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In this article our goal is to studying the stationary condition of EGARCH time series model which is
proved by Nelson (1991) but what we did is to prove it with more simple and clearly defined method
and this is done by using a dynamical approximation relying on local linearization method in the neigh-
borhood of a non-zero singular point of EGARCH model. This method is being used to approximate a
Nonlinear model to a linear autoregressive model. Beside that we found the orbitally stability condition
of a limit cycle of EGARCH(1,1) model if the model possess it.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The exponential generalized autoregressive conditional
heteroskedastic time series model denoted by (EGARCH) model is
an extension for (GARCH) model proposed by Nelson in 1991.
The model came from ARCH family models which are proposed
to deal with the volatility in time series data (Francq and
Zakoian, 2010) which known later the conditional heteroskedastic
in variance or in another words the variance depends on time and
changes over time (t) namely conditional variance (r2

t ), these
models are made the conditional variance as a function of time
(Nelson 1991).

The stationarity of any stochastic process requires that the vari-
ance must be constant and independent of time (t). So we will
use a dynamical approaches based on a local linearization technique
near the non-zero singular point of EGARCH model to approximate
this model to a linear model in the neighborhood of the non-zero
singular point, this method play a major rule in convergence
of conditional variance to an unconditional variance which is
constant and independent of time as t approach to infinite.

In a non-linear time series models the stochastic difference
equation known as:

xt ¼ f ðxt�1; xt�2; . . . ; xt�r; �tÞ

where f is nonlinear function and �t � iid Nð0;r�2t Þ, i.e. �t is a white
noise process, and in GARCH models the stochastic difference equa-
tion became:

r2
t ¼ f ðr2

t�1;r
2
t�2; . . . ;r

2
t�r ; ztÞ

where zt � iid Nð0;1Þ. The clear motivation is under what condi-
tions the conditional variance r2

t converges to unconditional vari-
ance r2. This is what we will discuss in the article.

We must refer to that many researchers use a local lin-
earization technique in finding a stability conditions for many
non-linear autoregressive models, Ozaki in 1985 used this
method to find a stability condition of EXPAR(P) model,
Mohammad and Salim in 2007 used it for the logistic LSTAR
(P) model, Mohammed and Ghannam in 2010 used it for the
Cauchy model, Salim and Younis studied this method in 2012,
also Mohammad and Ghaffar in 2016 used it for the GARCH
model (Mohammad and Ghaffar, 2016; Mohammad and
Ghannam, 2010; Mohammad and Salim, 2007; Ozaki, 1985;
Salim and Youns, 2012).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2018.04.028&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The methodological development in this paper is to prove the
stationary condition of the EGARCH model by using local lineariza-
tion method which looks simpler and clearly defined.

2. Preliminaries

The purpose of this section is to introduce some basic concepts
and definitions to get a fully understanding for the study.

Definition 2.1 (Singular point and it’s stability (Ozaki 1985; Salim
and Youns, 2012)). A point ðfÞ is a singular point of a function f ðxÞ if
satisfies:

f ¼ f ðfÞ
and for the model:

xt ¼ f ðxt�1; xt�2; . . . ; xt�pÞ ð2:1Þ
the singular point ðfÞ is defined as a point for which every trajectory
of the model (2.1) beginning sufficiently near ðfÞ approaches either
for t ! 1 or t ! �1. If ðfÞ approaches for t ! 1 we called ðfÞ a
’’stable singular point’’ and if it approaches for t ! 1 we called
ðfÞ an ’’unstable singular point’’.
Definition 2.2 (Limit cycle and it’s stability (Ozaki 1985; Salim and
Youns 2012)). A limit cycle of the model (2.1) is defined as an iso-
lated and closed trajectory of the form:

xtþ1; xtþ2; . . . ; xtþq ¼ xt

such that q is a positive integer. The word ’’closed’’ means that if the
initial value ðx1; x2; . . . ; xpÞ belongs to the limit cycle, then:

ðx1þkq; x2þkq; . . . xpþkqÞ ¼ ðx1; x2; . . . ; xpÞ for any integer k

the word ’’isolated’’ means that every trajectory beginning suffi-
ciently near the limit cycle approaches it either for
t ! 1 or t ! �1.

If it approaches the limit cycle for t ! 1 we call it a ’’stable
limit cycle’’, and if it approaches the limit cycle for t ! 1 we call it
an ’’unstable limit cycle’’. The smallest integer qwhich satisfies this
definition is called the period of the limit cycle of the model (2.1).
Definition 2.3 (Autoregressive model of general order (Priestely,
1981)). A linear Autoregressive model of order p denoted by AR
(p) has the form:

xt þ a1xt�1 þ a2xt�2 þ � � � þ apxt�p ¼ zt where

zt � iid Nð0;r2
t Þ and a1; a2; . . . ; ap are constants

by using a Backward shift operator the AR(p) model can be
written in:

aðBÞxt ¼ zt where aðBÞ ¼ 1þ a1zþ a2z2 þ � � � þ apzp

the general solution of the model is given by:

xt ¼ f ðtÞ þ a�1ðBÞzt
such that f ðtÞ is the complementary function which is the solution
of homogenous difference equation:

aðBÞxt ¼ 0

and f ðtÞ in general will has the form:

f ðtÞ ¼ A1lt
1 þ A2lt

2 þ � � � þ Aplt
p

where A1;A2; . . . ;Ap is an arbitrary constants and l1;l2; . . . ;lp is the
roots of the polynomial

gðzÞ ¼ zk þ a1zk�1 þ � � � þ ak
the autoregressive model AR(p) is an asymptotically stationary pro-
cess if:

lim
t!1

f ðtÞ ¼ 0

which implies that all the roots of gðzÞ must lie inside the unit
circle,

i:e: jlij < 1 for i ¼ 1;2; . . . ;p

Background of the model

The Exponential Generalized Autoregressive Conditional
Heteroskedasticity (EGARCH) models descend from ’’ARCH mod-
els’’ family which is created by Robert Engle in 1982 (Engle,
1982) as one of the nonlinear time series models. ARCH models
can be expressed as the following form:

xt ¼ rtzt where zt � iid Nð0;1Þ

r2
t ¼ wþ

Xq
i¼1

aix2t�i where zt distributed as identically in

dependent with zero mean and unit variance:

After four years later in Bollerslev (1986) extended the study of
ARCH models and proposed the Generalized Autoregressive Condi-
tional Heteroskedasticity models [GARCH(Q,P)] which can
expressed as:

xt ¼ rtzt where zt � iid Nð0;1Þ

r2
t ¼ wþ

Xp
i¼1

aix2t�i þ
Xq
j¼1

bjr2
t�j

This model is being used in many studies and a family of
models emerged from it as an extension of GARCH models like
GJR-GARCH model by Glosten, Jagannathan and Runkle. TARCH
model introduced by Zakoian in 1994. PARCH model by Ding
et al. in 1993. . ..etc. It has a great importance because it is mod-
eling the volatility in data that exists in several stochastic pro-
cesses such as financial time series. One of its most important
properties; is that GARCH models can capture thick tailed
returns and volatility clustering, nevertheless GARCH model has
three drawbacks (Nelson, 1991): Firstly, it fails to capture ’’lever-
age effect’’ that was mentioned by Black in 1976 when he
described it by saying: ’’stock returns are negatively correlated
to changes in returns volatility implying that volatility tends to
rise in response to bad news and fall in response to good news’’
(Black, 1976). Secondly, is that GARCH model depends only on
the magnitude of the changing in series data. Thirdly, there is
a positivity constraint on its parameters clearly in model’s for-
mula. Because of that Daniel B. Nelson (Nelson, 1991) introduced
the EGARCH model which can avoid these shortcomings so that
EGARCH model consists a term of the leverage effect and that is
noticed in its formula what make the model become depending
on the magnitude and sign of the changing in series data. Also
the existence of the logarithm in the formula of the model can-
cels the positivity constraints on its parameters (Bollerslev et al.,
1994).

The EGARCH model has got a big attention and many research-
ers used EGARCH to modeling data like stock prices, gold and oil
prices, exchange rates . . . etc.

Definition 2.4 (EGARCH(Q,P) Process (Francq and Zakoian, 2010)).
Let zt be an identical independent distributed sequence such that:

EðztÞ ¼ 0

varðztÞ ¼ 1
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Then xt is said to be an Exponential Generalized Autoregressive
Conditional Heteroskedasticity process can be expressed as
[EGARCH(Q,P)] if it satisfies an equation of the form:

xt ¼ rtzt where zt � iid Nð0;1Þ

logr2
t ¼ wþ

XQ
i¼1

ai logr2
t�i þ

XP
j¼1

djgðzt�jÞ . . . ð2:2Þ

where gðzt�jÞ ¼ cjðzt�jÞ þ bj½jzt�jj
� Ejzt�jj� such that w;ai; dj; cj and bj

2 R; i ¼ 1;2; . . . ;Q ; j ¼ 1;2; . . . ; P ð2:3Þ

To explain the magnitude and the sign mentioned above
through the formula of the model. The terms bj½jzt�jj � Ejzt�jj� and
cjðzt�jÞ represent the magnitude and the sign effect respectively.
Also the leverage effect is represented in the term cjðzt�jÞ, the ARCH

effect is represented in bj½jzt�jj � Ejzt�jj� and ai logr2
t�i is the GARCH

effect term.
The function gðzt�jÞ in (2.3) is a function of both of magnitude

and sign, this allows to the EGARCH process to response to the rises
and the falls of the series data especially in the financial time series
data. Therefore EGARCH models classified under what known later
as asymmetric models which are defined the asymmetric relation
between returns and the change in volatility (Bollerslev et al., 1994).
3. Stationary condition of EGARCH(Q,P) process

Theorem 3.1 Francq and Zakoian, 2010. Assume that
gðzt�jÞ ¼ cjðzt�jÞ þ bj½jzt�jj � Ejzt�jj� is not almost surely equal to zero

and that the polynomials aðzÞ ¼PP
j¼1z

j and bðzÞ ¼ 1�PQ
i¼1aizi

have no common root with aðzÞ not identically null then the
EGARCH(Q,P) model admit a strictly stationary iff the roots of bðzÞ
are outside the unit circle.

The stationary condition in the above theorm is same as the sta-
tionary condition of a general autoregressive process exactly with
finite innovation variance.

Our contribution in this paper is to find the stationary condition
mentioned in Theorem 2.1 and prove it by using dynamical
approach. In order to showing that we need the following lemma:

Lemma 3.1 Mohammad and Ghaffar, 2016. Let a1;a2; . . . ;ar be a
non-negative real numbers. The following polynomial:

PðzÞ ¼ 1�
Xr
i¼1

aizi ð3:1Þ

does not have a roots inside and on the unit circle if and only if
PðzÞ > 1.
Proof. Let be Pð1Þ > 0 and let a1;a2; . . . ;ar are non-negative real
numbers.

Thus:
Pr

i¼1ai > 0this implies: 1�Pr
i¼1ai < 1so that:

Pð1Þ < 1then by hypothesis we obtain: 0 < Pð1Þ < 1 ¼ Pð0Þthis
means the polynomial (3.1) has no any roots inside and on the
unit circle since all the roots ðmÞ that lie between 0 and 1 doesn’t
verify PðmÞ ¼ 0.

Conversely; suppose that polynomial 3.1 doesn’t have any roots
inside the unit circle, so that jhj P 1 is one of the roots of
polynomial 3.1, and then:

jhj j P 1 for j ¼ 1;2; . . . ; r
and since
Pr

j¼1aj > 0, then
Pr

j¼1aj <
Pr

j¼1ajjhj j

) 1�
Xr
j¼1

aj > 1�
Xr
j¼1

ajjhj j

this implies Pð1Þ > PðhÞ
and since h is one of the roots then PðhÞ ¼ 0, so that Pð1Þ > 0. h

Now, consider the general form of the EGARCH(Q,P):

xt ¼ rtzt where zt � iid Nð0;1Þ

logr2
t ¼ wþ

XQ
i¼1

ai logr2
t�i þ

XP
j¼1

cj
xt�j

rt�j

� �
þ
XP
j¼1

bj
xt�j

rt�j

����
����� E

xt�j

rt�j

����
����

� �

ð3:2Þ

where : w;ai;bj; cj are the model’s parameter i

¼ 1;2; . . . ;Q and j ¼ 1;2; . . . ; P

To find the stability condition of EGARCH(Q,P) model in term of
its parameters by using a dynamical approach. First, we should find
the non-zero singular point of the model which is corresponding to
unconditional variance r2.

By taking the mathematical expectation of both sides of (3.2)
we get:

E½logr2
t � ¼ wþ

XQ
i¼1

aiE½logr2
t�i� þ

XP
j¼1

cjE
xt�j

rt�j

� �� �

þ
XP
j¼1

bj E
xt�j

rt�j

����
����� E

xt�j

rt�j

����
����

� �

As zt � iid Nð0;1Þ we notice that:

1- E
xt�j

rt�j

� �� �
¼ E½zt� ¼ 0

2- E
xt�j

rt�j

����
����

� �
¼ Ejzt j ¼

Z 1

�1
jzt jf ðzÞdz ¼ 2

Z 1

0
ðztÞ 1ffiffiffiffiffiffiffi

2p
p e�

1
2z

2
t dz ¼

ffiffiffiffi
2
p

r

So we obtain:

E½logr2
t � ¼ wþ

XQ
i¼1

aiE½logr2
t�i� þ 0þ 0 ð3:3Þ

Let f ¼ r2
t ¼ r2

t�1 ¼ r2
t�2 ¼ � � � ¼ r2

t�Q be a singular point of the
model, then:

E½log f� ¼ wþ
XQ
i¼1

aiE½log f�

Since f is a constant, then:

1�
XQ
i¼1

ai

 !
log f ¼ w

) f ¼ exp
w

1
PQ

i¼1ai

 !
ð3:4Þ

f represent the non-zero singular point of the model.

Proposition 3.1. The non-zero singular point f for EGARCH(Q,P)
model is stable if:

XQ
i¼1

ai < 1
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Proof. Let f be the non-zero singular point of EGARCH(Q,P). near
the non-zero singular or in the neighborhood of f with sufficiently
small radius ft such that:

fnt ! 0 for n P 2

and by using the variational equation:

r2
s ¼ fþ fs where s ¼ t; t � 1; . . . ; t � Q

and by substitute this equation in (3.3) we get:

E½logðfþ ftÞ� ¼ wþ
XQ
i¼1

aiE½logðfþ ft�iÞ�

E log f 1þ ft
f

� �� �� �
¼ wþ

XQ
i¼1

aiE log f 1þ ft�i

f

� �� �� �

E½log f� þ E log 1þ ft
f

� �� �
¼ wþ

XQ
i¼1

ai E½log f� þ E log 1þ ft�i

f

� �� �� 	

From (3.3) and by using expansion of logð1þ xÞ and since
fnt ! 0 8n P 2, we get:

E
ft
f

� �
¼
XQ
i¼1

aiE
ft�i

f

� �

multiply both sides by f as a constant, we obtain:

E ft �
XQ
i¼1

aift�i

" #
¼ 0

this is a linear difference equation of order Q. If we can put the poly-

nomial ft �
PQ

i¼1aift�i ¼ 0 by using lag operator ðLiÞ in the form:

ft 1�
XQ
i¼1

aiL
i

 !
¼ 0

then the stability requires that the all roots of the polynomial:

PðLÞ ¼ 1�
XQ
i¼1

aiL
i

lie outside the unit circle which is by lemma (1) corresponding to

the condition
PQ

i¼1ai < 1. h
Fig. 1. The general form of the ser
Example 3.1. By using Matlab (R2016a) software for modeling
weekly volume trading S&P500 index from Dec. 2004–Oct. 2017
downloaded from yahoo finance website with 670 observation in
EGARCH(1,1) model we notice the general form of the series data
and the return series in the following figure (Fig. 1):We can check
for the heteroskedasticity from the autocorrelation and partial
autocorrelation function plot of the squared return errors of the
series data also we used Ljung–Box Q-test to check the
heteroskedasticity (Fig. 2).

After fitting the data with EGARCH(1,1) model we can see in
Fig. 3 that the forecasted conditional variance r2

t converge to the
unconditional variance r2 which is corresponding with the non-
zero singular point value as in Eq. (3.4).
4. The orbitally stability of the limit cycle

To study and find a stability conditions of the limit cycle for the
EGARCH(Q,P) model if it exists, we begin to find the stability con-
dition for the EGARCH(1,1).

Proposition 4.1. The limit cycle with period k of EGARCH(1,1) is
orbitally stable if the following condition satisfied:

Yk
i¼1

E
r2

tþk�i

r2
tþk�1�i

" #�����
����� < 1

a1

����
����
k

:

Proof. Suppose that the model possess a limit cycle of period k
namely:

r2
t ; r

2
t�1; r

2
t�2; . . . ;r

2
t�k ¼ r2

t

near the neighborhood of each point of this limit cycle, let ft be the
radius of the neighborhood sufficiently small such that:

fnt ! 0 for n P 2

by using the assignment equation

r2
s ¼ r2

s þ fs where s ¼ t; t � 1

and fs is independent with r2
s

ies data and the return series.



Fig. 2. The autocorrelation and partial autocorrelation function plot of the squared return errors of the series data.

Fig. 3. The forecasted conditional variance converge to the unconditional variance.
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we substitute this equation in the model EGARCH(1,1) which is can
get it by putting Q = P=1 in Eq. (3.2) and taking the mathematical
expectation:

E½logr2
t � ¼ wþ a1E½logr2

t�1� ð4:1Þ

We get:

E½logðr2
t þ ftÞ� ¼ wþ a1E½logðr2

t�1 þ ft�1Þ�

E log r2
t 1þ ft

r2
t

� �� �� �
¼ wþ a1E log r2

t�1 1þ ft�1

r2
t�1

� �� �� �
E½logr2
t � þ E log 1þ ft

r2
t

� �� �
¼ wþ a1 E½logðr2

t�1Þ� þ E log 1þ ft�1

r2
t�1

� �� �� 	

from (4.1) we get:

E½logr2
t � þ E log 1þ ft

r2
t

� �� �
¼ E½logr2

t � þ a1 E log 1þ ft�1

r2
t�1

� �� �� 	

and by using expansion of logð1þ xÞ and since fnt ! 0 8n P 2, we
obtain:

E
ft
r2

t

� �
¼ a1E

ft�1

r2
t�1

� �
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since fs is independent with r2
s , then:

E½ft�:E
1
r2

t

� �
¼ a1:E½ft�1�:E

1
r2

t�1

� �

So:

E½ft� ¼
a1E 1

r2
t�1

h i
E 1

r2
t

h i
0
B@

1
CA:E½ft�1� ð4:2Þ

Eq. (4.2) is a difference equation with non-constant coefficients, and
it is difficult to solve analytically but we need to knowing whether
ft in (4.2) converge to zero or not, and this can be verified by check-

ing whether E½ftþk �
E½ft �

��� ��� is less than 1 or not.

Now, by iterate Eq. (4.2) for k times we get:

E½ftþk� ¼
a1E 1

r2
tþk�1

� �

E 1
r2
tþk

� �
0
BB@

1
CCA:E½ftþk�1�

equivantely:

E½ftþk� ¼
Yk
i¼1

a1E 1
r2
tþk�1�i

� �

E 1
r2
tþk�i

� �
0
BB@

1
CCA:E½ft�

and hence the limit cycle is orbitally stable if:

E½ftþk�
E½ft �
����

���� ¼ ak
1

Yk
i¼1

E
1

r2
tþk�1�i

1
r2
tþk�i

2
4

3
5

������
������ < 1
or in another form:

Yk
i¼1

E
r2

tþk�i

r2
tþk�1�i

" #�����
����� < 1

a1

����
����
k

�

5. Conclusion

The study summarizes in knowing whether it adds an interest
to the statistical literature, it introduces another method in proving
the stationary condition of EGARCH model. This method was
applied in some models previously by a group of researchers in
2007 until 2016 based on the manner of Ozaki and Tong in 1985
and 1990 respectively.

The Autoregressive Conditional Heteroskedasticity models have
conditional variance changing over time and this is a problematic
for prediction. This method approximate the nonlinear model to
linear model near its singular point and as a result will fix the con-
ditional variance to unconditional variance which its value is equal
to the value of the non-zero singular point and then these models
mix with linear models to get a composite models for forecast in
future.

In Section 3 we use local linearization method to prove the sta-
bility condition of the model EGARCH(Q,P) in terms of its parame-
ters, this condition help us to know whether the non-zero singular
point is stable or not.

In Section 4 we gave a stability condition of the limit cycle in
case that the model possesses it. In fact, if the process doesn’t have
any stable singular point then it doesn’t necessary mean that the
process goes to have stable limit cycle, it can be a model doesn’t
have any stable singular point nor stable limit cycle.
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Appendix: Matlab modeling program for Example 3.1
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