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Abstract Meshless method choosing Heaviside step function as a test function for solving simply

supported thin plates under various loads is presented in this paper. The shape functions using reg-

ular and irregular nodal distribution as well as order of polynomial basis choice are constructed by

moving kriging interpolation. Alternatively, two-field-variable local weak forms are used in order to

decompose the governing equation, biharmonic equation, into a couple of Poisson equations and

then impose straightforward boundary conditions. Selected numerical examples are considered to

examine the applicability, the easiness, and the accuracy of the proposed method. Comparing to

an exact solution, this robust method gives significantly accurate numerical results, implementing

by maximum relative error and root mean square relative error.
ª 2014 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The structures of plate are one of the important components in
various applications. There are many scientists or researchers

who have analyzed these structures. Exact analysis for such
plates is usually very difficult, in spite of the existence of ana-
lytical solution in some special cases of geometry and loads.

Therefore, various numerical methods have been developed.
Meshless method has become very attractive and efficient for
development of adaptive methods for solving thin plate bend-
ing problem. The main advantage of meshless methods is to

get rid of or at least alleviate the difficulty of meshing and
re-meshing the entire plate structure. For analysis of thin plate
bending, it is well known that high order derivatives of field

variables in the governing equation give rise to difficulties in
solution of boundary value problems because of worse accu-
racy of numerically evaluated high order derivatives. The order
of the differential operator can be decreased mathematically by

decomposing this operator into two lower order differential
operators with introducing new field variables.

To circumvent the problems associated with meshing, a

number of works for plates have been investigated based on
meshless methods. Krysl and Belytschko (1995) first employed
the element free Galerkin method (EFGM) to analyze the thin
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plate problems while Liu (2003) introduced the idea of moving
kriging interpolation (MK) and show how it can be used to
formulate a new type of meshless method in heat conduction

problems. Long and Atluri (2002) extended the meshless local
Petrov–Galerkin (MLPG) method for solving thin plate bend-
ing problems. Li et al. (2005) utilized the kinematics of a three-

dimensional solid of the conventional plate assumption, and
proposed a lock-free MLPG formulation for plates. Sladek
et al. (2002a,b) decomposed the biharmonic differential equa-

tion into Poisson equations, and derived the local boundary
integral equations (LBIE) for the thin plate bending problems.
Leitao (2001) and Bitaraf and Mohammadi (2010) combined
the point interpolation technique with the collocation scheme

to derive system of governing equations, and proposed the
finite point method (FPM). Based on the recursive composite
multiple reciprocity method, Fu and Chen (2009) and Fu

et al. (2009) employed a boundary-only collocation scheme-
boundary particle method (BPM) to simulate the bending
problems of the Kirchhoff plate and Winkler plate. All of these

meshless methods do not need an element mesh for the inter-
polation of the field or boundary variables; however, some
of them require background cells for numerical integration,

which makes these methods being not ‘‘truly’’ meshless
method. Recently, Sladek et al. (2013) applied the new field
variable for solving thin plate bending problems by meshless
method comparing the solution using either the moving least

squares (MLS) approximation or point interpolation approxi-
mation. Liu and Huang (2013) used integral identities in order
to develop weakly-singular and non-singular forms of the BIEs

for plate bending problems. In 2011, Chen et al. (2011)
proposed a solution procedure based on the meshless local Pet-
rov–Galerkin (MLPG) method for lower-bound shakedown

analysis of bounded kinematic hardening structures. The nat-
ural neighbour interpolation (NNI) was employed to construct
trial functions for simplifying the imposition of essential

boundary conditions. The kinematic hardening behavior was
simulated by an overlay model and the numerical difficulties
caused by the time parameter were overcome by introducing
the conception of load corner. The reduced-basis technique

was applied to solve the mathematical programming iteratively
through a sequence of reduced residual stress subspaces with
very low dimensions and the resulting non-linear programming

sub-problems were solved via the Complex method. In 2011,
Chen et al. (2011) developed the meshless local natural neigh-
bor interpolation (MLNNI) method to perform the dynamic

analysis of elastoplastic structures under plane stress or plane
strain conditions. The MLNNI, as an effective truly meshless
method for solving partial differential equations, employs local
weak forms over a local subdomain and shape functions from

the natural neighbor interpolation (NNI). The shape functions
so formulated possess delta function property and, therefore,
the essential boundary conditions can be implemented as easily

as in the finite element method (FEM). The predictor–correc-
tor form of the Newmark algorithm is used for the time-
marching process and iterations are performed at every time

step. In 2013, Li et al. (2013) developed a numerical meshless
model for analyzing transient heat conductions in three-dimen-
sional (3D) axisymmetric continuously non-homogeneous

functionally graded materials (FGMs). Axial symmetry of
geometry and boundary conditions reduced the original 3D
initial-boundary value problem into a two-dimensional (2D)
problem. Local weak forms were derived for small polygonal
sub-domains which surrounded nodal points distributed over
the cross section. In order to simplify the treatment of the
essential boundary conditions, spatial variations of the temper-

ature and heat flux at discrete time instants were interpolated
by the natural neighbor interpolation. Moreover, the using
of three-node triangular finite element method (FEM) shape

functions as test functions reduced the orders of integrands
involved in domain integrals. The semi-discrete heat conduc-
tion equation was solved numerically with the traditional

two-point difference technique in the time domain.
The purpose of this paper is to present the meshless method

with two field variables local weak form for solving thin simply
supported plate problems subjected to various loads. In the

present method, the moving kriging (MK) interpolation
method using regular and irregular nodal arrangements is
employed to construct the nodal shape function as well as

the Heaviside step function is used as the test function. In
order to verify the validity of this approach, selected numerical
examples are analyzed comparing with exact solutions to dem-

onstrate the convergence of the present method which is imple-
mented by maximum relative error and root mean square
relative error.

2. Moving kriging interpolation shape function

Similar to the MLS approximation, the moving kriging (MK)

method, see (Yimnak and Luadsong, 2014), can be extended to
any sub-domain Xx # X. Generally, the MK interpolationewðxÞ is defined by Liu (2003)

ewðxÞ ¼XN
i¼1

/iðxÞŵi ¼ UðxÞcW; 8x 2 Xx ð1Þ

and the shape function UðxÞ is defined by

UðxÞ ¼ pTðxÞAþ rTðxÞB; ð2Þ

where pTðxÞ ¼ p1ðxÞ p2ðxÞ . . . pmðxÞ½ � is a complete

monomial basis and cW ¼ bwðx1Þ bwðx2Þ . . . bwðxNÞ½ �.
Introduce the notation

A ¼ ðPTR�1PÞ�1PTR�1; ð3Þ
B ¼ R�1ðI� PAÞ: ð4Þ

The matrices P;R and vector rTðxÞ are given as follows:

P ¼

p1ðx1Þ p2ðx1Þ . . . pmðx1Þ
p1ðx2Þ p2ðx2Þ . . . pmðx2Þ
..
. ..

. . .
. ..

.

p1ðxNÞ p2ðxNÞ . . . pmðxNÞ

266664
377775; ð5Þ
R ¼

cðx1; x1Þ cðx1; x2Þ . . . cðx1; xNÞ
cðx2; x1Þ cðx2; x2Þ . . . cðx2; xNÞ
..
. ..

. . .
. ..

.

cðxN; x1Þ cðxN; x2Þ . . . cðxN; xNÞ

266664
377775; ð6Þ
rTðxÞ ¼ cðx; x1Þ cðx; x2Þ . . . cðx; xNÞ½ �; ð7Þ

and I is an n� n identity matrix.
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The cðxi; xjÞ is the dimensionless correlation Gaussian func-
tion between any pair of nodal points located at xi and xj,
namely

cðxi; xjÞ ¼ e�h
rij
dcð Þ

2

; ð8Þ

where rij ¼ kxi � xjk; h > 0 is the dimensionless shape param-

eter and dc is a characteristic length that is related to the nodal
spacing in the local domain of the point of interest.

Literally, Eq. (2) can also be rewritten as

ewðxÞ ¼ pTðxÞAþ rTðxÞB
� �cW; ð9Þ

where the shape function and its first derivative can be defined

as follows:

/iðxÞ ¼
Xm
j¼1

pjðxÞAji þ
Xn
k¼1

rkðxÞBki; ð10Þ

/i;lðxÞ ¼
Xm
j¼1

pj;lðxÞAji þ
Xn
k¼1

rk;lðxÞBki: ð11Þ

The index following a comma is a spatial derivative.

3. Governing equations and discretization

In the classical Kirchhoff’s theory of bending of thin plates
(Timoshenko and Woinowsky-Krieger, 1959), the governing
equation which results in the biharmonic equation may be

written as

r4wðxÞ ¼ qðxÞ
D

x 2 X; ð12Þ

where wðxÞ is the plate deflection, qðxÞ is the prescribed load

normal to the plate, r4ð�Þ is a biharmonic operator, and D is

the flexural rigidity being given as D ¼ Eh3

12ð1�m2Þ where E is the

Young’s modulus, m is the Poisson ratio, and h is the plate
thickness.

The plate domain X ¼ ½0; 1� � ½0; 1� is enclosed by the fol-

lowing simply supported boundary conditions edge C:

wð0; yÞ ¼ 0; wð1; yÞ ¼ 0;

wðx; 0Þ ¼ 0; wðx; 1Þ ¼ 0;

@2wð0; yÞ
@x2

¼ 0;
@2wð1; yÞ
@x2

¼ 0;

@2wðx; 0Þ
@y2

¼ 0;
@2wðx; 1Þ
@y2

¼ 0: ð13Þ

Introducing the new field variable and assuming the flexural
rigidity to be constant, we obtain

mðxÞ :¼ �r2wðxÞ; ð14Þ

r2mðxÞ ¼ � qðxÞ
D

: ð15Þ

Using the local weighted residual method, Eqs. (14) and (15)

becomeZ
Xi
s

r2wþm
� �

vidX ¼ 0; ð16Þ

andZ
Xi
s

r2mþ q

D

� �
vidX ¼ 0; ð17Þ
where vi is the test function.

Using the Heaviside unit step function as the test function
and applying the Green’s first identity in Eqs. (16) and (17),
the following local weak forms can be obtainedZ
@Xi

s

@w

@n
dCþ

Z
Xi
s

mdX ¼ 0; ð18Þ

andZ
@Xi

s

@m

@n
dCþ

Z
Xi
s

q

D
dX ¼ 0; ð19Þ

where n is the cartesian component of the outward unit normal
vector on boundary edges. Next, transverse deflection w and

new variable m are interpolated using MK as

ewðxÞ �XN
j¼1

/j bwj; ð20Þ

emðxÞ �XN
j¼1

/j bmj: ð21Þ

Substituting the these expressions into local weak form Eqs.
(18) and (19), the discrete equation for each node is obtained
as follows:

R
@Xi

s

@/jðxiÞ
@n

dC
R

Xi
s
/jðxiÞdX

0
R
@Xi

s

@/jðxiÞ
@n

dC

24 35
bw1

..

.

bwNbm1

..

.

bmN

266666666664

377777777775
¼

0

�
R

Xi
s

q
D
dX

" #
;

ð22Þ

where i; j ¼ 1; 2; . . . ;N.

4. Numerical examples

In this section, some numerical results are presented to verify

our approach by comparing with an exact solution. The accu-
racy is illustrated by plotting the selected number of nodal
points versus the maximum relative error as well as root mean
square relative error in tests of accuracy of approximation for

deflections at evaluation. Both the errors are defined as

emax ¼ max
ew � wex

wex

���� ����; ð23Þ

erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ewðxkÞ � wexðxkÞ
wexðxkÞ


 �2

vuut : ð24Þ

Linear and quadratic polynomial bases are chosen at first in
order to construct nodal shape function. Correlation parame-
ter is set as 0.5 for being a smooth curve while the radius of

each local sub-domain should be big enough such that the
union of all local sub-domains covers as much as possible in
order to avoid singularity of calculated matrices. For this

reason, the radius of the local sub-domain of each boundary
node is taken as 0.7 times minimum nodal points while 21
gaussian points are used on each section of C. Regular and
irregular nodal distribution are chosen as 16(4 · 4), 25(5 · 5),



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1 Nodal distribution in the square plate with 11 · 11

regular scattered nodes.
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Figure 2 Nodal distribution in the square plate with 121

irregular scattered nodes.
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Figure 3 Nodal distribution in the hollow plate with 152

irregular scattered nodes.

Table 1 Maximum relative errors and root mean square of

relative errors using linear basis for nodal construction of

Example 4.1.

n emax erms

16 0.087161168170710 0.043580584085307

25 0.050358497618669 0.030113754701725

36 0.032361053913413 0.021484740518138

49 0.023035676208513 0.016387047401505

64 0.017143934984936 0.012673300080537

81 0.013492037450895 0.010323479185026

100 0.010879139865142 0.008417391483891

121 0.002336287440439 0.001632271994812

212 S. Kaewumpai, A. Luadsong
36(6 · 6), 49(7 · 7), 64(8 · 8), 81(9 · 9), 100(10 · 10) and

121(11 · 11). Illustratively, nodal distribution in the square
plate with 11 · 11 regular and 121 irregular scattered nodes
are shown in Figs. 1 and 2, respectively.

For numerical implementation, selected a simply supported
rectangular plate under sinusoidal load, uniformly distributed
load, hydrostatic load and a hollow plate are implemented as

follow:

4.1. Sinusoidal load on a simply supported rectangular plate

An exact solution in term of deflection is given by Timoshenko
and Woinowsky-Krieger (1959).

wðx; yÞ ¼ q0

p4D 1
a2
þ 1

b2

� �2 sin
px
a

sin
py
b
; ð25Þ

where qðx; yÞ ¼ q0 sin px
a

sin py
b
; q0 ¼ represents the intensity

of the load at the center of the plate, D is the flexural rigidity,
and a, b are the side lengths of a rectangular plate.
For both the errors caused by introducing two-filed vari-
ables of this method, tabular errors using linear basis for
selected number of nodal points of Example 4.1 are shown

in Table 1 while Table 2 shows the errors using quadratic basis
instead. According to both tables, these results show the con-
vergence of this method by increasing the number of nodal

points which can be see as an increasing accuracy by increasing
the number of nodal points. In addition, illustratively, the fic-
titious values w versus exact solution and absolute value of the

difference between exact solution and approximate solutionis
are shown in Fig. 4 while the results of absolute maximum rel-
ative errors and root mean square relative errors are shown in
Figs. 5 and 6, respectively.

4.2. Uniformly distributed load on a simply supported

rectangular plate

An exact solution in term of deflection is given by Timoshenko

and Woinowsky-Krieger (1959)

wðx; yÞ ¼ 16q

p6D

X
m

X
n

1

mn m2

a2
þ n2

b2

� �2
� sin

mpx
a

sin
npy
b
; m; n ¼ 1; 3; 5; . . . ; ð26Þ

where qðx; yÞ ¼ q; q represents a uniformly distributed load, D
is the flexural rigidity, and a, b are the side lengths of a rectan-
gular plate.



Table 2 Maximum relative errors and root mean square of

relative errors using quadratic basis for nodal construction of

Example 4.1.

n emax erms

16 0.091657933473486 0.045828966736731

25 0.050623969866327 0.030352930169516

36 0.031908920567838 0.021037079186475

49 0.022606591744903 0.015987485213218

64 0.016482360093915 0.012121872348316

81 0.012806666014302 0.009807325440163

100 0.010070455041601 0.007871532231840

121 0.001516655001101 0.001107414913633
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Figure 5 Maximum relative errors as a function of nodal points

of Example 4.1.
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Figure 6 Root mean square relative errors as a function of nodal

points of Example 4.1.
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Likewise, for both of errors caused by introducing two-filed
variables of this method, tabular errors using linear basis for

selected number of nodal points of Example 4.2 are shown
in Table 3 while Table 4 are shown the errors using quadratic
basis instead. According to both tables, These results show the

convergence of this method by increasing the number of nodal
points which can be see as increasing accuracy by increasing
the number of nodal points. In addition, illustratively, the fic-

titious values w versus exact solution and absolute value of the
difference between exact solution and approximate solutionis
are shown in Fig. 7 while the results of absolute maximum rel-
ative errors and root mean square relative errors are shown in

Figs. 8 and 9, respectively.

4.3. Hydrostatic load on a simply supported rectangular plate

An exact solution in terms of deflection is given by Rudolph
(1974)

wðx; yÞ ¼ 8q

p6D

X
m¼

X
n

ð�1Þmþ1

mn m2

a2
þ n2

b2

� �2
� sin

mpx
a

sin
npy
b
; m; n ¼ 1; 2; 3; . . . ; ð27Þ

where qðx; yÞ ¼ qx
a
is a hydrostatic load, q represents a uni-

formly distributed load, D is the flexural rigidity, and a; b are
the side lengths of a rectangular plate. Irregular nodal arrange-

ment shown in Fig. 2 is conducted for constructing shape func-
tion . Illustratively, the fictitious values w and exact solution
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Figure 4 Exact solution versus fictitious values (left) and absolute

solution (right) of Example 4.1, 11 · 11 regular nodal distribution wit
corresponding linear and quadratic polynomial basis are

shown in Figs. 10 and 11, respectively.
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Table 3 Maximum relative errors and root mean square of

relative errors using linear basis for nodal construction of

Example 4.2.

n emax erms

16 0.009380370258943 0.004690185129419

25 0.010227433424274 0.004485160943519

36 0.009239014511950 0.003682568495845

49 0.008370612949564 0.003184019437063

64 0.006690798478377 0.002493855584604

81 0.005456953335600 0.002188658062610

100 0.003647844775999 0.001742330978038

121 0.002669141979986 0.001031499111947

Table 4 Maximum relative errors and root mean square of

relative errors using quadratic basis for nodal construction of

Example 4.2.

n emax erms

16 0.014260294100857 0.007130147050416

25 0.014090587400685 0.006303146486460

36 0.009092940658449 0.003601777152419

49 0.008382851789990 0.003165358484080

64 0.005693541722870 0.002058154266352

81 0.004422561209010 0.001764431690954

100 0.002573194839596 0.001215442051533

121 0.001853860804109 0.000639748726227
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Figure 8 Maximum relative errors as a function of nodal points

of Example 4.2.
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Figure 9 Root mean square relative errors as a function of nodal

points of Example 4.2.
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4.4. A simply supported hollow plate

An exact solution in term of deflection is given by

wðx; yÞ ¼ x� 1

2


 �2

þ y� 1

2


 �2

� 1

5


 �2
 !3

sinðpxÞ sinðpyÞ:

ð28Þ

For Problem 4.4, nodal distribution in the hollow plate with

152 irregular scattered nodes is shown in Fig. 3. Apparently,
using linear basis and quadratic basis, an approximate solution
profile gives a significant outcome that is as same as an exact

solution profile which is illustrated by Figs. 12 and 13,
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Figure 7 Exact solution versus fictitious values (left) and absolute value of the difference between exact solution and approximate

solution (right) of Example 4.3, 11 · 11 regular nodal distribution with quadratic polynomial basis.
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Figure 10 Exact solution versus fictitious values of Example 4.3,

121 irregular nodal distribution with linear polynomial basis.
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Figure 11 Exact solution versus fictitious values of Example 4.3,

121 irregular nodal distribution with quadratic polynomial basis.
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Figure 12 A comparison of an exact solution (left) and an approxima

with linear polynomial basis.
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respectively. In addition, the maximum absolute value of the

difference between an exact solution and an approximate solu-
tion is approximately 0.001376 while the maximum of root
mean square value of the difference between an exact solution

and an approximate solution is approximately 0.000722 when
using both linear polynomial basis and quadratic polynomial
basis for constructing nodal shape functions.

According to numerical results, both the errors using qua-

dratic polynomial basis are less than both the errors using lin-
ear polynomial basis; moreover, increasing a number of nodal
points can be decreased maximum relative errors and root

mean square relative errors. Typically, quadratic-polynomial-
basis usage is a better criterion constructing the nodal shape
function than linear-polynomial-basis usage; furthermore,

increasing a number of nodal points can decrease maximum
relative errors and root mean square relative errors. Irregular
nodal arrangement can also consider constructing shape func-
tion. It can be seen that the agreements between numerical and

analytical results are quite excellent, and the convergence is
very good as well as computational efficiency.

5. Conclusions

An alternative approach of meshless method for solving thin
plates is presented in the present work. The moving kriging

interpolation method can also be used for constructing nodal
shape functions as well as two-field variables scheme and is
proposed in order to decompose the biharmonic equation into

a coupled of Poisson’s equations; furthermore, two-field vari-
able local weak forms using Heaviside step function enable
us to simplify the complicated conventional local weak form

of the biharmonic equation as well as impose straightforward
the simply supported boundary condition, For these reasons,
computer literacy is also conducted systematically in the sense
of easiness and robustness and its implementation is also

acceptable as well. Comparing between exact solution and
approximate solution for all examples, numerical results shows
that usage of the quadratic polynomial and linear basis can

give quite accurate numerical results.
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Figure 13 A comparison of an exact solution (left) and an approximate solution (right) of Example 4.4, 152 irregular nodal distribution

with quadratic polynomial basis.
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