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Abstract In this paper, we introduce an implicit relation with a view to cover several contrac-

tive conditions in one go and utilize the same to prove a general common fixed point theorem

for two hybrid pairs of occasionally weakly compatible mappings defined on 2-metric spaces.

Our results extend, generalize and unify several known common fixed point theorems of the

existing literature.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The concept of 2-metric spaces was introduced and investi-
gated by Gähler in his papers (Gähler, 1963; Gähler, 1965)

which were later developed by many other mathematicians
including Gähler himself. Like various other aspects of the the-
ory, a number of authors also studied a multitude of results of

metric fixed point theory in the setting of 2-metric spaces. In
doing so, the authors are indeed motivated by various concepts
already known in respect of metric spaces which enable them
to introduce analogous concepts in the frame work of 2-metric

spaces. For this kind of work, we refer to Cho et al. (1988),
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Murthy et al. (1992), Tan et al. (2003), Naidu and Prasad

(1986), Abu-Donia and Atia (2007), Pathak et al. (1995)
wherein the weak conditions of commutativity such as: com-
patible mappings, compatible mappings of type (A) and type

(P), weakly compatible mappings of type (A) and weakly com-
patible mappings were lifted to the setting of 2-metric spaces
which were subsequently utilized to prove results on common
fixed points in 2-metric spaces.

On the other hand, Al-Thagafi and Shahzad (2008) intro-
duced the notion of occasional weak compatibility (in short
OWC) as a generalization of weak compatibility. Jungck and

Rhoades (2006) utilized this notion of OWC to prove common
fixed point theorems in symmetric spaces. In fact, OWC is not
a proper generalization of weak compatibility for those pairs

of mappings whose set of coincidence points is empty. Imdad
et al. (2011) pointed out that OWC is pertinent in respect of
nontrivial weak compatible pairs (i.e., pairs with at least one
coincidence point). In the same spirit, Pant and Pant (2010)

redefined OWC and termed it as conditional commutativity
wherein authors assumed that the set of coincidence points is
nonempty. Most recently, Doric et al. (2011) proved that
ier B.V. All rights reserved.
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OWC and weak compatibility are identical notions in respect

of single-valued pairs of mappings whenever point of coinci-
dence is unique. But, the same is not true for pairs of hybrid
mappings, i.e., OWC property is weaker than weak compati-
bility in respect of hybrid pairs of mappings.
2. Preliminaries

A 2-metric space is a set X equipped with a real-valued func-
tion d on X3 which satisfies the following conditions:

(M1) to each pair of distinct points x, y in X, there exists a
point z 2 X such that d(x,y,z) „ 0,

(M2) d(x,y,z) = 0 when at least two of x,y,z are equal,

(M3) d(x,y,z) = d(x,z,y) = d(y,z,x),
(M4) d(x,y,z) 6 d(x,y,u) + d(x,u,z) + d(u,y,z) for all

x,y,z,u 2 X.

The function d is called a 2-metric on the set X whereas the
pair (X,d) stands for 2-metric space. Geometrically, in respect
of a 2-metric d, d(x,y,z) represents the area of a triangle with

vertices x, y and z.
It is known (cf. Gähler, 1965; Naidu and Prasad, 1986) that

a 2-metric d is a non-negative continuous function in any one

of its three arguments but the same need not be continuous in
two arguments. A 2-metric d is said to be continuous if it is
continuous in all of its arguments. Throughout this paper d

stands for a continuous 2-metric.

Definition 2.1. A sequence {xn} in a 2-metric space (X,d) is
said to be convergent to a point x 2 X (denoted by limnfi1xn
= x) if limnfi1d(xn,x,z) = 0 for all z 2 X.

Definition 2.2. A sequence {xn} in a 2-metric space (X,d) is
said to be Cauchy sequence if limn,mfi1d(xn,xm,z) = 0 for
all z 2 X.

Definition 2.3. A 2-metric space (X,d) is said to be complete if

every Cauchy sequence in X is convergent.

Remark 2.1 (Naidu and Prasad, 1986). In general, a conver-
gent sequence in a 2-metric space (X,d) need not be Cauchy,
but every convergent sequence is a Cauchy sequence whenever

2-metric d is continuous on X.

Definition 2.4 (Murthy et al., 1992). A pair of self mappings
(S,T) of a 2-metric space (X,d) is said to be compatible if

limnfi1 d(STxn,TSxn,z) = 0 for all z 2 X, whenever {xn} is a
sequence in X such that limnfi1 Sxn = limnfi1Txn = t for
some t 2 X.

Definition 2.5. A pair of self mappings (S,T) of a nonempty set

X is said to be weakly compatible if Sx= Tx (for some x 2 X)
implies STx = TSx.

Let (X,d) be a 2-metric space. We denote by B(X), the fam-
ily of bounded subsets of (X,d). For all A, B and C in B(X), let
D(A,B,C) and d(A,B,C) be the functions defined by

DðA;B;CÞ ¼ inffdða; b; cÞ : a 2 A; b 2 B; c 2 Cg;
dðA;B;CÞ ¼ supfdða; b; cÞ : a 2 A; b 2 B; c 2 Cg:
If A consists of a single point ‘a’, we write d(A,B,C) =
d(a,B,C). Further, if B and C also consist of single points ‘b’
and ‘c’, respectively, then we write d(A,B,C) = D(a,b,c) =
d(a,b,c).

It follows from the definition that
d(A,B,C) = 0 if at least two A, B, C are identically equal

and singleton,

dðA;B;CÞ ¼ dðA;C;BÞ ¼ dðB;A;CÞ ¼ dðB;C;AÞ ¼ dðC;B;AÞ
¼ dðC;A;BÞP 0;

dðA;B;CÞ 6 dðA;B;EÞ þ dðA;E;CÞ
þ dðE;B;CÞ for all A;B;C;E in BðXÞ:
Definition 2.6. A sequence {An} of subsets of a 2-metric space
(X,d) is said to be convergent to a subset A of X if:

(i) given a 2 A, there exists {an} in X such that an 2 An for

n = 1,2,3, . . . and limnfi1d(an,a,z) = 0 for each z 2 X,
and

(ii) given e > 0, there exists a positive integer N such that

An � Ae for n> N where Ae is the union of all open
balls with centers in A and radius e.

Definition 2.7. The mappings I : X fi X and F : X fi B(X) are

said to be weakly commuting at x if IFx 2 B(X) and

dðFIx; IFx; zÞ 6 max dðIx;Fx; zÞ; dðIFx; IFx; zÞf g: ð2:1Þ

Remark 2.2. If F is a single-valued mapping, then the set IFx
becomes singleton. Therefore, d(IFx, IFx,z) = 0 and condition

(2.1) reduces to the condition given by Khan (1984), that is
D(FIx, IFx,z) 6 D(Ix,Fx,z).

Definition 2.8. The mappings I : X fi X and F : X fi B(X) are
said to be compatible if limnfi1D(FIxn, IFxn,z) = 0 for all

z 2 X, whenever {xn} is a sequence in X such that
limnfi1Ixn = t 2 A= limnfi1 Fxn for some t 2 X and
A 2 B(X).

Definition 2.9. The mappings I : X fi X and F : X fi B(X) are

said to be d-compatible if limnfi1d(FIxn, IFxn,z) = 0 for all
z 2 X, whenever {xn} is a sequence in X such that IFxn 2 B(X),
Fxn fi {t} and Ixn fi t for some t 2 X.

Definition 2.10. Let I : X fi X and F : X fi B(X). A point
x 2 X is said to be a fixed point (strict fixed point) of F if
x 2 Fx (Fx = {x}). Also, a point x 2 X is said to be a coinci-
dence point (strict coincidence point) of (I,F) if Ix 2 Fx

(Fx = {Ix}).

Definition 2.11 (Jungck and Rhoades, 1998). The mappings
I : X fi X and F : X fi B(X) are said to be weakly compatible

if they commute at all strict coincidence points, i.e., for each
x in X such that Fx= {Ix}, we have FIx= IFx.

Remark 2.3 (Jungck and Rhoades, 1998). Any d-compatible

pair (I,F) is weakly compatible but not conversely.
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Definition 2.12. The mappings I : X fi X and F : X fi B(X)

are said to be strict occasionally weakly compatible
if the pair commutes at some of it’s strict coincidence
points.

Quite recently, Abd El-Monsef et al. (2009) proved the fol-
lowing common fixed point theorem in 2-metric spaces.

Theorem 2.1. If I,J : X fi X and F,G : X fi B(X) are map-

pings which satisfy

(i) [G(X) ˝ I(X) and [F(X) ˝ J(X),

(ii)
dðFx;Gy;CÞ6amax dðIx;Jy;CÞ;dðIx;Fx;CÞ;dðJy;Gy;CÞf gþð1�aÞ
½aDðIx;Gy;CÞþbDðJy;Fx;CÞ�

for all x,y 2 X and C 2 B(X), where 0 6 a < 1,a + b < 1,
a,b P 0 and aŒa � bŒ < 1 � (a+ b),

(iii) I(X) (or J(X)) is complete subspace of (X,d),

(vi) both the pairs (F, I) and (G,J) are weakly compatible,
then F, G, I and J have a unique common fixed point
in X.

There exists considerable literature on hybrid fixed point

theorem involving diametral distances in metric spaces (e.g.,
Abd El-Monsef et al., 2007; Jungck and Rhoades, 1998; Sessa
et al., 1986). The purpose of this paper is to prove a general

common fixed point theorem for two pairs of OWC hybrid
pair of mappings satisfying a newly defined implicit relation.
Our results generalize and extend several previously known re-
sults of the existing literature.

3. Implicit relations

The study of common fixed point theorems in metric spaces for
class of mappings satisfying implicit relations was initiated in
Popa (1997, 1999). Following the lines of Imdad et al.

(2002), Popa et al. (2010), employed this idea to prove com-
mon fixed point theorems in 2-metric spaces. Now, we define
the following class of implicit relations.

Definition 3.1. Let U be the set of all continuous functions

/ : R6
þ ! R satisfying the following conditions:

(/1) / is nondecreasing in variable t1 and nonincreasing in
variables t2 . . . , t6.

(/2) there exists h,k > 0 with hk < 1 such that for u,v P 0

(/a): /(u,v,v,u,u + v,0) 6 0 implies u 6 hv,
(/b): /(u,v,u,v,0,u + v) 6 0 implies u 6 kv.
(/3) /(t, t,0,0, t, t) > 0 "t> 0.

Example 3.1. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼ t1 � amax t2; t3; t4;
1
2
ðt5 þ t6Þ

� �
; where

a 2 ð0; 1Þ:

Setting h= k= a < 1, the requirements of Definition 3.1 are

met out.
Example 3.2. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼ t21 � c1 maxft22; t23; t24g � c2 maxft3t5; t4t6g
� c3t5t6;

where c1 > 0, c2,c3 P 0, c1 + 2c2 < 1 and c1 + c3 < 1.
Choosing h ¼ k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ 2c2
p

< 1, one can easily verify the
requirements of Definition 3.1.

Example 3.3. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼ t1 � at2 � bminft3; t5g � gminft4; t6g;

where a,b,g > 0, a + b < 1, a + g < 1 and (a + b)(a + g)
< 1.

Setting h = a + b < 1, k = a + g < 1 with hk < 1, one

can easily check the requirements of Definition 3.1.

Example 3.4. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼ t1 � amaxft2; t3; t4g � ð1� aÞðbt5 þ gt6Þ;

where 0 6 a < 1, b + g < 1, b,g P 0 and aŒb � gŒ <

1 � (b + g). Choosing h ¼ max aþð1�aÞb
1�ð1�aÞb ;

b
1�b

n o
, k ¼ max

aþð1�aÞg
1�ð1�aÞg ;

g
1�g

n o
with hk < 1 (see Abd El-Monsef et al., 2009, p.

1438), one can easily verify the requirements of Definition 3.1.

Example 3.5. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼ t1 � w max t2; t3; t4;
t5 þ t6

2

n o� �

where w : Rþ ! Rþ is an upper semi-continuous function
such that w(t) < t for all t> 0.

Example 3.6. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼ t1 � wðt2; t3; t4; t5; t6Þ

where w : R5
þ ! Rþ is an upper semi-continuous and increas-

ing function in t2, . . . , t6 such that w(t, t, t,a t,bt) < t for all
t> 0 and a,b P 0 with a + b = 2.

Example 3.7. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼
Z t1

0

wðtÞdt� a
Z maxft2; t3; t4;

t5 þ t6
2
g

0

wðtÞdt

where a 2 (0,1) and w : Rþ ! Rþ is a Lebesgue integrable
function which is summable and

R �
0
wðtÞdt > 0 for all e > 0.

Example 3.8. Define /ðt1; t2; . . . ; t6Þ : R6
þ ! R as

/ðt1; t2; . . . ; t6Þ ¼
Z t1

0

wðtÞdt� amax

Z t2

0

wðtÞdt;
Z t3

0

wðtÞdt;
�

Z t4

0

wðtÞdt; 1
2

Z t5

0

þ
Z t6

0

� 	
wðtÞdt




where a 2 (0,1) and w : Rþ ! Rþ is a Lebesgue integrable

function which is summable and satisfies
R �
0
wðtÞdt > 0 for all

e > 0.
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4. Main results

We begin with the following observation.

Theorem 4.1. Let (X,d) be a 2-metric space wherein the

mappings I : X fi X and F:X fi B(X) are strict OWC pair. If I
and F have a unique point of strict coincidence {z} = {Ix} = Fx,
then z is the unique common fixed point of I and F which also
remains a strict fixed point of F.

Proof. Since the mappings I and F are strict OWC, there exists
a point x 2 X with {z} = {Ix} = Fx implies that FIx = IFx.
Therefore {Iz} = {IIx} = IFx= FIx= Fz= {u} which

shows that u is a point of strict coincidence of I and F. Now,
in view of the uniqueness of point of coincidence, one infers
z= u and henceforth {z} = {Iz} = Fz which shows that z is
a common fixed point of I and F. Suppose that v „ z is another

common fixed point of I and F which is also a strict fixed point
for F, then {v} = {Iv} = Fv implies that v is a point of strict
coincidence of I and F. Now, due to the uniqueness of point

of strict coincidence one gets v = z. This concludes the
proof. h

Theorem 4.2. Let (X,d) be a 2-metric space wherein
I,J : X fi X and F,G : X fi B(X) are the mappings which sat-

isfy the inequality

/ðdðFx;Gy;CÞ; dðIx; Jy;CÞ; dðIx;Fx;CÞ; dðJy;Gy;CÞ;
DðIx;Gy;CÞ;DðJy;Fx;CÞÞ 6 0 ð4:1Þ

for all x,y 2 X, every C 2 B(X) and / 2 U. Suppose that there

exist x,y 2 X such that u = {Ix}= Fx and v = {Jy} = Gy.

Then u is the unique point of strict coincidence of I and F

whereas v is the unique point of strict coincidence of J and G.

Proof. Firstly, we show that Ix = Jy. Let on contrary that
Ix „ Jy, then using (4.1) and (/1), we obtain

/ðdðIx; Jy;CÞ; dðIx; Jy;CÞ; 0; 0; dðIx; Jy;CÞ; dðIx; Jy;CÞÞ 6 0

a contradiction to (/3). Hence Ix = Jy. Thus
u= {Ix} = Fx= {Jy} = Gy. Suppose that there is some

z 2 X, z „ x with {w} = {Iz} = Fz. Then using (4.1) and
(/1), we obtain

/ðdðIz; Jy;CÞ; dðIz; Jy;CÞ; 0; 0; dðIz; Jy;CÞ; dðIz; Jy;CÞÞ 6 0

a contradiction to (/3) provided d(Iz,Jy,C) = 0. Hence

{w} = {Iz} = Fz = {Jy} = Gy, u = {Ix} = Fx, and u is the
unique point of strict coincidence of I and F. Similarly, one
can show that v is the unique point of strict coincidence of J

and G. This completes the proof. h

Let I,J : X fi X and F,G : X fi B(X) be mappings such that

inequality (4.1) holds for all x,y 2 X and C 2 B(X) and

FðXÞ � JðXÞ and GðXÞ � IðXÞ: ð4:2Þ

Since F(X) � J(X) for an arbitrary x0 2 X there exists a point
x1 2 X such that Jx1 2 Fx0 = Y0. Since G(X) � I(X) for this

point x1, there exists a point x2 2 X such that Ix2 2 Gx1 = Y1

and so on. Consequently, we can inductively define a sequence
{xn} as follows:
Jx2nþ1 2 Fx2n ¼ Y2n and Ix2nþ2 2 Gx2nþ1

¼ Y2nþ1; for all n ¼ 0; 1; 2; . . . ð4:3Þ
Lemma 4.1. If I,J : X fi X and F,G : X fi B(X) are mappings
which satisfy (4.1) and (4.2), then (for every n 2 N),
d(Yn,Yn+1,Yn+2) = 0.

Proof. By using (4.1) and (/1), we can have

/ðdðFx2nþ2;Gx2nþ1;Y2nÞ;dðIx2nþ2;Jx2nþ1;Y2nÞ;dðIx2nþ2;Fx2nþ2;Y2nÞ;
dðJx2nþ1;Gx2nþ1;Y2nÞ;DðIx2nþ2;Gx2nþ1;Y2nÞ;DðFx2nþ2;Jx2nþ1;Y2nÞÞ6 0

or /ðdðY2nþ2;Y2nþ1;Y2nÞ;dðY2nþ1;Y2n;Y2nÞ;dðY2nþ1;Y2nþ2;Y2nÞ;
dðY2n;Y2nþ1;Y2nÞ;DðY2nþ1;Y2nþ1;Y2nÞ;DðY2n;Y2nþ2;Y2nÞÞ6 0

or /ðdðY2nþ2;Y2nþ1;Y2nÞ;0;dðY2nþ1;Y2nþ2;Y2nÞ;0;0;DðY2n;Y2nþ2;Y2nÞÞ6 0

or /ðdðY2nþ2;Y2nþ1;Y2nÞ;0;dðY2nþ1;Y2nþ2;Y2nÞ;0;0;dðY2nþ1;Y2nþ2;Y2nÞÞ6 0

which implies (due to (/b)) d(Y2n,Y2n+1,Y2n+2) = 0. Simi-

larly, using (/a), we can also show that d(Y2n+1,
Y2n+2,Y2n+3) = 0. Thus, in all, d(Yn,Yn+1,Yn+2) = 0. h

Lemma 4.2 (Abd El-Monsef et al., 2007). If {An} and {Bn} are

sequences in B(X) converging to A and B respectively, then
d(An,Bn,C) converges to d(A,B,C) for every C 2 B(X).

Theorem 4.3. Let I,J : X fi X and F,G : X fi B(X) be the
mappings such that (4.1) and (4.2) hold (for all x,y 2 X and

for all C 2 B(X)). If I(X) (or J(X)) is a complete subspace
of X, then

(i) I and F have a strict coincidence point,
(ii) J and G have a strict coincidence point.

Moreover, if the pairs (I,F) and (J,G) are strict OWC, then I,

J, F and G have a unique common fixed point which also remains
a strict fixed point of F and G.

Proof. Owing to (4.1), (4.2), (4.3) and (/1), we can write

/ðdðFx2n;Gx2nþ1;CÞ; dðIx2n; Jx2nþ1;CÞ; dðIx2n;Fx2n;CÞ;
dðJx2nþ1;Gx2nþ1;CÞ;DðIx2n;Gx2nþ1;CÞ;DðFx2n; Jx2nþ1;CÞÞ 6 0

or / dðY2n;Y2nþ1;CÞ; dðY2n�1;Y2n;CÞ; dðY2n�1;Y2n;CÞ;ð
dðY2n;Y2nþ1;CÞ; dðY2n�1;Y2nþ1;CÞ; dðY2n;Y2n;CÞÞ 6 0:

Since d(Y2n�1,Y2n+1,C) 6 d(Y2n�1,Y2n, C) + d(Y2n,Y2n+1,

C) + d(Y2n�1,Y2n+1,Y2n) and d(Y2n�1,Y2n+1,Y2n) = 0 (due
to Lemma 4.1), therefore

/ðdðY2n;Y2nþ1;CÞ; dðY2n�1;Y2n;CÞ; dðY2n�1;Y2n;CÞ;
dðY2n;Y2nþ1;CÞ; dðY2n�1;Y2n;CÞ þ dðY2n;Y2nþ1;CÞ; 0Þ 6 0:

(due to (/a)) gives rise

dðY2n;Y2nþ1;CÞ 6 hdðY2n�1;Y2n;CÞ: ð4:6Þ

Similarly, using (/b), we obtain

dðY2nþ1;Y2nþ2;CÞ 6 kdðY2n;Y2nþ1;CÞ: ð4:7Þ

Therefore, inductively

dðY2n;Y2nþ1;CÞ 6 ðhkÞndðFx0;Gx1;CÞ; ð4:8Þ

and
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dðY2nþ1;Y2nþ2;CÞ 6 ðhkÞndðGx1;Fx2;CÞ; ð4:9Þ

which, in all, gives rise limd(Yn,Yn+1,C) = 0.
For all C 2 B(X) and m> n, we have (by Lemma 4.1)

dðYn;Ym;CÞ 6 dðYn;Ynþ1;Ynþ2Þ þ dðYnþ1;Ynþ2;Ynþ3Þ þ � � �
þ dðYm�2;Ym�1;YmÞ þ dðYm�1;Ym;CÞ;

which on letting n,m fi1 gives rise that limd(Yn,Ym,C) = 0.
Suppose that J(X) is complete and Jx2n+1 2 Fx2n = Y2n,

for n= 0,1,2, . . . , we can have

dðJx2mþ1; Jx2nþ1;CÞ 6 dðY2m;Y2n;CÞ

which implies that limd(Jx2m+1,Jx2n+1,C) = 0. Hence
{Jx2n+1} is a Cauchy sequence and is also convergent to a limit

p 2 J(X), hence p= Jv for some v 2 X. But
Ix2n 2 Gx2n�1 = Y2n�1, so that we obtain

lim dðIx2n; Jx2nþ1;CÞ 6 lim dðY2n�1;Y2n;CÞ ¼ 0:

Consequently, lim Ix2n = p. Moreover, we obtain

dðFx2n; p;CÞ 6 dðFx2n; Ix2n;CÞ þ dðIx2n; p;CÞ
þ dðFx2n; p; Ix2nÞ:

Since d(Fx2n, Ix2n,C) 6 d(Y2n,Y2n�1,C) implies limd(Fx2-
n, Ix2n,C) = 0, therefore limd(Fx2n,p,C) = 0. Similarly, we

can have limd(Gx2n�1,p,C) = 0. Using the inequality (4.1),
we obtain

/ðdðFx2n;Gv;CÞ; dðIx2n; Jv;CÞ; dðIx2n;Fx2n;CÞ; dðJv;Gv;CÞ;
DðIx2n;Gv;CÞ;DðJv;Fx2n;CÞÞ 6 0:

Since d(Jx2n+1,Gv,C) 6 d(Fx2n,Gv,C), then by (/1), we have

/ðdðJx2nþ1;Gv;CÞ; dðIx2n; Jv;CÞ; dðIx2n;Fx2n;CÞ; dðJv;Gv;CÞ;
dðIx2n;Gv;CÞ; dðJv;Fx2n;CÞÞ 6 0:

Letting n fi1, we obtain

/ðdðp;Gv;CÞ; 0; 0; dðp;Gv;CÞ; dðp;Gv;CÞ; 0Þ 6 0

which implies by (/a) that d(p,Gv,C) = 0, i.e., Gv = {p}.
Therefore, Gv= {Jv} = {p} and v is a strict coincidence point
of J and G.

Since G(X) � I(X), there exists u 2 X such that
{Iu} = Gv= {Jv}. By (4.1) and (/1) we obtain

/ðdðFu;Gv;CÞ;dðIu;Jv;CÞ;dðIu;Fu;CÞ;dðJv;Gv;CÞ;DðIu;Gv;CÞ;DðFu;Jv;CÞÞ6 0

/ðdðFu;p;CÞ;0;dðp;Fu;CÞ;0;0;dðFu;p;CÞÞ6 0:

By (/b), we obtain (Fu,p,C) = 0 which implies Fu= {p}.

Hence u is a strict coincidence point of I and F. Therefore,
{p} = {Iu} = Fu= {Jv} = Gv.

In view of Theorem 4.2, {p} = {Iu} = Fu is the unique
point of strict coincidence of I and F. Similarly,

{p} = {Jv} = Gv is the unique point of strict coincidence of
J and G. Since (I,F) and (J,G) are strict OWC and p is a unique
point of coincidence, then by Theorem 4.1, p is the unique

common fixed point of I, J, F and G which is a strict common
fixed point for F and G. In case I(X) is complete, the proof is
similar. This completes the proof. h

Corollary 4.1. The conclusions of Theorem 4.3 remain valid if
inequality (4.1) is replaced by any one of the following contrac-
tion conditions:
ða1Þ dðFx;Gy;CÞ6 amax dðIx;Jy;CÞ;dðIx;Fx;CÞ;dðJy;Gy;CÞ;f

1

2
½DðIx;Gy;CÞþDðJy;Fx;CÞ�




where a2ð0;1Þ:

ða2Þ d2ðFx;Gy;CÞ6 c1max d2ðIx;Jy;CÞ;d2ðIx;Fx;CÞ;
�

d2ðJy;Gy;CÞ
�
þ c2max dðIx;Fx;CÞDðIx;Gy;CÞ;f

dðJy;Gy;CÞDðJy;Fx;CÞgþ c3DðIx;Gy;CÞDðJy;Fx;CÞ

where c1 > 0, c2, c3 P 0, c1 + 2c2 < 1 and c1 + c3 < 1.

ða3Þ dðFx;Gy;CÞ 6 adðIx; Jy;CÞ
þ bminfdðIx;Fx;CÞ;DðIx;Gy;CÞg
þ gminfdðJy;Gy;CÞ;DðJy;Fx;CÞg

where a,b,g > 0,a + b < 1,a + g < 1 and
(a + b)(a + g) < 1.

ða4Þ dðFx;Gy;CÞ6 amax dðIx;Jy;CÞ;dðIx;Fx;CÞ;dðJy;Gy;CÞf g
þð1�aÞðbDðIx;Gy;CÞþgDðJy;Fx;CÞÞ

where 0 6 a < 1,b,g P 0,b + g < 1 and
aŒb � gŒ < 1 � (b + g).

ða5Þ dðFx;Gy;CÞ6 w max dðIx;Jy;CÞ;dðIx;Fx;CÞ;fð
dðJy;Gy;CÞ; 1

2
½DðIx;Gy;CÞ þDðJy;Fx;CÞ�

�

where w : Rþ ! Rþis an upper semi-continuous function such

that w(t)< t for all t> 0.

ða6Þ dðFx;Gy;CÞ 6 w dðIx; Jy;CÞ; dðIx;Fx;CÞ; dðJy;Gy;CÞ;ð
DðIx;Gy;CÞ;DðJy;Fx;CÞÞ

where w : R5
þ ! Rþ is an upper semi-continuous function such

that w(t, t, t,at,bt)< t for all t > 0 and a,b P 0 with
a + b = 2.

ða7Þ
Z dðFx;Gy;CÞ

0

wðtÞdt6 a
Z maxfdðIx;Jy;CÞ;dðIx;Fx;CÞ;dðJy;Gy;CÞ;12½DðIx;Gy;CÞþDðJy;Fx;CÞ�g

0

wðtÞdt
where a 2 (0,1) and w : Rþ ! Rþ is a Lebesgue integrable
function which is summable and satisfies

R �
0
wðtÞdt > 0 for all

e > 0.

ða8Þ
Z dðFx;Gy;CÞ

0

wðtÞdt6 amax

Z dðIx;Jy;CÞ

0

wðtÞdt;
Z dðIx;Fx;CÞ

0

wðtÞdt;
�

Z dðJy;Gy;CÞ

0

wðtÞdt; 1
2

Z DðIx;Gy;CÞ

0

wðtÞdt
�

þ
Z DðJy;Fx;CÞ

0

wðtÞdt
�


where a 2 (0,1) and w : Rþ ! Rþ is a Lebesgue integrable
function which is summable and satisfies

R �
0
wðtÞdt > 0 for all

e > 0.
Remark 4.1. In view of Theorem 4.3 with inequality (a4), we

obtain a generalization of Theorem 2.1 besides some rele-
vant results contained in Abd El-Monsef et al. (2007). Using
inequalities (a1–a3) and (a5–a8) together with Theorem 4.3,
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we obtain generalization and extension of relevant results from

Jungck and Rhoades (1998), Khan (1984), Naidu and Prasad
(1986), Popa et al. (2010), Sessa et al. (1986) and also obtain
some new results.
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