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Abstract The article is concerned with homotopy in the category P whose objects are the pairs

ðX; �Þ consisting of a Polish space X and a closed binary operation �. Homomorphisms in P are

continuous maps compatible with the operations. The result showed that the category P admits

the structure of a fibration category in the sense of H. Baues. The notions of fibration and weak

equivalence are defined in the category P and showed to satisfy fundamental properties that the

corresponding notions satisfy in the category Top of topological spaces.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Several ubiquitous spaces such as HomeoðMÞ and DiffðMÞ
(where M is a compact manifold), have been studied inten-

sively from many perspectives. However, in the last few dec-
ades, they come together as a unified class of metric spaces
called Polish spaces. A Polish space is a separable completely
metrizable topological space. These spaces are the natural set-

ting for descriptive set theory and its applications. See for
instant Kechris (2012), Moschovakis (2009) and Srivastava
(2013). In this paper, we focus our attention on the homotopy

theory of Polish spaces. In particular, we take the viewpoint of
axiomatic homotopy theory.
The definition of Polish spaces depends essentially on topo-
logical notions of metrizability and separability which are not
preserved by homotopy (Gottlieb, 1964, Theorem 3.1 and Hu,
1961, Section 2). Another observation is that taking subsets of

Polish spaces need not yield a Polish space.
Therefore, we impose a mild condition on the category of

Polish spaces and continuous maps, Pol, which is the existence

of a closed operation. The objects in the new category P are
the pairs ðX; �Þ consisting of a Polish space X and an operation
� : X� X ! X defined for each ðx; yÞ 2 X� X. The homomor-

phisms in P are continuous maps compatible with the opera-
tions. Sometimes such an algebra is referred to as a binary
groupoid or a magma. However, we will call it a P-space here,
so we do not confuse it with a completely different approach

proposed in Ramsay (1990) named Polish groupoids.
The idea here is that we choose a nice algebraic category P

endowed with a reasonable notion of homotopy, together with

a functor F : Pol ! P such that if X is homotopic to Y in Pol,
then FðXÞ is homotopic to FðYÞ and vice versa, where X and Y
could be either objects or morphisms.

In Quillen (1967), Quillen introduced the notion of model
category as a framework for axiomatic homotopy theory. A
modern theory of Quillen’s homotopical algebra can be found
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in Dwyer and Spalinski (1995) or Hirschhorn (2003). Baues
(Baues, 1989) developed the concept of fibration category
and cofibration category. His approach is regarded as doing

one half of Quillen’s axioms. These categories satisfy certain
axioms that rely on the notions of fibration, cofibration, and
weak equivalence.

Baues showed that Top has the structure of a fibration cat-
egory where fibration means Hurewicz fibration, cofibration
means the usual cofibration, and weak equivalence refers to

homotopy equivalence. This paper attempts to examine
whether the category P satisfies the axioms of Baues. Focusing
on fibration and regarding the P category as a subcategory of
Top, it is natural to ask whether the fibration structure of Top

restricted to P is a fibration category. This question was
addressed for different spaces (cf. Andersen and Groda
(1997) and Kahl (2009)).

The result showed that the categoryP has the structure of a
fibration category (Theorem 6) provided that the fibration
means a P-fibration, and weak equivalence means a P-

homotopy equivalence.
We should point out that the techniques used in this paper

do not make serious use of deep results from descriptive set

theory. The results here depend only on the topological prop-
erties of the spaces.

Our main reference for the classical homotopy theory is the
book (Hu, 1959). All the spaces in this work are assumed to be

separable and completely metrizable.

2. The category P

Definition 1. A pair ðX; �Þ is called a P-space where X is a

separable, completely metrizable space and � is a closed
operation on X.

� : X� X ! X; such that ðx1; x2Þ # x1 � x2 2 X;

8ðx1; x2Þ 2 X� X. A P-map f : ðX; �XÞ ! ðY; �YÞ between two
P-spaces is a continuous map f : X ! Y that preserves the
operations, i.e., fðx1�Xx2Þ ¼ fðx1Þ�Yfðx2Þ for all x1; x2 2 X.

Remark 1.

1. Clearly, the composition of two P-maps is a P-map. The
identity map idX : X ! X is a P-map ðX ; �Þ ! ðX ; �Þ for

any closed operation on X.
2. Since the spaces under study are metrizable, (and hence

they are Hausdorff and paracompact), the diagonal set

C ¼ fðx1; x2Þ 2 X � X jx1 ¼ x2g is closed in X � X . There-
fore the pair ðX ;CÞ is a P-space and the set of P-maps
ðX ;CÞ ! ðY ; �Þ is the same as the set of continuous maps

X ! Y . Moreover, X is said to have a Gd-diagonal since
C is Gd-set ((Gruenhage, 2014)).

3. The two natural projections given by p1ðx1; x2Þ ¼ x1 and

p2ðx1; x2Þ ¼ x2 for all x1; x2 2 X define closed operations
that make X into the P-space ðX ; p1Þ and ðX ; p2Þ.

Example 1. The space CðX;YÞ of continuous maps X ! Y

with the compact-open topology is separable, completely
metrizable Kechris, 2012, Theorem 4.19. Then CðX;YÞ; �ð Þ is
a P-space, where � is the composition of maps.

It is known that a subspace of a Polish space need not be a

Polish space, it is Polish if and only if it is a Gd in the relative
topology (Kechris, 2012, Section 3C).

Definition 2. Let ðX; �XÞ be a P-space and let A be a subset
of X. Then ðA; �AÞ is a P-subspace of ðX; �XÞ provided A is a

Gd (in relative topology), and a1�Aa2 ¼ a1�Xa2 for all
a1; a2 2 A.

Henceforth, we shall identify the operation map on the P-
subspace with that on the original P-space.

The category P is formed by the P-spaces as objects and

the P-maps as morphisms. The P-maps
f : ðX; piÞ ! ðY; piÞ; ði ¼ 1; 2Þ, defines a continuous map
f : X ! Y. There are two functors can be defined between

the categories P and Pol:

1. The functor Gi : Pol ! P, such that GiðX Þ ¼ ðX ; piÞ;
ði ¼ 1; 2Þ.

2. The forgetful functor F : P ! Pol, such that FðX ; �Þ ¼ X .
Propostion 1. The category P is closed under pullbacks.

Proof. Let g : ðX; �XÞ ! ðY; �YÞ and f : ðZ; �ZÞ ! ðY; �YÞ be
two P-maps. Consider the fiber product space
P ¼ Z�YX ¼ fðz; xÞ 2 Z� XjfðzÞ ¼ gðxÞg with the operation

� defined by ðz1; x1Þ � ðz2; x2Þ ¼ ðz1�Zz2; x1�Xx2Þ Then ðP; �Þ
is a P space. Indeed, the product of Polish spaces is Polish
(Kechris, 2012), and the induced operation � on P is closed

as a subset of P� P. Consider the diagram in P.

where ~f and ~g are projections, and hence, P-maps. To show
that ðP; �Þ has the universal property of the pullback, let
ðQ; �QÞ be a P-space and let a : ðQ; �QÞ ! ðX; �XÞ and

b : ðQ; �QÞ ! ðZ; �ZÞ be two P-maps such that g � a ¼ f � b.
Assume that there exists a unique continuous map

l : ðQ; �QÞ ! ðP; �Þ such that a ¼ ~f � l and b ¼ ~g � l. To show

that l is a P-map; let q 2 Q. Since the spaces are Polish, and
both a and b are P-maps, then there exist neighborhoods U
and V of q such that a is compatible with the operations on

U and b is compatible with the operations on V. Since U \ V
is a neighborhood of q, and since a and b are compatible with
the operations on U \ V, then l is compatible with the opera-
tions on U \ V. Therefore ðP; �Þ is the pullback of g and f in

P. h
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3. The P-Homotopy

Using the fact that the path space XI of all continuous maps
I ¼ ½0; 1� ! X with the compact-open topology is a Polish

space (Example 1). Given a continuous map

�XI : XI � XI ! XI, such that �1�XI�2 ¼ �1ðtÞ�X�2ðtÞ, for all

paths �1; �2 2 XI and for all t 2 I. Obviously, �XI defines a

closed operation on XI and, hence, the pair ðXI; �XIÞ is a P-
space.

Now we have the P-maps js : ðXI; �XIÞ ! ðX; �XÞ; ðs ¼ 0; 1Þ
such that jið�Þ ¼ �ðsÞ. Let a P-map ðX; �XÞ ! ðY; �YÞ be given.
The continuous map r : ðX; �XÞ ! ðYI; �YIÞ such that
rðxÞ ¼ CfðxÞ, where CaðtÞ ¼ a is the constant path.

rðx�Xx0Þ ¼ Cfðx�Xx0Þ
¼ C½fðxÞ�Yfðx0Þ�
¼ CfðxÞ�YICfðx0 Þ
¼ rðxÞ�YIrðx0Þ:

Thus r is a P-map.

Definition 3. Two P-maps f; g : ðX; �XÞ ! ðY; �YÞ are said to

be P-homotopic, (notation: f’pg), if there exists a P-map

H : ðX; �XÞ ! ðYI; �YIÞ called a P-homotopy joining f and g

such that for all x 2 X; HðxÞð0Þ ¼ fðxÞ and HðxÞð1Þ ¼ gðxÞ.

Definition 4. A P-map f : ðX; �XÞ ! ðY; �YÞ is a P-homotopy
equivalence if there exists a P-map g : ðY; �YÞ ! ðX; �XÞ such
that g � f : ðX; �XÞ ! ðX; �XÞ and f � g : ðY; �YÞ ! ðY; �YÞ are

homotopic to idX and idY respectively.

The P-homotopy has the standard properties required of a

homotopy notion, namely:

Theorem 1.

1. The relation ’P is an equivalence relation.

2. Let f 1; f 2 : ðX ; �X Þ ! ðY ; �Y Þ and g1; g2 : ðY ; �Y Þ ! ðZ; �ZÞ
be P-maps. If f 1’Pf 2 and g1’Pg2, then g1f 1’Pg2f 2.

3. Every invertible P-map in P is a P-homotopy equivalence.

Moreover, if two of the P-maps f ; h, and f � h are P-
homotopy equivalence, then so is the third.

Proof. (1) symmetry and reflexivity are straightforward. To

check transitivity: Let f’Pg and g’Ph by P-homotopies H

and F respectively, and let K be given by

KðxÞðtÞ ¼
HðxÞð2tÞ; 0 6 t 6 1=2

FðxÞð2t� 1Þ; 1=2 6 t 6 1:

(
Then K is continuous and also a P-homotopy between f and h.

(2) Let H : ðX; �XÞ ! ðYI; �YIÞ be a P-homotopy joining f1
and f2. Similarly, let F : ðY;BÞ ! ðZI; �ZIÞ be a P-homotopy

joining g1 and g2. Define

KðxÞðtÞ ¼
g1HðxÞð2tÞ; 0 6 t 6 1=2

Fðf2ðxÞÞð2t� 1Þ; 1=2 6 t 6 1:

8<:
Then KðxÞðtÞ is a P-homotopy ðX;AÞ ! ðZI; �ZIÞ joining g1f1
and g2f2.

(3) Follows from the corresponding fact for isomorphisms

and from the case of Top category. h

If f : ðX; �XÞ ! ðY; �YÞ is a P-map, then the P-homotopy

class consisting of all P-maps homotopic to f is denoted by
½f�P. The set of P-homotopy classes of P-maps from ðX; �XÞ
to ðY; �YÞ is denoted by ½X;Y�P.

The P-homotopy relation defines the homotopy category

P=’P where the objects are the P-spaces and the morphisms

are the P-homotopy classes of P-maps with composition rule

½g�P � ½f�P ¼ ½g � f�P. A P-map is a P-homotopy equivalence if

and only if its P-homotopy class is an isomorphism in

P=’P.

Theorem 2. Given two P-maps f; g : ðX; �XÞ ! ðY; �YÞ. If f and
g are P-homotopic, then f; g : X ! Y are homotopic in Top.

Proof. Since f and g are P-homotopic through a P-homotopy

F : ðX; �XÞ ! ðYI; �YIÞ, then the function H : X� I ! Y

defined by Hðx; tÞ ¼ FðxÞðtÞ for every ðx; tÞ 2 X� I, is a
homotopy between the maps f; g : X ! Y. This is implied by
the properties of the compact-open topology on the path space

YI and the Hausdorffness of the Polish spaces. h

The converse of Theorem 2 need not be true, consider the
following counter example:

Example 2. Given a P-map f : ðT; p1Þ ! ðI; �Þ where T is the

unit circle with the first projection operation, and I is the unit
interval with the usual multiplication. Both I and T are
connected Polish spaces. Then, for every y 2 T

fðp1ðy; yÞÞ ¼ fðyÞ � fðyÞ ¼ fðyÞ. Because f is by definition con-

tinuous and the spaces are connected, this implies that the
value of fðyÞ is either 0 or 1 and hence, f must be constant.
Consequently, there are only two P-maps between ðT; p1Þ and
ðI; �Þ. Let f0 and f1 be the constant P-maps that send T into 0
and 1 respectively. In a similar manner, we can show that there

are twoP-maps between ðT; p1Þ and ðII; �IIÞ. The space ðII; �IIÞ
is Hausdorff with distinct points, whereas T is connected.
Thus, the P-maps f0and f1 are homotopic but not P-
homotopic.

The following theorem provides the condition under which
the converse of Theorem 2 is true.

Theorem 3. The P-maps f; g : ðX; piÞ ! ðY; piÞ; ði ¼ 1; 2Þ, are
P-homotopic if and only if the maps f; g : X ! Y are homotopic.

Proof. We will prove the case when the projection is p1. The
case of p2 will follow similarly.

For one assertion, assume that F : X� I ! Y is a homo-
topy joining f and g. To show the existence of a P-homotopy

between ðX; p1Þ and ðYI; p1Þ; recall that by the definition of p1
we have: ðp1YÞI ¼ p1ðYIÞ ¼ YI. Hence, define a map

H : ðX; p1Þ ! ðYI; p1Þ by HðxÞðtÞ ¼ Fðx; tÞ for every x 2 X

and every t 2 I. On the other hand, the assertion that
P-homotopy implies homotopy is given by Theorem 2.
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In the proofs of the last two theorems we applied the fact
that for any topological spaces A and B, the map

f : A� I ! B implies the existence of a map g : A ! BI defined
by gðaÞ ¼ fða; tÞ for all a 2 A and t 2 I ([Strom, 2011]). Since I
is compact and regular, then the statement is reversible. h

Remark 2. As a consequence of Theorem 3, it is clear that the
functor Gi reflects the homotopy while the functor F does not
in general.
4. The P-fibration

Definition 5. A P-map f : ðX; �XÞ ! ðY; �YÞ is a P-fibration

with respect to every P-space ðZ; �ZÞ if for a P-map
g : ðZ; �ZÞ ! ðX; �XÞ and a P-homotopy H : ðZ; �ZÞ !
ðYI; �YIÞ with HðzÞð0Þ ¼ f � g, there exists a P-map

F : ðZ; �ZÞ ! ðXI; �XIÞ such that FðzÞð0Þ ¼ g and

fðFðzÞðtÞÞ ¼ HðzÞðtÞ for every z 2 Z and every t 2 I.

Theorem 4. The P-map f : ðX; p1Þ ! ðY; p1Þ is a P-fibration if
and only if f : X ! Y is a Hurewicz fibration.

Proof. Since the definition of fibration and P-fibration depend

on homotopy and P-homotopy respectively, then the result
follows easily by applying Theorem 3. h

Lemma 1. Let f : ðX; �XÞ ! ðY; �YÞ be a P-fibration. For any
P-subspace ðZ; �YÞ of ðY; �Þ. The P-map

f : ðf�1ðZÞ; �XÞ ! ðZ; �YÞ is a P-fibration.

Proof. Since the spaces are paracompact, the result follows
from the general case of fibration (Hu, 1959, Proposition 8.1
p. 73) and the property of Polish subspaces, see e.g.,

Berberian, 1988, Proposition A.1.13). h

The concept of P-lifting function can be defined in the

presence of operations as follows. Given a P-fibration
f : ðX; �XÞ ! ðY; �YÞ. Define the space ðk; �kÞ as:

k ¼ ðx; �Þ 2 X� YIjfðxÞ ¼ �ð0Þ� �
, where �k is the induced

operation ð�X � �YIÞ. Then k is Polish because it is a product
of Polish spaces, and hence, ðk; �kÞ defines a P-space.

Definition 6. A P-map F : ðk; �kÞ ! ðXI; �XIÞ is called a P-

lifting function if:

1. Fðx; �Þð0Þ ¼ x; 8ðx; �Þ 2 k,
2. f � Fðx; �Þ ¼ �; 8ðx; �Þ 2 k.
Remark 3. The P-extension property of P-cofibrations is dual
to the P-lifting property that is used to define P-fibrations.
However, as the focus of this work is P-fibrations and not

P-cofibrations; P-extension property was not found to be of
critical importance to the contribution of the paper. This will
serve as a topic for further studies in future.

As it was shown by Hurewicz (Hurewicz, 1955), a fibration
is regular if it admits a regular lifting function, that is, if F has

the property that kðx; �Þ is a constant path whenever � is a con-

stant path, then F is said to be regular.
Lemma 2. Every P-fibration is regular.

Proof. Let f : ðX; �XÞ ! ðY; �YÞ be a P-fibration. Using the

fact that Y� Y is a normal space and that C is a Gd-set
(Remark 1), then ðY; �YÞ admits a /-function (Tulley, 1965,
Theorem 3.1, p.134). Therefore, f is a regular P-fibration. h

Next, we verify that P-fibrations have the properties usu-
ally required of a fibration.

Theorem 5.

1. Every isomorphism of P-maps is a P-fibration.

2. The composition of two P-fibrations is a P-fibration.
3. If ðg : X ; �X Þ ! ðY ; �Y Þ is a P-fibration and

f : ðZ; �ZÞ ! ðY ; �Y Þ is any P-map, then the P-map
~g : ðP ; �Þ ! ðZ; �ZÞ is a P-fibration. Moreover, if g (resp.,

f) is a P-homotopy equivalence, so is ~g (resp., ~f ).

Proof. (1) is obvious.

(2) Given P-fibrations u : ðX; �XÞ ! ðY; �YÞ and
v : ðY; �YÞ ! ðZ; �ZÞ. Let v � u : ðX; �XÞ ! ðZ; �ZÞ be a P-

map and let ðS; �SÞ be any P-space. Assume that we are given

a P-map h : ðS; �SÞ ! ðX; �XÞ and that H : ðS; �SÞ ! ðZI; �ZIÞ
is a P-homotopy with H0 ¼ g � u � h. Since v is a P-fibration,
this implies the existence of a P-homotopy F : ðS; �SÞ !
ðYI; �YIÞ such that F0 ¼ bh : ðS; �SÞ ! ðY; �YÞ and vðFðsÞðtÞÞ ¼
HðxÞðtÞforalls 2 S; t 2 I Since u is aP-fibration, then there is a

P-homotopy G : ðS; �SÞ ! ðXI; �XIÞ such that G0 ¼ h and

uðGðxÞðtÞÞ ¼ FðxÞðtÞ for all s 2 S; t 2 I. Hence, we have the

composition

v½uðGðxÞðtÞÞ� ¼ vu½GðxÞðtÞ�
¼ HðxÞðtÞ

for all s 2 S; t 2 I. This implies that v � u : ðX; �XÞ ! ðZ; �ZÞ is
a P-fibration.

(3) The second assertion follows easily from the Top
category case, see e.g. [Baues, 1989]. The proof of the first

assertion follows by analyzing the diagram

where P ¼ Z�gX is as defined in Proposition 1.

Given a P-homotopy H : ðM; �MÞ ! ðZI; �ZIÞ and

a P-lifting F0 : ðM; �MÞ ! ðPI; �PIÞ of H0, i.e., j0 � F0 ¼ H0.

Then we can find a P-homotopy F : ðM; �MÞ ! ðPI; �PIÞ such
that the first coordinate is given by H, and the second
coordinate is given by the lift of b �H. Since g is a P-fibration,
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this implies that any P-homotopy ðM; �MÞ ! ðYI; �YIÞ gets

lifted to a P-homotopy ðM; �MÞ ! ðXI; �XIÞ.

Propostion 2. Let g : ðX; �XÞ ! ðY; �YÞ be an arbitrary P-map.
Then g can be factorized into a P-homotopy equivalence
f : ðX; �XÞ ! ðZ; �ZÞ followed by a P-fibration h : ðZ; �ZÞ !
ðY; �YÞ.

Proof. Let ðZ; �ZÞ be the P-space ðk; �kÞ where k ¼ X�YY
I.

To show that f is a P-homotopy equivalence; for any point

y 2 Y, there is a constant path given by d : I ! Y such that
dyðtÞ ¼ y. Define f by fðxÞ ¼ ðx; dgðxÞÞ for each x 2 X Now,

let p : ðk; �kÞ ! ðX; �XÞ be the projection. Then p � f ¼ idX.

Let H : ðk; �kÞ ! ðkI; �kIÞ be a P-homotopy given by

Hðx; �ÞðtÞ ¼ ðx; d�ð0ÞÞ; 0 6 t 6 1
2

ðx; �2t�1Þ; 1
2
6 t 6 1

(
where �t : I ! Y is given by �tðsÞ ¼ �ðstÞ; s 2 I. This implies
that f � p’Pidk. Thus, f is a P-homotopy equivalence.

To show that h is a P-fibration; consider the following
diagram.

where the P-maps a and H are given such that h � a ¼ j�H. We

need to construct a lift F of H. Let aðmÞ ¼ ða1ðmÞ; a2ðmÞÞ 2 k
and let

FðmÞðtÞ ¼ ða1ðmÞ; fðm; tÞÞ
where

fðm; tÞðsÞ ¼
a2ðmÞðsþ stÞ; 0 6 s 6 1

ð1þtÞ
Hðm; sþ ts� 1Þ; 1

ð1þtÞ 6 s 6 1:

(
Then FðmÞðtÞ is a P-map because its components are all

P-maps. It follows that h is a P-fibration.

By a trivial P-fibration we mean a P-fibration which is also

a P-homotopy equivalence.

Propostion 3. If the P-map f : ðX; �XÞ ! ðY; �YÞ is a trivial
P-fibration, then f has a section, i.e., a P-map

s : ðY; �YÞ ! ðX; �XÞ such that s � f’PidX.

Proof. Let g : ðY; �YÞ ! ðX; �XÞ be the inverse of f such that
f � g’PidY and g � f’PidX. Let H be the homotopy between

f � g and idY. Since f is a P-fibration, then there exists a

P-homotopy G : ðY; �YÞ ! ðXI; �XIÞ such that GðyÞð0Þ ¼ gðyÞ
and f � G ¼ H. Let s : ðY; �YÞ ! ðX; �XÞ such that
sðyÞ ¼ GðyÞð1Þ. Then s’Pg and hence s � f’Pg � f’PidX. h
5. Baues fibration category

Using the acquired information from previous sections we can
now state and prove our main theorem. First, we recall the

definition of fibration category in sense of Baues.

Definition 7 Baues, 1989. Let fib and w:e. denote classes of
morphisms in a category C, called fibrations and weak
equivalences respectively. A fibration category is a category

C with the structure ðC; fib;w:e:Þ that satisfies the following
axioms:

(F1) Composition axiom. Isomorphisms are both fibrations
and weak equivalences. For two maps in C

X!f Y!g Z

if any two of f; g, and gf are weak equivalences, then so is
the third. The composition of fibrations is a fibration.
(F2) Pullback axiom. For a fibration g : X ! Y and any
map f : Z ! Y , there exists a pullback diagram in C

such that

1. ~g is a fibration,

2. if f is a weak equivalence, so is ~f ,
3. if g is a weak equivalence, so is ~g.

(F3) Factorization axiom. Every map g : X ! Y in C can be
factorized into a weak equivalence f followed by a fibration
h such that next diagram commutes.

(F4) Axioms on cofibrant models. For any object Y in C
there exists a trivial fibration X ! Y where X is cofibrant

in C. An object X in C is a cofibrant model if every trivial
fibration f : E ! X admits a section.

Theorem 6. The category P with the structure

fib ¼ P� fibrations with the unique path lifting in P; and

w:e: ¼ P� homotopy equivalences in P;

is a fibration category in which all objects are P-fibrant and
P-cofibrant.

Proof. Axiom F1 is proved in Theorem 1(3), Theorem 5(1),
and Theorem 5(2). Combining Proposition 1 and Theorem 5

(3) yields the proof of axiom F2. F3 is Proposition 2. F4 fol-
lows from Proposition 3 together with the general case of
Top. h
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