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ARTICLE INFO ABSTRACT

MSC: The discretization of initial and boundary value problems and their existence behaviors are of great significance
26A48 in various fields. This paper explores the existence of a class of self-adjoint delta fractional difference equations.
26A51 The study begins by demonstrating the uniqueness of an initial value problem of delta Riemann-Liouville
33B10 fractional operator type. Based on this result, the uniqueness of the self-adjoint equation will be examined and
gzgéj determined. Next, we define the Cauchy function based on the delta Riemann-Liouville fractional differences.
Keywords: Accordingly, the solution of the self-adjoint equation will be investigated according to the delta Cauchy

Riemann-Liouville operator
Self-adjoint equation
Green’s functions

Existence and uniqueness

function. Furthermore, the research investigates the uniqueness of the self-adjoint equation including the
component of Green’s functions of and examines how this equation has only a trivial solution. To validate
the theoretical analysis, specific examples are conducted to support and verify our results

1. Introduction

One of the common areas of applied and pure mathematics is
discrete fractional calculus with many applications, which deals with
non-integer sums and differences. It has been viewed for a very long
time as a purely theoretically interesting subject but later, several
applications in engineering and physics modeled by discrete fractional
calculus. Discrete fractional calculus has become a discretization field
of fractional calculus that supported by computational and sum rep-
resentations; see e.g. Goodrich and Peterson (2015), Wu and Baleanu
(2015) and Mozyrska et al. (2019).

Discrete fractional analyses are always positioned to work on com-
mon models of applied and pure mathematics due to their unique
potentials to identify memory effects. These are related to real-world
applications and included theories regarding signal processing, dynam-
ical system, chaos, financial perspectives, impulsive perturbations, and
further different aspects; see e.g. Ostalczyk (2015) and Atici et al.
(2017).

* Corresponding author.

Recent literature explores diverse computational methodologies for
fractional boundary and initial value models across different physi-
cal domains. Also, with the development of discrete fractional oper-
ators and the discrete fractional analysis, the extension of discrete
initial value problems (see e.g. Goodrich (2012), Wang et al. (2020b),
Ahrendt et al. (2012)) and boundary value problems of fractional
difference models have brought great convenience to researchers (see
e.g. Wang et al. (2020a), Almusawa and Mohammed (2023), Baleanu
et al. (2023), Chen et al. (2019)). For a discrete system, the initial
value problem (IVP) and boundary value problem (BVP) of a fractional
difference equation (FDE) model can be regarded as the problem of
finding the stability analysis of the discrete system when the initial
time conditions and the function in the right sides are known. Evi-
dently, the stability analysis, existence and uniqueness of the solution
to the IVP of fractional difference types are important when analyzing
fractional difference equations; see e.g. Mohammed and Abdeljawad
(2020), Brackins (2014) and Gholami and Ghanbari (2016). Further-
more, different fractional and discrete fractional self-adjoint models,
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and Green’s function for boundary value problems involving fractional
difference models are analyzed by the scholars which are available in
the literature as Brackins (2014), Kilbas et al. (2006), Cabada et al.
(2021) and Ahrendt and Kissler (2019).

In this paper, we first apply existence and uniqueness theorem of the
fractional IVP (in Lemma 2.1) to show the uniqueness and regularity
of the other results. Using the variation of constants formula, we
will continue to introduce a Cauchy function an solve the self-adjoint
problem. In addition, our focus is in fact mainly on the Green’s function
in the sense of discrete fractional operators and novel Cauchy functions.

The rest of the paper is structured as follows: The literature of
delta fractional operators has been reviewed in Section 2, and then an
essential lemma has been stated and proved. Section 3 is reserved for a
presentation of main results regarding fractional self-adjoint problems.
In Section 4, the Cauchy function considering the falling function is
defined. Then, in the same section, we analyze the self-adjoint problem
to get the uniqueness and triviality of the function. Finally, in Section 5,
we summarize the content of the paper.

2. Preliminaries

Let a > 0, Npo = pp+Nand ,N :=m-N, for pj,m € R, where
N represents the natural numbers. Further, let T := {py,p, + 1,...,m}
such that m = py + k, for some k € N. Then, it is defined in Goodrich
and Peterson (2015, Definition 2.25) the A—fractional sum operator as
follows:
X—a

(Lar) 0= = (x—r—l)

T(@ 2 f(r) for x in N

b 2.1

and it is defined in Guirao et al. (2022, Theorem 2.2) the A—fractional
difference operator as follows:

x+a
(%A“f) (x) = Z (x=r=D==Lf(), forxinN, sy (22)
fora € (¢ - 1,¢) and f is defined on Nﬁo' Above, we have
x& = F(x—+1), Axl:axﬂ, (23)
I'x+1-a)

A major property of the composition of delta fractional sum and
difference is proved in Abdeljawad (2018), which is given by

( RL 4-a RLAaf) ) = f(0), (2.4)

po+t—a

for x €N, 0.

Definition 2.1 (see Brackins (2014)). For the homogeneous FDE
(Rkae(2vy) ) 0 =0,

po+l
we say ¢(x,5(r)), where ¢ : Npys1 XNy 1y = R, as a Cauchy function

such that ¢(-,5(r)) is the unique solution of

(RLa« (ZV(p)) x) =0, xeN,,
(2.5)
er=1)=0. (Vo)) = 4.
for each fixed r € N, ;. Also, it is expressed by
x (=l
o= Y CFE IO ey @2.6)

I'(a)z(s)

s=r

where 6(r) =7+ 1 and 6(zr) =7 — 1.

Here, we will state and prove our main Lemma that will be an
essential tool for the next results.

Lemma 2.1. Let0< 60 < 1, Ay € R, and h, g be defined on Np,- Then
the fractional IVP

(,Ra%) ) = g(x+0), x €N, 1,

(2.7)
Ypo+1) = Ay,
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has the unique solution

—-2+6)=L
re) ’

) = (m‘}l[" ) (x+6)+ [AO ~gpy + 1| E 0

st.x €Ny ).

Proof. By taking Lo4=? on both sides of (2.7), we have

(507 (25470) ) 00 = (5547 5+ 0)) (0 28)

Computing the left side of (2.8), we see that

(25870 (25%5) ) 0 = (5470 0
x—0

1 0—1
=— (x = a(r)=h(r)
F(e) r=p02+2—9
1 x—0
=— (x = o)=L ha(r)
F(a) r=p02+l—€
1 0-1 _
—%(x—(Po+l—9)—l) h(py+1—0)
= <p0+1R5‘r€ poli% 4 )( )= m (x=po-2+ 9)ﬁh(1’0 +1-9)
= y(x )—m(x po— 2+ 014, (2.9)
where it is used that
po+l
h(po+1-0) = F( 5 ,_%1% = nf=hy)

F( 9)( 0 — D==Ly(py + 1) = y(py + 1) = A,.

Next, by computing the right side of (2.8), we have

1 x—6

(pn+2 LA g (x + 0)) (x) = o ,,02:24; (x =o)L g(r +0)
x—0
1 A
=6 ,:,,02:1_9 (x =o)L g(r+6)
1
) (x=(py+1- 9)—1) &g+ 1)
= (5470 o) - r(a) T (= po =2+ 0)g(py + 1.

(2.10)
Having the left and right sides of (2.8) as in (2.9) and (2.10), respec-
tively, can give the desired result. []

Example 2.1. Consider the fractional IVP
(%) (9 =2

¥(1) =nx.
By considering Lemma 2.1, we have

—py 4+ u—2)#D
y(x):(p]iIIA " )(x+#)+(,,_2)w

I'(u)
__ 2 RPN SN C et el k2 i
_F(y+1)(x+” po— DWW +(x-2) W
_ 2 TI'x+wu-p) g-2T(x—py+u-—1)
I'(u+1) I'(x-py) I'(w I'(x - py)

for x € N,. In addition, we have represented the values of y(x) for
x € {2,3,...,10} and different values of u in Fig. 1.

3. Discrete self-adjoint problems

In this section, we examine the existence and uniqueness of the delta
fractional self-adjoint IVP.
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Fig. 1. Graph of the function outcome for some values of 6.
Theorem 3.1. LetO<u <1 z: N, — (0,00) and g.g : Ny, —
R. Then, the fractional IVP
(RLaH (299)) () + g+ W) yx+u— D =g+ ). xEN, .
¥(po) = Ag. ¥(po+1)= By,
B.1)
has a unique solution for y : N, — R.
Proof. Rewriting (3.1) by using (2.2), we have
1 X+pu
—— ) x—r= DL 2V (0) + gy (x )y = 1) = gyl + ).
F(_M) r=py+1
0
3.2)

With x = p, + 2 — u, the above equality becomes

Po+2

+l—p—
I ,:,,Zﬂ‘;l (e ")
+81 (Po+2) ¥ (po+1)

o [P 2V g+ D+ (= DA 24y +2)|

&Py +2) = = 29y

F( M)
+81(py +2)y(py + 1)
= z(py + 2)y(py +2) + Aguz(py + 1) + By [gl(Po +2) = uz(py + 1) — z(py + 2)]-

We solve this equation for y(p, + 2) to get

y(py+2) = 8(py+2)—Agpz(py+1)— B, (81 (P0+2)_HZ(P0+1)_Z(P0+2))] .

1
(Po+2) [
This implies that y(p, + 2) can be determined uniquely by considering

¥(py) = Ay and y(py + 1) = B, and the given values of z, g;, and g,.

We are continuing by using induction and we have to demonstrate
that y(x) is uniquely determined on N po- FOT this, let y(x) be the unique
solution to (3.1), for x € N;S and x, € Npo +2- Then, we have to prove
that y(x, + 1) is also the unique solution of (3.1).

To do this, we use x = x5 + 1 — u in (3.2), we get

xp+1 (xo_ﬂ_r)fufl
B +h= Y Tﬂ)[sz](ngl (xo+1) ¥ (xo)
r=po+1
X0 (x—p—r) =L
=y %[zv)l](r)+g1 (xo+1) ¥ (xo)

r=po+1
+ z(xg + Dy(xg + 1) = z(xg + Dy(xq)-
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This can be solved for y(x, + 1),

=1 U G i
y(x0+ ) = m gz(X0+ )—r=§+l T—p [Z y](r)

—g1(xg + Dy(xp) + z(xg + Dy(xp) | -

Thus, by considering the hypothesis, each y(x), for x in Nzg, are known.
Therefore, we can say that y(x,+ 1) is also the unique solution of (3.1).

Consequently, y(x) is the unique solution of (3.1) on NXU+1 This give
us our proof. []
Next, we consider the fractional self-adjoint IVP:
"
(,Rar VD) ) = fOr+ . x €Ny, 59

¥(py) = ¥(py +1) =0,
where 0 < u <1, z : NPDJrl — (0,00), and f : Np0+2 — R. Then, the

following can be deduced as a variation of constants formula.

Theorem 3.2. The solution to (3.3) can be expressed by

=Y el am)f(r),
r=py+2
where @(x,5(r)) is as defined in Definition 2.1.

Proof. Assume that h(x) := (zVy)(x) and y(x) is a solution of the
fractional IVP (3.3). Therefore, h(x) is a solution of

(Rah) ) = fOr+ . AGp+ 1) = 2y + DV + D =0
Moreover, by Lemma 2.1, its solution can be represented as

(x—py =2+ ="

I'(u)
_ ZX: [x—a(r)+u]ﬂf(r) B (x—po—2+;4)E
L () I'u

he) = (,R5a70r) (xtw) - o+ 1)

fpy+ 1.

It can be divided both sides by z(x) to get

: el
3 Grumort

AV =
(Vy)0) 2 T

By summing both sides Y we have

s=po+2°

X

YD) =¥+ = Y

s=po+2 Lr=py+2

(s +p—o(r)t
s 3.4
Z B ECEEEAL @4

where we have used that

X

Y (V) = y(x) = y(py + 1).

s=po+2

Now, we should interchange the order of the sums in (3.4) and use
¥(py + 1) = 0 to obtain

X

B (s + u—o(r)*=L
o=y [Z 0 200 f(r)]

r=py+2
] AU,

_ Z 2 (s+p—o()=
T(u) 2(s)

r=py+2

> o5 f().

r=py+2

This ends our proof. []

Corollary 3.1. Letz: Npp+1 = (0,00) and w,(x), w,(x) can satisfy
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(e (zi0) ) 092 (S (V1) ) 0. x €

w(pg) =wy(py),  wi(py +1) = wy(py +1).

Then, w,(x) > w,(x), for x € Np,-

Proof. Let us set w(x) = w;(x) — w,(x), and
800 1= (, M4 V) ) (0 = (4 (2Va0,) ) 0 = (54 (2Vien) ) ) 2 0,
x €N, .
Therefore, w solves the IVP
(2 V) ) () =g, x € Nyya,
(Vw)(po+ 1D =0.

Thus, by using Theorem 3.2, we see that

w(py + 1) =0,

X

ww=Y eresr)= Y g()Z““’(’))*_

r=po+2 r=po+2 F(M)Z(S)

and this implies that w(x) =
done. [

w (x)—w,(x) > 0. Thus, the proof has been

4. BVPs with Green’s function

This section is dedicated to examine the Green’s function for ho-
mogeneous and nonhomogeneous fractional BVPs with homogeneous
BCs.

Theorem 4.1.
h,z : N"
Po

Let py,m be two real numbers such that m — p, € N,
o= R, and z(x) > 0. Then, the fractional BVP

~ (R VY)W = hex+ ), xEND “n

¥(po) =0, ym)=0,

has the unique solution

m
=Y G A, (4.2)
x=py+1
where
Pm3(r) _
B “otmpg) PO P0): x<r—1,
G(x,r) = Pm(r) B . (4.3)
“gmpy) PO P0) — @(x,5(r),  x 2,

and ¢(-,-) is as defined in Definition 2.1.

Proof. Let ¢(x) = (sz)(x), and let Ay = @(py+1) = z(py+ 1)(Vy)(p0+
1). Then, by using Lemma 2.1, the solution ¢(x) of the fractional IVP

(R ar) () = hx + ),

@(py + 1) = Ay,
is given by
(x=py— 2+t
00 = = (, VR ) G+ = [Ag = Aoy + D] =

By setting k, := Ay — h(py + 1) and using (Vy)(x) = @(x)/z(x), we have

_ -1 [ RL 44 M

(Vy)x) = 7 _(FOHA “p )(x+/4)—k0 o
_ - ~ 1 —po =2+
Tz | T ),_%I(H” OO+ T(w ’

By summing both sides Z)S;Po +1 we have

X [ s _ Hl
== 3| 3 I T (u)z(s)

s=po+1 Lr=py+1 F(M)

s—po—2+/4)"_l]
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We change the order of sums to have

S (s+p—o(r)=" (s=py =2+
=— h —k
e ,30:“ 0 Z TGoz(s) 0 _%1 T
== Y h(e(x,5(r) - koo(x, po)- (4.4)

r=py+1
If we let x = m and solve it for k;, then we have
= X1 hO@(m, 5(r)
@(m, py)
Substituting k into (4.4) to obtain

ko =

== Y hIe(x.60) + (”(( 20§ ot 5(7)
r=po+1 > P 0) r=po+1
== Y x50+ (”(( 20§ rpm, 50)
r=py+1 m, p 0) r=py+1
;’)’((;f) ")) h(r)p(m. 5(r)
PE0) ey
=Y o ["’('" (';) (%, ) — DL, a(r))]
—po+1 P
i3 h()[(”("’ CET o Po)]
r=x+1
Z h(G(x, ),
r=po+1
where
“’(:','n”[fr;) o(x,py), x<r-—1,
GEN=1 ymsm
20D o (x, pp) = (3, 50D, X2 7.

Consequently, any solution y of the BVP (4.1) is necessarily given by
(4.2) as we just established. Furthermore, the uniqueness of y can
follow from Theorem 3.1. [

Next, we generalize the above Green’s function theorem to the
following fractional self-adjoint BVP:

(@) =0, xenn .
Soypo + 1) = & Vy(py + 1) =0, (4.5)
& y(m) + & Vy(m) =

where z : NJ 1 = (0,00), &+&>0and & +&5>0.

Lemma 4.1.
solution iff

The fractional self-adjoint BVP (4.5) has only the trivial

&é o (5=po =2+ W & m—py =2+ W
= + 0.
2y + D) O ;z I (u)z(s) T (4)z(m) *
Proof. If we consider — <p0]iLlAé° (sz)) (x) = 0, then it follows from
Lemma 2.1 that

(x—py—2+ "

(zVy) (x) = koT,

that is,

(Vy)(x) = kOM- (4.6)
I'(p)z(x)

It can be rewritten as follows

-2 4 #)ﬂ

al (
Y(x) = y(py) = Z ko - T'(p)z(s)

s=py+1
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Let us set y(py) = k; to have

¥ = ko 2 6o

s=po+1

u—1

“2EOT Lk “.7)

F (m)z(s)

We can find the values of k, and k; by considering BCs. By computing
both Egs. (4.6) and (4.7) at x = p, + 1, we have

ko
Wpy+1) = m +ky
ko
2P+ 1)
Thus, the BC &y(py + 1) — & Vy(py + 1) = 0 gives
ko (i; f;)) +k1& =0. (4.8)

Again, by evaluating Egs. (4.6) and (4.7) at x = m, we see that

(V3) o+ 1) =

< (s=po—2+ "L
= k
yom :%H O Tz
(m=py =2+ !
TGo)2(m)

Therefore, the BC & y(m) + & Vy(m)

¢ (—p =2+ WL m—py -2+ pt _
o (52 2 T e g thie =0

s=po+1

+ky,

Vy(m) = kg

= 0 becomes

(4.9)

It is known that the system of Eqgs. (4.8) and (4.9) (for &, and k;) has
only the trivial solution iff the determinant of the system

A= Zizofll) . - % i
SPXONNES TR (Te R
is not equal to 0. This equals to
_ [ _ ST —g¢, Z (s—py—2+ Il)E
z(pp+1)  z(pp+1) et T'(u)z(s)
(m—p()—2+/4)ﬂ
-4 W
___%% —&6, i (s —py =2+ =t _ So&s(m —py — 24+t
z(pp + 1) o2 T()z(s) I'(p)z(m)

Consequently, we found that k, and k, are not both equal to 0. That is,
y is nontrivial iff A # 0. The proof is done. []

Theorem 4.2. Suppose that A be a quantity as in Lemma 4.1. Then the
Green’s function for the BVP (4.5) is expressed by

{ u(x,r), x<r-—1,
G(x,r) = (4.10)
v(x,r), x2>r,
_ [m+ u = o ()=
u(x,r) = 1 &0&20(x, po)p(m, 5(r) + fofﬂﬂ(&]’o)w
ae-&) o G- &mt - (=
z(pp+ 1) eLm T'(u)z(m) ’
4.11)
and
u(x,r) = u(x,r) — ¢(x, 6(r)), (4.12)

where ¢(-,-) is as defined in Definition 2.1.
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Proof. Suppose that y(x) is a solution of the BVP

~ (R VD) ) = b+ ), xEND
oypo+ 1)=& (Vy) (o + 1) =0,
&y(m)+ & (Vy)(m) =0

(4.13)

Therefore, ¢(x) := (zVy) (x) can solve the IVP

— (,,0+1A”¢> (x)=h(x+u), xe€ Npo+2’

Bpo+ 1) = z(py + D[¥(py + 1) = ¥(py)]-
By considering Lemma 2.1, the solution of this IVP will be

(x=py =2+ WL

$() == (,REarh) v+ ) - ko —

potl

That is,

u—1
(Vy) ) = 2 (x+p—a(r)f= (x 24+ puy—

oy
—hp—2 7" (414
T Tz h() =ko T(w)z(x) “4.14)

r=po+1

By summing both sides Y* to obtain

s=po+1

al s+ p — o)=L (s—py—2+ u=t
- =- ST ) — kg — e =T )
Y(x) = ¥(py) .\:%1 ( _%] Foas) 0~k

We let y(py) = k; and interchange the sums to obtain

o v Gtu—or)t
y(x)=— Z Z(W’i(r)>

r=po+1 s=r

S (s—py—2+ it
_kO Z M-Fkl

T T

= Y 9%, 500 h(r) = ko@(x, po) + ki (4.15)

r=po+1
Therefore, we see at x = p, + 1 that
—ky h(py + 1)
ypo+l)= —— - ——
0 2o+ z2pg+ D)
and
—ky  h(pp+ 1D
z(pp+1)  z(pp+ 1)’
Then, by using the first condition we have
(e At Y (e M)
"\zpo+ D zpo+1) "z + D 2o+ D)

Since h is a function defined on N, ,,, we can extend the domain of &
by setting A(p, + 1) = 0. So, we recast the last equation as follows

§1 =% _ _ & =&k
o <z(p +1)>+k1§°‘0 = T

(V¥)(pp+ 1) =

(4.16)

Besides, since we have

ymy ==Y h(r)(m, &(r) - ko@(m, pg) + k;,
r=pp+1
and by using (4.14),
" ot —py =24 L
Z 1) m+u—r—1) —ko(m Po — 2+ p) ’
I'(u)z(m) I'(u)z(m)

r=po+1

(Vy)m) = -

we can say by applying the second condition that

0=¢ (— > h(r)pm, 5(r) — koe(m, po) + kl)
r=po+1

< (m+;4—r—l)E (m—po—2+/4)D
e (‘ Z ho < T Goz(m) ) T oz )

r=py+1
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or equivalently, we have

— oy — 2+ )t
(m = py n; >+k1§2

ko <—-§2(P(msP0) -5 I'(p)z(m)

(m+/4—r—1)E

=& Y hemer)+& Y h() XPED)

r=po+1 r=po+1

—po =2+t

(m+p—

. ] r— e
IRG) Solm s+ &y |

r=po+2

4.17)
By substituting k; (in (4.16)) into Eq. (4.17), we obtain

(m—p = &&= EDko )

ko <—§2(p(m, po) — &3

I'(u)z(m) &oz(py + 1)
< _ (m+u—r— 1)@
A e o
0

By using the definition of ¢(m, p;,) and multiplying both sides of it by
&, one can have
(m+u—r— Lt

2 ho) [§0§2¢(m-3(r))+§(1§3 ] ( fofzz(p ey

e T(u)z(m)
¢ (s —py =2+t (m—py=2+w"  && 4é
b Fp%z x0T TGozm T xm+ D zme+ |

It follows that
z h(r) [ioizw(m, 6(r) + &oés %] = ko [ <z(§fj D

r=py+2
L G&m—py =2+ wE
+ 2023 0 >] = — Ak,

< (s—py—2+pk
ks _2 T (1)z(s) T()z(m)
s=po+2

This implies that

k0=—% > h [«foéfp(mﬁ(r))%ofs

r=py+2

(m+p—r— l)ﬂ
I()z(m) '

By using k, in (4.16), we find
(m+p

—r—1rt
I'(p)z(m)

GER (m+p—r—1nt
= Az, +1)( Z 1o [52(”(’” L YPE) D

r=po+2

G-& (_1 3 a
k= ot D) <‘Z 2 o [éoézw(m, 5() + &

r=py+2

We know that z(x) > 0 and A # 0. Therefore, we substitute k, and k;
in (4.15), we have

yx)=- Z h(r)e(x,6(r) — ko@(x, py) + k;

r=pp+1

=— ) h(ex,5(r)

r=py+1

m —r—1rL
+ @(x. pg) (i 2 h(r) [tfofz(ﬂ(m, 6(r) + &pés %] )
r=po+2

& - &) c _ (m+/4—r—l)ﬂ
T oD Az(pp + 1) ( 2 ho [§2<P(ma6(r))+§3w] )
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The terms can be combined to have

Y == Y hre(x,5(r)
r=py+1
(m+pu—r—1L

+ Z h(r) [ <§o§z(0(xa Po)@(m, 5(r)) + & &30(x, py) TGozm)

r=po+1
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&G -&) (m+u—r— et
I'(p)z(m) '

Zr—p0+l( )+ Xl 1 (), it follows that

LG -&)
Tt PO T

By using Zr_po a0 =

} (m+p—r=1rL
y(x) = Z h(r) E0&r@(x, p)p(m, 5(r)) + Ey&p(x, py) ———————

r=py+1 Lo
&&= &) _ EE —&) (m+pu—r—1=L _
NETTE) z(py + 1) @(m,5(r)) + z(py+ 1) T'(u)z(m) )— (p(x,g(r))]
+pu—r—1pt
' rglh(r) [ (‘ftlézﬁﬂ(x, Po)e(m, 5(r) + &&39(x, py) %

& -&)
T z(py + 1)
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Consequently, it leads to

y(x) = Z h(ryu(x,r) + Z h(r)v(x,r)

r=po+1 r=x+1

Y hOGx, ).

r=pp+1

This completes the proof. []
5. Concluding remarks

To conclude, our study focuses on the existence, uniqueness and
trivial solutions in the classes of self-adjoint equations with delta
Riemann-Liouville fractional operators. The uniqueness of the initial
value problem on delta fractional difference operators is represented by
applying delta fractional sum to both sides of the equation and using
some discrete delta properties. By applying this uniqueness theorem,
we have analyzed and derived the existence and uniqueness of the
proposed self-adjoint delta fractional difference equation. In the other
part of our study, the Cauchy function based on the delta Riemann—
Liouville fractional differences has been introduced and the self-adjoint
problem has been solved accordingly. In addition, the uniqueness of
the self-adjoint problem including the component of Green’s functions
has been determined. Then, we have examined how this problem has
only a trivial solution and the condition under which it has only
a trivial solution has been found. Throughout the study, we have
presented some examples and through these extensive examples, we
have validated the theoretical results.
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