd, putting in use the values of the
unknown constants sorted out in (3.1.6) into solution (3.1.5), we
ascertain

(3.132)

On the other hand, if we put the values of the unknown con-
stants sorted out in (3.1.7) into (3.1.5), we ascertain the solution
identical to the solution (3.1.32). But, since there is no different
meaning in writing the same solution repeatedly, it has not been
written down.

Case 8: When bd < 0,c = 0and d # 0, placing the constants dis-
played in (3.1.6) into solution (3.1.5), we determine

u(y) = Gdb(p )sechz( /_”I) (3.133)
and
u(y) = 6db(p )csch2< /—77> (3.1.34)

As opposed to, placing the constants displayed in (3.1.7) into
solution (3.1.5), we determine the subsequent solutions

u(n) = — Zdb(p ){1 3tanh’(v'—dbn)} (3.1.35)
and
u(n) = ,w {1 - 3coth? (vV=dbn) }. (3.1.36)

Case 9: When c=0and b = —d,
By means of the values of the parameters gathered in (3.1.6),
from solution (3.1.5), we achieve the rational solution

24d°(r — p)el-2dn
n) = _2adir=pje 5 (3.1.37)
p{—1+e(-2dn}

Making use of values of the constants compiled in (3.1.7) into
solution Eq. (3.1.5), we achieve the rational solution

_A4d*(r — p){el-4dn 4 gel-2dn +1}
p{-1+el 2d'?>}

Case 10: When ¢ =d =K and b =0, by means of the values
amassed in (3.1.6), from Eq. (3.1.5), we accomplish the next expo-
nential solution

u(n) =

(3.138)

6K*(r — p)ekr
p(1— el(n)z

Also, by means of the values amassed in (3.1.7), from equation
(3.1.5), we accomplish the next exponential solution
K*(r—p) B 6K2(r — p)ekn

p p(1 — ekn)?

Case 11: When ¢ = b + d, for the values of the parameters accu-
mulated in (3.1.6) into solution equation (3.1.5), we find out the
ensuing solution
6d(r — p)(b — d)*e-dn

p{1 - det-dm)?

Similarly, for the values of the parameters accumulated in
(3.1.7) into solution equation (3.1.5), we find out the ensuing
solution

u(n) = — (3.1.39)

u(n) = — (3.1.40)

u(n) = — (3.1.41)

(r—p) (b2 +d + 4bd>
p
6d(r— p){1— be“’-‘”’?}{b +2d — 2bde-d
’ p{1 — detb-dny’

u(n) = -
_ dzew—d)n}

(3.1.42)

Case 12: When ¢ = —(b + d), for the estimations of the parame-
ters aggregated in (3.1.6) from solution (3.1.5), we discover the
resulting solution

6d(r — p)(b — d)*ett-dn
p{d —et-dn)?

Again, for the estimations of the parameters aggregated in
(3.1.7) from solution (3.1.5), we discover the resulting solution

(r—p) <b2 +d* + 4bd>

u(n) = - (3.1.43)

u(n) = - >
6d(r— p){b+ e<b*d)'1}{d2 _ be(b—d)q}
’ z (3.1.44)
p{d — et-dn}

Case 13: When b =0, embeding the values of the constants
from (3.1.6) into (3.1.5), we reach
6dc?(r — p)e!

u(m) = - p(1— def'l)z

(3.1.45)

Likewise, embeding the values of the constants from (3.1.7) into
(3.1.5), we reach

(r—p) [1+4de + d*e2n
p (1 — decn)?

u(y) = — (3.1.46)

Case 14: When d = ¢ = b#0, by means of (3.1.6), from solution
(3.1.5) we attain
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u(n) = (3.1.47)

2
_9r-p) (erf P) sec? (?M).

Equivalently, by means of (3.1.7
attain

2
un) = —31)(2"71;/)){1 + 3 tan? <§bn>}

Case 15: When b = c = 0, plugging the values from (3.1.6) into
(3.1.5), we extract

utn = -S=0)

), from solution (3.1.5) we

(3.1.48)

(3.1.49)

In the similar fashion, if we set the values of the unknown con-
stants sorted out in (3.1.7) into solution (3.1.5), we obtain the same
solution (3.1.49). But, since there is no different meaning in writing
the same solution recurrently, the solution has not been
documented.

Case 16: When d = b and ¢ = 0, putting the values presented in
(3.1.6) into equation (3.1.5), we accomplish
6b°(r — p)

p

u(y) = - sec? (bn)

(3.1.50)
Moreover, putting the values presented in (3.1.7) into equation
(3.1.5), we accomplish
2b%(r—p
b

u(y) = — ) [1+ 3tan?(by)]

(3.1.51)

It is inspected that, by means of the modified auxiliary equation
method, we accomplish ample closed form soliton solutions to the
perturbed BE which might be worthwhile to analyse the intricate
phenomena in science and engineering.

3.2. The KdV-Caudrey-Dodd-Gibbon equation

In this sub-section, we will extract the closed form soliton solu-
tions to the KdV-CDG equation which might be supportive to por-
trait the properties of the plasma waves, quantum mechanics,
acoustic wave and nonlinear optics through the modified auxiliary
equation method. The combined KdV-CDG equation (Biswas et al.,
2013)is

1 1
Up + K e + 2 o +p ﬁocu + Ol + Ugexx | =0

= X (3.2.1)

It is noted that the KdV-CDG equation plays a significant role in
nonlinear science, for example, in plasma physics, laser optics and
ocean dynamics (Tu et al., 2016). In this study, the used boundary
conditions are u(¢) — 0, u'(¢) — 0, u'© —0,--- etc. as ¢ — oo,
since we are looking for soliton solutions and solitons are localized
waves that propagate without change of their shape and velocity
properties and are stable against mutual collisions (Dehghan
et al., 2010).

Now we introduce the following wave transformation

u(x,t) =u(n),n =x— vt. (3.2.2)
Using the wave transformation (3.2.2) into equation (3.2.1), it
transforms into the following ODE

1 ’ 1 ’
—ou' +k (u” + gocu2> +p<ﬁ o + o’ + u””) =0 (3.2.3)
Since, we are searching for soliton solutions, integrating equa-
tion (3.2.3) and considering the constant of integration to zero,
we ascertain

1" 1 2 1 111
—vu+k(u" +-ou® ) +p —ozu +ouu” +u =0

: (3.2.4)

The homogeneous balance between the highest order linear
term v and the nonlinear term highest order 13, yields N = 2.

Therefore, the solution structure of equation (3.2.4) is identical
to the solution (3.1.5). Therefore, the shape of the solution has not
been rewritten in this section.

Inserting (3.1.5) along with (2.5) into solution (3.2.4) with the
help of symbolic computation software Maple, we get a polynomial
of a8, We equate the coefficients of this polynomial to zero and
this equalization generates a system of algebraic equations that
contains seven equations. For simplicity, we have been avoided
to show them. Solving this system of algebraic equations, we attain
subsequent set of solutions of the constants

— 8pc?db — 4kdb, o = 1,
= —30d*

v = 16pd’b* + pc* + kc?

= —30db,A; = —30cd, A, (3.2.5)

Now, we will look into the closed form soliton solution to the
KdV-CDG equation for the values of the constants assembled above
together with the values of a8,

Case 1: When ¢? —4bd < 0 and d # 0, inserting the values of
unknown constants arranged in (3.2.5) and from solution (3.1.5),
we achieve

u(n) = (1% - 30bd> sec? <4bgc2 ’1) (3.2.6)
And
ut = (15~ 308d e (—“b‘;‘cz n) 327)

Case 2: When c? —4bd > 0 and d # 0, putting the parameters
assorted in (3.2.5) into solution (3.1.5), we attain

u(n) = (% - 30bd> sech’ (;chzélbd 17) (3.2.8)
And
u(n) = (30bd - %) csch? (7%2241)(1 n) (3.2.9)

Case 3: When 2 +4b*> < 0, d # 0 and d = —b, by means of the
constants assembled in (3.2.5) into solution (3.1.5), we accomplish

_c2 _ 4b*
u(n) = (?c +30b ) sec? <C24b?1> (32.10)
And
_c2 _ 4b>
u(n) = (12—5c +30b2>csc2 <Cz4b’7> (32.11)

Case 4: When ¢2 + 4b* > 0,d # 0 and d = —b, setting the values
of the parameters organized in (3.2.5) into (3.1.5), we ascertain

2
u(n) = (15; 30b2> ech? <7V "'22* 4b n> (32.12)
And
/ 2
u(mn) = — <1SC 30b2>csch2 (Cz;‘lbn> (32.13)
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Case 5: When ¢ —4b* <0 and d = b, making use of (3.2.5),
from solution equation (3.1.5), we a reach to the following

solutions
. —(c2 —4b*
u(n) = (% - 30b2) sec? <2>’1 (32.14)
And
) —(c2 —4b’
u(n) = <% - 30b2)csc2 #’1 (32.15)

Case 6: When c? —4b*> > 0 and d = b, utilizing (3.2.5), from
solution equation (3.1.5), we acquire the under mentioned
solutions

2 2 — 4b*
u(m) = - (30b2 - %) sech’ <Cz4b 17) (32.16)
And
5 LN SeT™)
u(n) = (30b2 - %) csch (CT%TI) (32.17)

Case 7: When db < 0, c = 0 and d # 0, substituting (3.2.5) into
solution equation (3.1.5), we secure the afterward solutions

u(y) = —30dbsech? (\/—dbr]) (32.18)
And
u(y) = 30dbcsch? (\/—dbn) (32.19)

Case 8: When ¢ =0 and b = —d, using (3.2.5), from solution
(3.1.5), we derive the exponential solution

120de-2dn

u(n) = "1+ e4dn —De—2dn (32.20)

Case 9: When ¢ = d = K and b = 0, embedding (3.2.5) into solu-
tion (3.1.5), we determine the next exponential solution

~ 30K%eX

e (32.21)

u(n) =

Case 10: When ¢ = b + d, putting in use (3.2.5) into solution for-
mula (3.1.5), we find out succeeding exponential solution
30d(b — d)*eb-n

u(”l) = {l _ de(b*d)ﬂ}z

(32.22)

Case 11: When c = —(b +d), placing (3.2.5) into (3.1.5), we get
~30d(b — d)’e® 41

= 32.23
) = == goay? (3223)
Case 12: When b = 0, by means of (3.2.5) from (3.1.5), we derive
30c?de
umn) = - —— 32.24
)=~ geny (3224)

Case 13: When d = ¢ = b#0, using (3.2.5) in place of the unre-
vealed constants containing the solution (3.1.5), we gain

u(n) = _%bz sec? (?bn> (32.25)

Case 14: When d = b and ¢ = 0, applying (3.2.5) from solution
formula (3.1.5), we carry out the following solution

u(n) = —30b*sec?(bn) (32.26)

It is noteworthy that scores of closed form soliton solutions,
including Dbell-shaped soliton, kink-soliton, periodic-wave,
singular-kink, compacton-soliton and other types of soliton solu-
tions have been extracted to the KdV-CDG equation that may be
suitable for analysing the concerning nonlinear physical
phenomena.

4. Graphical representation of the solutions and discussion

In this section, we have depicted some 3D graphs of the
achieved solutions of the perturbed BE and the KdV-CDG equation
by using symbolic computation software Mathematica in order to
visualize the shape and to comprehend tangible events concerning
the phenomena.

4.1. The perturbed Boussinesq equation

Solution (3.1.8) represents singular periodic wave for the values
c=1,b=2,d=3,k=-2,p=-2,r=-183,8=-2, p=-2 of
the parameters and shown in Fig. 1. Periodic travelling waves play
an important role in different tangible incidents, including self-
reinforcing systems, impulsive systems, reaction-diffusion-advec
tion systems etc. The 3D figure is sketched within the interval
-2<x<3and0<t<2.

For the values c=3, b=-1,d=1,k=-5p=-2, r=-2,
B = -2, p=—1, the solution (3.1.12) represents bell-shape soliton
which is characterized by infinite tails or infinite wings and dis-
played in Fig. 2. The 3D figure is depicted within the interval
-1<xt<2.

Solution (3.1.13) represents singular bell-shape soliton for the
valuesb=1,¢=3,d=2,p=1,=1,r=2,p=1, k=1 of the
parameters and portrayed in Fig. 3. Singular solitons are another
sort of solitary waves that appear with a singularity, usually infi-
nite discontinuity (Wazwaz 2009). Singular solitons can be con-
nected to solitary waves when the center position of the solitary
wave is imaginary (Drazin and Johnson 1989). The 3D figure is
plotted within the interval -5 < x,t < 5.

Solution (3.1.38) is a spike like singular soliton forc = 0, b = —d,
d=-2,k=.5p=12,r=125, =-1, p=-2 and documented
in Fig. 4. Spike soliton can probably provide an explanation to
the formation of Rogue waves. The 3D figure is portrayed within
the limit -4 <x<4,0<t<3.

20

Fig. 1. 3D plot of solution (3.1.8)forc=1,b=2,d=3,k=-2,p=-2,r = -1.83,
p=-2and p = -2.
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Fig. 2. 3D plot of solution (3.1.12) forc=3,b=-1,d=1,k=-5p=-2,r= -2,
p=-2and p=-1.

Fig. 3. 3D plot of solution (3.1.13) for the values b=1,c=3,d=2,p=1, =1,
r=2,p=1and k=1.

Solution (3.1.39) is an anti-bell shape soliton for the values
c=0,b=0,k=2,d=1,r=4, f=1, p=3 of the parameters
and traced in Fig. 5. The 3D figure is delineated within the interval
—-8<x<8and0<t<2.

It is observed from the solutions of the perturbed BE that, the
solutions (3.1.8)—-(3.1.11), (3.1.16)—(3.1.19), (3.1.24)-(3.1.27),
(3.1.30), (3.1.31), (3.1.47), (3.1.48), (3.1.50) and (3.1.51) represent
the nature of singular periodic wave. The solutions (3.1.12),

] o 2

Fig. 4. 3D plot of solution (3.1.38) forc =0,b = —d,d = -2,k = .5,p=1.2,r = 1.25,
p=-1and p=-2.

Fig. 5. 3D plot of solution (3.1.39) for c=0, b=0, k=2, d=1, r=4, =1
and.p =3

(3.1.14), (3.1.28), (3.1.33) and (3.1.35) represent the bell-shape
soliton. The solutions (3.1.13), (3.1.15), (3.1.20)-(3.1.23), (3.1.29),
(3.1.32), (3.1.34), (3.1.36)—(3.1.38), (3.1.39)-(3.1.41), (3.1.43),
(3.1.45), (3.1.46), (3.1.49) and (3.1.50) represent the characteristic
of singular bell-shape soliton. The type of the solutions (3.1.42) and
(3.1.44) is singular kink soliton.

4.2. The KdV-Caudrey-Dodd-Gibbon equation

In this subsection, we have portrayed the graphical significance
of the results obtained from the KDV-CDG equation for different
values of parameters. The 3D graphs of the solutions are shown
given:

The solution (3.2.6) is singular periodic wave for the values
c=1,b=05,d=1,k=-2,p= -2 of the parameters and speci-
fied in Fig. 6. Periodic travelling waves play an important role in
self-reinforcing systems, reaction-diffusion-advection systems,
impulsive systems etc. The 3D figure is delineated within the inter-
val -10<x<10,0<t < 5.

Solution (32.22) is a compacton soliton for the values b = —1.7,
d=0,c=-1.1,k=0.2, p= -2 of the parameters and indicated in
Fig. 7. A compacton is a solitary wave with compact support in
which the nonlinear dispersion confines it to a finite core, therefore
the exponential wings vanish. The 3D figure is shown within the
limit -3 <x<3,0<t<2.

Solution (32.23) is a singular kink soliton for the values b = 0,
c=1,d=1,p=1, k=1 of the constants and presented in Fig. 8.
The 3D figure is outlined within the limit —10 < x,t < 10.

Solution (32.24) is a bell-shape soliton for the values c = —0.6,
b=0,d=-1.1,k = -0.5, p = —0.6 of the constants which has infi-
nite wings and plotted in Fig. 9. The 3D figure is outlined within the
limit -10<x<10and 0 <t < 3.

We assert that the obtained solutions might be supportive in
analyzing the waves of nonlinear optics, long water waves, plasma

waves, quantum mechanics, elasticity for longitudinal waves in
bars, acoustic waves etc.

5. Conclusion

In this article, we have extracted scores of closed form soliton
solutions to the perturbed Boussinesq equation and the KdV-
Caudrey-Dodd-Gibbon equation including bell-shaped soliton,
kink-soliton, periodic-wave, singular-kink, compacton-soliton and
other types of solitons associated with several free parameters.
These free parameters have important implications, such as setting
different values of the free parameters from an individual solution
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Fig. 6. 3D plot of solution (3.2.6) forc=1,b=05,d=1,k=-2and p = -2.

Fig. 8. 3D graph of solution (32.23) for the values b=0,c=1,d=1,p=1 and
k=1.

cognizant solutions can be found in a unique way. It is valuable to
mentioned that the solutions of the NLEEs are achieved in terms of
trigonometric, hyperbolic, rational and exponential functions.
Some of the obtained solutions are new and thus could be effective
in the study of nonlinear physical phenomena. It can be concluded
that the adopted method is reliable, effective, conformable and
provide ample compatible solutions to NLEEs arise in mathemati-
cal physics, applied mathematics and engineering.

[
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Fig. 9. 3D plot of solution (32.24) for ¢ =-06, b=0, d=-1.1, = -0.5 and
p=-0.6.
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