Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect.com

Journal of King Saud University -Science

Original article

Prediction of RNA editing sites and genome-wide characterization of *PERK* gene family in maize (*Zea mays* L.) in response to drought stress

Shahmeer Shahid^a, Muhammad Ali Sher^{a,*}, Furqan Ahmad^a, Shoaib ur Rehman^a, Babar Farid^a, Humayun Raza^b, Zulfiqar Ali^{a,c,*}, Amir Maqbool^{d,e}, Saleh Alfarraj^f, Mohammad Javed Ansari^g

^a Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan

^b Department of Plant Breeding and Genetics, Faculty Agriculture, Islamia University of Bahawalpur, Pakistan

^c Department of Plant Breeding and Genetics, Faculty Agriculture, University of Agriculture Faisalabad, Pakistan

^d Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Niğde, Turkey

^e Institute for Integrative Biology of the Cell (12BC), Université Paris-Saclay, CNRS, Gif-sur-Yvette, France

^fZoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^g Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India

ARTICLE INFO

Article history: Received 8 June 2022 Revised 18 August 2022 Accepted 24 August 2022 Available online 29 August 2022

Keywords: PERK Genome wide analysis RNA editing sites drought Oil content

ABSTRACT

Objectives: Inadvertent climate changes continuously threating the crops production and thus affecting the livelihood of peoples across the world. The maize production at world level has severely been hampered by the drought stress. Proline-rich extensin-like receptor kinases (*PERKs*) are considered among the sub-class of plants larger protein family, receptor kinases. Member of *PERK* gene family play significant role in both abiotic and biotic stress and in various plant metabolic activities and pathways.

Methods: As of now, no comprehensive research is reported for *PERK* genes in maize. We have performed a genome wide *in-silico* analysis and identify twenty-three *PERK* genes in maize. We performed phylogenetic analysis, sequence logos, motif analysis, promoter analysis, chromosomal and subcellular localization, synteny and expression analysis using RNA seq data under drought stress. We also predict RNA editing sites in mitochondrial and chloroplast genome.

Results: Phylogenetic study of *PERK* genes from eight different plant species divided into four distinct clades. Four subclasses group of *ZmPERKs* were observed based on domain organization, motif pattern, and phylogenetic analysis. The exon-intron arrangement of the *ZmPERK* were conserved among members of the same subclasses. In the promoter region different *cis*-elements were found those were involved in the growth and development, as well as light and stress response. Through gene duplication analysis it was observed that segmental duplications in *ZmPERKs* played major role in maize evolution. The *Ka/Ks* ratios indicated that most *ZmPERK* genes during the evolution have experienced strong purifying selection. The conversion of cytosine (C) to uracil (U) was observed in all predicted editing sites (U). These transitions were mostly based on changes in the first and second codon bases. The *in-silico* expression analysis of transcriptome data revealed the differential expression of *ZmPERK* genes in response to drought stress and oil content accumulation.

Conclusion: The current study provides base information on the *PERK* gene family in maize. Our findings can serve as a reference for further functional analysis of *ZmPERKs*. These genes can be further explored and used in breeding program to develop cultivars resilient to drought stress.

© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding authors.

E-mail addresses: ali.sher@mnsuam.edu.pk (M.A. Sher), Zulfiqar_ali@uaf.edu.pk (Z. Ali).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1. Introduction

Maize is considered as important crop which is grown for food and feed around the globe. Abiotic stress especially drought stress severely affected the maize production at world level. Plant breeders are considering the drought stress as one of the most important abiotic stress that causing the hindrance in getting the higher grain yield in different crops especially in maize (Liu and Qin, 2021).

https://doi.org/10.1016/j.jksus.2022.102293

1018-3647/© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Hence it is dire need of the time that breeders should tailor their modern varieties with novel traits that have capacity to buffer the drastic effects of the abiotic stresses especially drought stress. The advent of modern genotyping techniques especially the next generation sequencing (NGS) has revolutionized the field of genetics, furthermore the release of genome dataset has made a substantial increment in developing the strategies to quip the plants with novel traits (Leng and Zhao, 2020). In plants the receptor-like kinases (RLKs) having similar structure are considered as large superfamily of proteins. In this group the PERKs (Proline rich extension like receptor kinases) gene family is also included. Plant Species such as Arabidopsis and rice comprises large gene family of receptor kinase. There is 600 members are reported in arabidopsis for the receptor kinase family and their analogous have been found in around 20 different species (Morris and Walker, 2003). These kinase family play have been found playing a crucial role in the growth and development phase of plants and also defensive mechanisms (Shiu and Bleecker, 2001, Morris and Walker, 2003, Shiu et al., 2004). Role of most of the members of receptor kinase is still unknown. Receptors like kinase are the protein comprising extracellular, carboxyl terminal and intercellular domain with putative amino terminal (see Fig. 1).

Depending on their extracellular domain, receptor kinases interact to a wide range of substances for example, carbohydrates and cell wall components. This domain organization have much resemblance to the animal receptor tyrosine kinases (Shiu, 2001). Receptor kinases have specific and extracellular domains, for example, leucine-rich repeat (LRR) and proline-rich extensionlike receptor kinases. Gene duplication and functional redundancy also reported among these different classes of receptor kinase (Champion et al., 2004). The CLV1 and ERECTA receptor kinase is the evidence of existence of functional redundancy (Diévart et al., 2003, Shpak et al., 2003, Shpak et al., 2004). PERK gene family of Arabidopsis have maximum sequence identity to Brassica napus and such as PERK1 of Arabidopsis is much like PERK1 of Brassica napus. Researchers have reported fifteen PERK genes in the Arabidopsis yet their functions still need to be characterize (Silva and Goring, 2002, Nakhamchik et al., 2004, Bai et al., 2009). In Arabidopsis the PERK1 is identified which do functions in response to any wound that occur in the plasma membrane (Silva and Goring, 2002). Likewise, PERK4 is predicted as key regulator for Ca2+ sig-

naling that contributes in production of abscisic acid in root (Bai et al., 2009). It is well documented that under abiotic stresses plant accumulate more calcium contents in cells to boost the production of antioxidant enzyme activity, regulate lipid peroxidation of cell membranes and stomatal apertures to mitigate the impact of stresses on plant growth (Mansfield et al., 1990; Abadi and Sepehri, 2016). The production of reactive oxygen species (ROS) decline in the presence of PERKs whereas increasing level of ROS work as a signal for root hair development (Xing et al., 2013). In an organism the first line of defense against superoxide radicals is the production of superoxide dismutase (SODs) which catalyze the superoxide radical to hydrogen peroxide and molecular oxygen. The copper/zinc SOD (Cu/Zn SOD) is catalyzed through the MAPK cascade under high light-induction. The homologous proteins like MPK3 and MPK6 in plants are detected using the anti-PERK antibodies from animals (Samuel and Ellis, 2002; Hwang et al., 2016). Environmental stresses like heat, drought, nutrients, heavy metals, pathogens, keep threating the plants to express its fully genetic potential. It is becoming more important to scientist to reveal how plants response to internal and external stimuli. Plant sense the environmental changes through the use of cell surface receptors and initiate different signaling pathways to trigger the adaptive responses (Zhu, 2016).

Erratic climate change has become a major constraint in achieving the higher crop yield. At crop level it affects plant morphological, anatomical, and physiological attributes which ultimately results in drastic economic yield loss. Maize is a major food and feed crop grown all over the world. It rated as the world's third most significant staple grain crop (Tiwari and Yadav, 2019). Characterization of PERK family in maize can help us to understand the plant molecular mechanism of tolerance against biotic and abiotic stresses. Only a few PERK genes have been characterized, and the functions of most of them is still unknown. High-throughput genome sequencing of the maize provided an excellent opportunity for genome wide analysis of genes families. In our study, we performed in-silico genome wide analysis of PERK genes in maize. We analyzed phylogenetic relationship between 8 species and only maize separately. Furthermore, gene structure Intron/exons, motif distribution, conserved domain analysis, sequence logos, physiochemical properties. The structural and functional importance of genes were also assessed using Ka/Ks values and synteny analysis.

Fig. 1. Sequence logos of PERK gene family between Maize, Rice and Arabidopsis.

Fig. 2. PERK gene family phylogenetic tree. The major cluster of orthologous genes is distinguished with various colours (PERKA-D).

In-silico expression analysis were also performed for these genes to predict their role and function. The present study and their result enabled us to conclude that *PERK* gene family paly vital role in maize development and stress response (Fig. 2).

2. Materials and methods

2.1. PERK gene family identification and characterization in maize genome

Whole maize genome sequence, as well as the general feature format file (GFF3), was downloaded from the Maize Genetic and Genomic Database (Maize GDB)(https://gamma.maizegdb.org). For the purposes of finding the probable candidates of PERK family in maize, the online Pfam database (https://www.sanger.ac.uk/Software/Pfam/) was used to download the PERK domain HMM profile and then subjected as a query into Blastp (Finn et al., 2014). For all of the retrieved protein sequences, the SMART tools (https://smart. embl-heidelberg.de/) were used to verify the presence of the PERK domain (Letunic et al., 2015). Maize PERK gene family sequence were downloaded from maize genome database. TAIR 10 (http:// https://www.Arabidopsis.org) was used to retrieved the arabidopsis sequences while all other sequences of studied organisms were retrieved from online plant database Phytozome version 11 (https://phytozome.jgi.doe.gov/pz/portal.html). ExPASyProtParam, (https://us.expasy.org/tools/protparam.html) an online web tools, were used to retrieve the physiochemical properties.

2.2. Sequence logos and phylogenetic/evolutionary analysis

The MEGA 7 software was used to find out the conserved sequences for amino acids. Sequence are aligned using ClustalW and the structure was constructed using TBtool (https.//github.co m/CJ-Chen/TBtools). Furthermore, using this software the Neighbor-Joining method was used to get the phylogenetic tree to deduce the evolutionary history (Chothia et al., 2003). The distances of the number of amino acid sites in units were measured using the poisson correction parameters (Yang et al., 2008). The Bootstrap algorithm employed with 1000 repetitions to estimate the stability of the nodes in the phylogenetic tree. Total 98 amino acid sequences were used for this analysis.

2.3. Predicted protein motifs, structure of exon/intron and conserved domain analysis

To find preserved motif of *PERK* protein online web server Multiple Em for Motif Elicitation (MEME) is used (https://meme-suite. org/tools/meme). The TBtool was used to construct the motif structure using the MEME.xml file which is obtained through MEME suite. The default parameters were as follows: motif recurrence was set to 1 per sequence; frequency of motifs was set to 10; motif width was set to 5–50 residues; and the minimum number of motif sites was set to 5. Arrangement of Exon and Intron of PERK genes was investigated by using gff3 file downloaded from maize GDB. Structure is constructed using TBtool software. Afterward, the NCBI CDD tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was used to perform the conserved domain analysis.

2.4. Chromosomal localization, gene duplication events and synteny analysis

The start and end position for each identified ZmPERK gene were procure from the Maize Genetic and Genomic Database (Maize GDB) and validated against the GFF3 file. Total chromosomal length is retrieved through using FASTA stat in TBtool. Finally, using MapChart v2.32 (Voorrips, 2002), the ZmPERK genes were spatially mapped onto the maize chromosomes. The phylogenetic tree was used to identify the putative paralogous PERK gene pairs. The resulting pairs were subjected to TBtool software to determine synonymous and non-synonymous substitution rates (Ka). To determine the nature of codon selection the Ka/Ks ratio was also calculated that allegedly occurred during evolution. Further, using the formula T = Ks/2 and assuming a clock rate of 6.05 X10 9 substitutions/synonymous site/year for maize, the approximate period of duplication event was calculated (Kong et al., 2013). The genome sequence files, and gene annotation files (GFF3) of sorghum, rice and maize were used for the collinearity analysis. Required files generated using one step MC scan. TBtool software was used to visualize the results, and the parameter filtering genes in the collinearity block was set to 40.

2.5. RNA editing sites prediction, subcellular localization, and promoter analysis

RNA editing is a method in which certain cytidines in mitochondrial and chloroplast transcripts of plants are converted to uridines. The online web server like PREP-Cp (for chloroplast genes) and PREP-Mt (for mitochondrial genes) software (https://prep. unl.edu/) with the cutoff value to 0.8 were used in predicting the RNA editing sites (Mower, 2009). Location of genes at cellular level were also predicted using online web server softberry (https:// www.softberry.com). In order to perform promoter analysis, the 5' upstream region of each gene of the *ZmPERK* was downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) and the resulting file was submitted to the online database plantCARE (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/) for a *cis*-element scan.

2.6. In-silco expression analysis

The NCBI Geodataset (https://www.ncbi.nlm.nih.gov/gds) was used to obtain transcriptome data (GSE136087, GSE40070). RNA-sequencing analysis was performed on seed embryos from 15 days after pollination (DAP) to 40 days after pollination (DAP) (Sekhon et al., 2013). We also retrieved drought stress expression data. Inbred line B73 maize (*Zea mays*) plants grown in the green house under well-watered and drought stress circumstances until they reached the reproductive stage (at the onset of silk emergence). Plants were hand pollinated for drought stress two to three days after irrigation was stopped, and measurements and samples were collected 24 h later for transcriptome analysis. This gene expression data was used to construct heat map.

3. Results

3.1. Identification and characterization of PERK gene family in maize genome

A systematic approach was followed to identify the *PERK* protein encoding genes. Taking the advantage of publically available

Table 1 Physiochemical propert	ies including G	ene IDs, Gene nam	ae, Chromosome	No, Gene start-e	nd positio	n, Strand, CD9	s and amino ac	id sequence length, Pr	otein MV	V, PI, GRAVY and cellular localiz	zation of ZmPERK genes.
Transcripts ID	Gene name	chromosome	Position		Strand	CDS (bp)	Protein	Protein Molecular	Id	Grand	Subcelluar
			Start End				length A.A	Weight KDA		average of hydropathicity (GRAVY)	lcalization
Zm00001d037811	ZmPERK1	9	138,545,311	138,550,589	ı	1299	432	59.97726	6.47	-0.483	Cell membrane/plasma membrane
Zm00001d043480	ZmPERK2	ŝ	201,473,204	201,476,633	ı	2208	735	76.90377	8.51	-0.41	Cell membrane/plasma membrane
Zm00001d011908	ZmPERK3	8	164,313,713	164,318,410	I	1479	792	53.98962	9.3	-0.633	Cell membrane/plasma membrane
Zm00001d034257	ZmPERK4	1	288,176,999	288,179,853	I	1761	588	61.80629	9.13	-0.475	Cell membrane/plasma membrane
Zm00001d030218	ZmPERK5	1	113,763,279	113,766,247	+	1488	495	53.51192	6.41	0.37	Cell membrane/plasma membrane
Zm00001d041476	ZmPERK6	ñ	122,414,822	122,416,911	I	1524	507	56.60236	9.12	-0.039	Cell membrane/plasma membrane
Zm00001d020148	ZmPERK7	7	95,798,411	95,800,410	I	1797	598	63.45431	8.31	-0.228	Cell membrane/plasma membrane
Zm00001d035774	ZmPERK8	9	47,428,910	47,432,469	I	1788	595	63.40166	8.91	-0.311	Cell membrane/plasma membrane
Zm00001d028337	ZmPERK9	1	31,103,531	31,114,482	I	1752	583	61.77299	6.5	-0.461	Cell membrane/plasma membrane
Zm00001d012743	ZmPERK10	8	179,562,397	179,566,026	+	1233	410	45.3461	9.17	-0.463	Cell membrane/plasma membrane
Zm00001d037464	ZmPERK11	9	126,133,881	126,136,630	+	1671	556	58.84482	5.68	-0.401	Cell membrane/plasma membrane
Zm00001d011450	ZmPERK12	8	150,848,228	150,851,704	I	2052	683	71.52957	8.67	-0.488	Cell membrane/plasma membrane
Zm00001d026668	ZmPERK13	10	149,652,422	149,656,130	I	2877	958	100.93417	5.24	-0.048	Cell membrane/plasma membrane
Zm00001d049391	ZmPERK14	4	28,932,486	28,936,031	+	1002	333	36.4539	8.97	-0.07	Cell membrane/plasma membrane
Zm00001d007848	ZmPERK15	2	240,835,869	240,838,408	I	1614	535	56.9581	9.15	-0.383	Cell membrane/plasma membrane
Zm00001d010421	ZmPERK16	8	114,332,739	114,337,964	+	1989	662	69.62817	8.72	-0.523	Cell membrane/plasma membrane
Zm00001d037066	ZmPERK17	9	111,296,289	111,300,781	+	1789	662	75.50927	6.3	-0.515	Cell membrane/plasma membrane
Zm00001d031482	ZmPERK18	1	191,554,665	191,555,908	+	1401	466	51.97133	6.2	0.159	Cytoplasm
Zm00001d042185	ZmPERK19	ñ	155,343,261	155,349,083	I	1476	491	53.59911	9.15	-0.608	Cell membrane/plasma membrane
Zm00001d039311	ZmPERK20	ñ	1,451,510	1,456,285	I	1125	374	57.67767	8.41	-0.488	Cell membrane/plasma membrane
Zm00001d040127	ZmPERK21	ñ	28,623,779	28,627,767	I	2076	691	72.32502	8.44	-0.278	Cell membrane/plasma membrane
Zm00001d038708	ZmPERK22	9	163,090,768	163,092,715	I	2691	896	93.90373	8.61	-0.3	Cell membrane/plasma membrane
Zm00001d039176	ZmPERK23	9	171,824,226	171,828,823	+	1401	466	51.97133	6.2	0.159	Cytoplasm

genome of maize, after removing redundant genes we excavated 23 PERK genes in maize genome and named them as ZmPERK1 to ZmPERK23. The PERK gene family comprises 15 Arabidopsis thaliana genes, 8 Oryza sativa genes, 14 Populus trichocarpa genes, 14 Sorghum bicolor genes, 9 Theobroma cacao genes, 23 Z. mays genes, 10 Ananas comosus genes, and 5 Physcomiterlla patens genes. The biophysical properties of the ZmPERK family genes were then determined, including genes ID, start and end positions of genes on chromosomes, polarity of strand, length of CDS sequence (bp), length of protein sequence (aa), protein molecular weights (MW), isoelectric points (pl), and predicted subcellular localization of ZmPERK genes. Table 1 presents all additional estimated biophysical properties. *ZmPERK* proteins had a peptide length ranged from 432 to 958 amino acids, with an average of 695 A.A (Table 1). The PI (Isoelectric point) of maize PERKs varied between 6.2 and 9.134, while the molecular weight ranged between 36.45 and 100.93 kDa. with an average of 68.69 kDa. The length of nucleotide, amino acid sequences varied greatly, indicating that the *ZmPERK* genes are highly complex, implying a high level of complexity.

3.2. Sequence logos and phylogenetic/evolutionary analysis

Sequence logos analysis provide more comprehensive information for sequence similarities, significant alignment aspects, and sequence conservation patterns. To check *PERK* family evolution, we generate sequence logos and results showed that this family remained conserved throughout evolution. For comparison study, the protein sequences of maize, rice and Arabidopsis were used. The results reveal that consensus sequence residues were highly conserved, and there was no compositional bias seen across any specie. These results help in discover and analyze and evaluate *PERK* gene family protein sequence across the species.

Phylogenetic tree serves an important way to understand the evolutionary relationships pathways. In our study we created phylogenetic tree of PERK genes to depict the evolutionary relationships. The phylogenetic or evolutionary analysis revealed the oldest plant lineage, of the PERK gene family as its members were found in Ananas comosus (angiosperm), Physcomitrella patens (bryophytes), dicots (Arabidopsis thaliana, Theobroma cacao, Populus trichocarpa), and monocots (Oryza sativa, Sorghum bicolor and Z. mays). These findings suggested that these genes evolved in ancient land plants, and that probable orthologous genes can be found across the plant kingdom. The PERK genes were characterized by 29 members in the PERK-A clade, 26 members in PERK-B, 19 members in PERK-C, and 22 members in PERK-D in the phylogenetic study. PERK genes were randomly distributed in all four clades from dicot, monocot, and bryophytes plant species, indicating that these genes evolved after the split of bryophytes. This finding showed that PERK genes possibly expanded and diversified after the radiation of these different species. These evolutionary linkages can facilitate the identification of orthologous genes and help to accelerate their functional characterization.

3.3. Predicted protein motifs, structure of exon/intron and conserved domain analysis

The 23 *ZmPERK* protein sequences were classified into four subfamilies using a rectangular phylogenetic tree (subfamily I, II, III, IV). 10 members were found in the Subfamily I, followed by subfamily II (5), subfamily III (4), and subfamily IV (4) (Fig. 3A). In addition, we examined the conserved motifs using MEME software to further investigate the diversity of *ZmPERK* protein family (Fig. 3). In this study, total 10 motifs were found (Table S3). All the gene exhibits same motif pattern. The type, order, and number of motifs were consistent within a subfamily, but varied across

Fig. 3. A: Phylogenetic tree-based categorization of *ZmPERK* genes. An un-rooted phylogenetic tree an un-rooted phylogenetic tree based on full-length peptide sequences (*ZmPERK*) was generated. Classification is shown based on a phylogenetic tree using differences into groups. 3B: Motif pattern of ZmPERK genes 3C: Conserved domains of maize *PERK* protein 3D: Exon-intron structure analyses of *ZmPERK* genes. The purple line represents introns, while the purple boxes represent exons.

subfamilies. The patterns of *ZmPERK* protein motif distribution revealed that conserved distribution patterns existed for similar motifs. Domains 1, 2 and 3 represent the distinctive protein kinase-binding domain that is found in all 23 *ZmPERK* proteins (Fig. 3C). Similarly, Fig. 3D depicts the relative lengths of introns and exon sequence conservation within each *ZmPERK* gene in maize. A gene's biological function is linked to the distribution of exons and introns. All these genes contain exons ranged between 2 and 10. The findings demonstrated obvious conservation, laying the groundwork for functional conservatism and guiding future functional research.

Fig. 4. A: Distribution of 23 *ZmPERK* genes on their respective chromosomes.4B. Pie chart representing percentage of genes present on chromosome.4C: Pictorial representation of paralog gene pairs on chromosome indicating the type of duplication either tandem or segmental.

 Table 2
 Gene duplication event along with Ka/Ks ratio and time of evolution MYA.

3.4. Chromosomal localization, gene duplication events and synteny analysis

Each *ZmPERK* gene's genomic DNA sequence was analyzed in the maize genome database using BLASTn to establish its location, and MapChart was used to visualize the position of identified *ZmPERK* members on their respective chromosomes. The chromosome map revealed that 23 *PERK* genes were dispersed out over 8 of the 10 chromosomes. (Fig. 4A). The most *ZmPERK* genes were found on chr06, which had six members, followed by chr01, 03, and 08, which had 4, 5, and 4 members, respectively. While chromosomes 2, 4, 7, and 10 each had only one gene. *Zmchr06* had the most *PERK* genes (26.08%), followed by *Zmchr3* (21.73%), *Zmchr1*, and *Zmchr8* (17.39%), while *Zmchr02*, *Zmchr04*, *Zmchr06*, *Zmchr07*, and *Zmchr10* had the lowest percentage (4.34%) (Fig. 4B).

Gene duplications, either whole-genome or segmental, as well as tandem duplications, are critical for gene family evolution. Although it has been proven that segmental and tandem duplications play a key role in gene family evolution in all plants specie (Cannon et al., 2004). To investigate ZmPERK gene duplications and evolutionary processes in maize, we identified 09 pairs of probable paralogous genes using the maize PERK phylogenetic tree. It is well documented facts that tandem duplication observed when paralogous genes are present on the same chromosome, whereas segmental duplication arise when paralogous genes are located on distinct chromosomes (Panchy et al., 2016). All the paralogous gene pair appeared to have evolved by segmental duplication except one (ZmPERK5-ZmPERK9) which evolved through tandem duplication indicating that the evolution of PERK genes appears to have been dominated by segmental duplications in maize. (Fig. 4C) Segmental duplication is the primary force that drives the evolution of a gene family. The estimated time of divergence for paralogous gene pairs was determined using synonymous (Ks) and non-synonymous (Ka) substitution rates. The Ka/ Ks ratios for all paralog ZmPERK varied between 0.10 and 0.65 (Table 2). It indicates that purifying selection may have been performed on codons in the development and proliferation of parallel PERK genes in maize.

Multiple collinearity scan tool was used to find orthologous genes among genomes of maize, Sorghum, and rice to further understand the Synteny links of *ZmPERK* genes with these plant species. (Fig. 5). 18 pairs of collinearity genes of *PERK* gene family between maize and rice whereas sixteen pairs in maize and sorghum were observed in the synteny analysis (Table S2). Gene IDs of all collinearity between maize and sorghum is significant as compared to the collinearity values between maize and rice furthermore, these *PERK* genes in maize derived from a common ancestor.

Gene I	Gene II	Ka	Ks	Ka/Ks	Type of Duplication	$T = Ks/2\lambda$
ZmPERK3	ZmPERK19	0.022323415	0.212693	0.104956101	Segmental	6.97
ZmPERK6	ZmPERK14	0.241933478	0.521139	0.658737178	Segmental	4.21
ZmPERK13	ZmPERK23	0.05503852	0.043242	0.120303727	Segmental	1.31
ZmPERK2	ZmPERK10	0.146633906	0.370521	0.395750292	Segmental	1.21
ZmPERK12	ZmPERK17	0.45049383	1.189433	0.378746589	Segmental	3.901
ZmPERK8	ZmPERK21	0.222577445	2.176048	0.102285191	Segmental	7.13
ZmPERK4	ZmPERK15	0.291936478	0.54189	0.538737178	Segmental	1.77
ZmPERK5	ZmPERK9	0.070311852	0.062761	0.160303727	Tandem	2.05
ZmPERK1	ZmPERK16	0.028134859	0.206977	0.135932012	Segmental	6.788

Non-synonymous and synonymous substitutions are designated by Ka and Ks, respectively.

Fig. 5. Collinearity analysis of maize, rice, and sorghum. (A) Collinearity analysis of all chromosomes reveals duplicated *PERK* genes in maize and sorghum. The lines connect the pairs of duplicated genes. (B) The collinearity study of maize and rice chromosomes. The *PERK* genes are represented by the red flags on distinct chromosomes.

3.5. Prediction of RNA editing sites, subcellular localization, and promoter analysis

The Prep-CP and Prep-Mt prediction tools were used to find the RNA editing sites of ZmPERK chloroplast and mitochondrial genes, respectively. In chloroplast genes, 196 RNA editing sites were predicted (Table 3A) and 268 in mitochondrial genes (Table 3B). All predicted editing sites in the chloroplast and mitochondrial genomes were distributed among 23 genes, with an average of 8.5 and 11.26 editing sites per gene, respectively. The chloroplast gene ZmPERK1 contains maximum RNA editing sites (12) while minimum editing sites (5) were predicted in ZmPERK14. Similarly, mitochondrial gene ZmPERK12 contain maximum editing sites (21) while minimum sites (7) were predicted in *ZmPERK14*. The position of RNA editing sites was further explored, and it was observed that all the predicted sites were based on first and second codon base changes. At the third codon base, we couldn't find any site for RNA editing. The transition of cytosine \rightarrow uracil (C-U) seems to be present in all editing sites, resulting in amino acid substitutions. Eleven type of amino acid change found in chloroplast and mitochondrial genes (Fig. 6A). Amino acid conservation caused by RNA editing including A (Alanine) \rightarrow V (Valine), Т (Threonine) \rightarrow I (Isoleucine), H (Histidine) \rightarrow Y (Tyrosine), P (Proline) \rightarrow S (Serine, P (Proline) \rightarrow L (Leucine), R (Arginine) \rightarrow C (Cysteine), S (Serine) \rightarrow F (Phenylalanine), R (Arginine) \rightarrow W (Tryptophan), P (Proline) \rightarrow F (Phenylalanine), S (Serine) \rightarrow L (Leucine), T (Threonine) \rightarrow M (Methionine), L (Leucine)F (Phenylalanine).

Location of gene at cellular level was also determined. Results indicated that 21 of the 23 *ZmPERK* proteins were localized to the plasma membrane, while two (*ZmPERK18 and ZmPERK23*) were localized to the cytoplasm, Table1 contains the details of these parameters. The promoter region, which is located upstream of the start codon area, controls gene transcription. Understanding gene regulation and function requires a thorough examination of *cis*-elements (Higo et al., 1999). We discovered and classified *cis*-acting factors in the upstream region of the ZmPERK genes. (See Table S4) The *cis*-elements were categorized based on their roles in growth and development, as well as light and stress actions. The upstream region of *ZmPERK* genes contained *cis*-acting factors

like MeJA responsive, MYB-binding sites associated with light responsive elements, ABA responsive elements, defense, stress, low temperature, gibberellin acid (GA), and salicylic acid (SA)responsive elements, as per the promoter analysis results (Fig. 6B). The promoters of the *ZmPERK* gene have the most MeJA responsiveness elements. where they were found in 296 promoters. There were 166 light responsive elements, 88 ABA responsive elements, 27 GA responsive elements. The *cis*-element analysis showed that during abiotic stress and plant development phase the *ZmPERK* genes could respond.

3.6. In-silico expressions analysis

Expression patterns give information regarding the biological activities of genes because gene expression is required for optimal regulation of plant growth and development. We looked examined the expression patterns of the *ZmPERK* under drought stress and at different stages of seed embryo development from 15 days after pollination (DAP) to 40 days after pollination (DAP) in two distinct varieties (High oil content and low oil content) (Fig. 7A).Under drought stress 9 genes were upregulated in both tissues leave and cob (ZmPERK2, ZmPERK 3, ZmPERK 8, ZmPERK 10, ZmPERK 14, ZmPERK 16, ZmPERK 19, ZmPERK 20) 4 genes (ZmPERK 1, ZmPERK 7, ZmPERK 18, ZmPERK 21) only upregulated in leave tissue and 1 gene ZmPERK 18 upregulated in cob (Fig. 7B). While Seven genes downregulated (ZmPERK 4, ZmPERK 5, ZmPERK 11, ZmPERK 12, ZmPERK 15, ZmPERK 17, ZmPERK 22) under drought stress.For oil content accumulation in embryo 9 genes shows upregulated expression pattern (ZmPERK 1, ZmPERK 3, ZmPERK 6, ZmPERK 8, ZmPERK 13, ZmPERK 14, ZmPERK 16, ZmPERK 19 ZmPERK, 20) while 12 genes show downregualted trend (ZmPERK 2, ZmPERK 5, ZmPERK 6, ZmPERK 7, ZmPERK 9, ZmPERK 10, ZmPERK 11, ZmPERK 12, ZmPERK 17, ZmPERK 18, ZmPERK 22, ZmPERK 23). Interestingly, some genes show similar expression pattern under both conditions. For example, ZmPERK 3 ZmPERK 8 ZmPERK 14 ZmPERK 16 ZmPERK 19 ZmPERK 20 regardless of the tissues or stresses applied, they were always upregulated. We may conclude from these findings that ZmPERK gene expression is involved in drought stress and oil content accumulation in the embryo.

Predicted K	INA editing Sil														
Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Am ino acid Position	Amino acid Conservation
ZmPERK1	14	5	TCC (S) => CTC (F)	ZmPERK7	134	45	CCG (P) => CTG (L)	ZmPERK13	319	107	CTC (L) => TTC (F)	ZmPERK19	4	2	CCC (P) => TCC
	175	59	CCG (P) => TCG (S)		485	162	TCT (S) => TTT (F)		850	284	CCG (P) => TCG (S)		65	22	(S) TCG (S) => TTG
	203	68	CCG (P) => CTG (L)		514	172	CCG (P) => TCG (S)		853	285	CCC (P) => TCC (S)		11	26	(L) ACG (T) => ATG
	280	94	CCA (P) => TCA (S)		521	174	CCA (P) => CTA (L)		1187	396	ACC (T) => ATC (I)		187	63	(M) CAC (H) => TAC
	331	111	CCT (P) => TCT (S)		856	286	CAC (H) => TAC (Y)		1246	416	CTC (L) => TTC (F)		209	70	(X) CCG (P) => CTG
	338	113	CCG (P) => CTG (L)		949	317	CAC (H) => TAC (Y)		1379	460	CCA (P) => CTA (L)		250	84	(1) CCG (P) => TCG
	340	114	CCG (P) => TCG (S)		103.4	345	GCA (A) => GTA (V)		1556	519	TCC (S) => TTC (F)		292	98	(S) (AT (H) => TAT
	347	116	CCA (P) => CTA (L)		1225	409	CCC (P) => TTC (F)		1744	582	CAC (H) => TAC (Y)		349	117	18E
	544	182	CAC (H) => TAC (Y)		1226	409	CCC (P) => TTC (F)		1877	626	ACC (T) => ATC (I)		353	118	(L) => TTT (F) CCG (P) => CTG
	655	219	CAT (H) => TAT (Y)										355	119	(L) CCG (P) => TCG
				ZmPERK8	236	79	CCC (P) => CTC (L)	ZmPERK14	379	127	CGG (R) => TGG (W)		362	121	(S) CCG (P) => CTG
	415	139	CCC (P) => TTC (F)		268 313	90 105	CCG (P) => TCG (S) CCT (P) => TCT (S)		424 442	142 148	CTT (L) => TTT (F) CCA (P) => TCA (S)	ZmPERK20	211	71	(L) CCA
ZmPERK2	416	139	CCC (P) => TTC (F)		812	271	TCG (S) => TTG (L)		881	294	GCC (A) => GTC (V)		236	79	(r) - 10A (S) CCT
	461	154	$TCA(S) \Rightarrow TTA(L)$		1229	410	GCT (A) => GTT (V)		896	299	$CCG(P) \Rightarrow CTG(L)$		277	93	(P)=> CTT (L) CCA (P) => TCA
	577	193	CCC (P) => TCC (S)		1277	426	GCT (A) => GTT (V)						322	108	(S) CCG (P) => TCG
	742	248	CCG (P) => TCG (S)		1307	436	ACT (T) => ATT (I)	ZmPERK15	326	109	CCG (P) => CTG (L)		373	125	(S) CCT
	778	260	CAC (H) => TAC (Y)						421	141	CCG (P) => TCG (S)		389	130	(P) => TCT (S) CCC
	841	281	CAC (H) => TAC (Y)	ZmPERK9	604	202	CCG (P) => TCG (S)		676	226	CAC (H) => TAC (Y)		406	136	(P)=> CIC(L) CCA (P) => TCA
	979	327	$CAT(H) \Rightarrow TAT(Y)$		865	289	CAC (H) => TAC (Y)		1034	345	GCG (A) => GTG (V)		475	159	(S) CCT
	1093	365	CAC (H) => TAC (Y)		958	320	CAC (H) => TAC (Y)		1187	396	GCC (A) => GTC (V)		512	171	(P)=> ICI(S) ACA (T)=> ATA (I)
	863	288	ACC (T) => ATC (I)		997 1063	333 355	CCG (P) => TCG (S) CCC (P) => TCC (S)		1241 1244	414 415	$CCG (P) \Rightarrow CTG (L)$ ACG (T) \Rightarrow ATG (M)	ZmPERI/21	826	276	CCG (P) => TCG
ZmPERK3	1036	346	CCT (P) => TCT (S)		1457	486	TCC (S) => TTC (F)		1306	436	CCC (P) => TTC (F)		851	284	(S) ACG (T) => ATG
	1103	368	CCT (P) => CTT (L)						1307	436	CCC (P) => TTC (F)		1000	334	(M) CCG (P) => TCG
	1151	384	CCT (P) => CTT (L)	ZmPERK10	19	7	CTT (L) => TTT (F)		1520	507	CCC (P) => CTC (L)		1003	335	(S) CCT
	1187	396	TCG (S) => TTG (L)		241	81	$CAC(H) \Rightarrow TAC(Y)$						1040	347	(P)=> ILU(S) CCG (P)=> CTG
	1195	399	CAT (H) => TAT (Y)		556	186	CCT (P) => TCT (S)	ZmPERK16	529	177	CCG (P) => TCG (S)		1072	358	(L) CCG (P) => TCG
	1214	405	CCG (P) => CTG (L)		737	246	GCT (A) => GTT (V)		586	196	CCA (P) => TCA (S)		1117	373	(S) CCA (P) => TCA
					842	281	GCG (A) => GTG (V)		628	210	CCT (P) => TCT (S)		1148	383	(S) TCC

8

S. Shahid, M.A. Sher, F. Ahmad et al.

continued)	
3A	
Table	
F	

Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid	Amino acid Conservation	Genes	Nucleotide Position	Amino acid	Amino acid Conservation	Genes	Nucleotide Position	Amino acid	Amino acid
						Position				Position				Position	Conservation
	289	67	CCC (P) => TCC (S)		883	295	CCG (P) => TCG (S)		1021	341	CAC (H) => TAC (Y)		1312	438	(S) => TTC (F) CCT
ZmPERK4	482 491	161 164	$CCG (P) \Rightarrow CTG (L)$ $CCG (P) \Rightarrow CTG (L)$		1132 1172	378 391	CTC (L) => TTC (F) CCG (P) => CTG (L)		1327 1379	443 460	CAT (H) => TAT (Y) GCA (A) => GTA (V)	ZmPERK22	205	69	(F) => 1L1 (5)
	i									2				5	(P) => TCC
	565	189	CAT (H) => TAT (Y)						1435	479	CTT (L) => TTT (F)		286	96	(5) CAC (H) => TAC
	577	193	CCC (P) => TCC (S)	ZmPERK11	178	60	CCG (P) => TCG (S)		1441	481	CTT (L) => TTT (F)		611	204	(Y) CCA (P) => CTA
	619	207	CCG (P) => TCG (S)		181	61	CCA (P) => TCA (S)						715	239	(L) CCT
	626	209	ACA (T) => ATA (I)		211	71	CCG (P) => TCG (S)	ZmPERK17	106	36	CCG (P) => TCG (S)		965	322	(P)=> ILI(S) GCA (A) => GTA
	859	287	CAC (H) => TAC (Y)		259	87	CCT (P) => TTT (F)		121	41	CCT (P) => TTT (F)		1307	436	(V) CCA (P) => CTA
					260	87	CCT (P) => TTT (F)		122	41	CCT (P) => TTT (F)		1319	440	(L) ACC
	143	48	TCG (S) => TTG (L)		302	101	TCT (S) => TTT (F)		167	56	$TCA(S) \Rightarrow TTA(L)$		1358	453	(I) => AIC (I) CCA (P) => CTA
ZmPERK5	238	80	CCG (P) => TCG (S)		352	118	CCG (P) => TCG (S)		329	110	CCG (P) => CTG (L)		1385	462	(L) CCA (P) => CTA
	752 1010	251 337	$TCA(S) \Rightarrow TTA(L)$ GCC (A) \Rightarrow GTC (V)		359 376	120 126	CCG (P) => CTG (L) CCC (P) => TCC (S)		338 382	113 128	CCA (P) => CTA (L) CCT (P) => TTT (F)	ZmPERK23	649	217	(I) CCT
	1031	344	CCG (P) => CTG (L)		388	130	CCG (P) => TCG (S)		383	128	CCT (P) => TTT (F)		652	218	(P) => TCT(S) CCC (P) => TCC
	1226	409	GCC (A) => GTC (V)						425	142	TCT (S) => TTT (F)		793	265	(S) CTT
	1367	456	TCC (S) => TTC (F)	ZmPERK12	389	130	CCG (P) => CTG (L)						821	274	(L) => III (F) TCG (S) => TTG
	1394	465	GCG (A) => GTG (V)		394	132	CCG (P) => TCG (S)	ZmPERK18	863	288	ACT (T) => ATT (I)		842	281	(L) TCC
					430	144	CCC (P) => TCC (S)		1036	346	CCT (P) => TCT (S)		847	283	(5) => IIC (F) CCA (P) => TCA
	275	92	ACT (T) => ATT (I)		535	179	CCA (P) => TCA (S)		1150	384	CCT (P) => TCT (S)		859	287	(S) CCG (P) => TCG
ZmPERK6	400	134	CCT (P) => TTT (F)		542	181	CCG (P) => CTG (L)		1190	397	CCT (P) => CTT (L)		916	306	(S) CCA (P) => TCA
	401	134	CCT (P) => TTT (F)		571	191	CCG (P) => TCG (S)		1198	400	CAT (H) => TAT (Y)		1252	418	(S) CTC (1) -> TTC (E)
	512 940 1319	171 314 440	ACA (T) => ATA (I) CCC (P) => TCC (S) ACG (T) => ATG (M) TCC (S) => TTC (F)		920 1105 1369	307 369 497	TCG (S) \Rightarrow TTG (L) CTC (L) \Rightarrow TTC (F) CCT (P) \Rightarrow TTC (S) ACG (T) \Rightarrow ATC (S)		1274 1319 1343	425 440 448	ACC (T) => ATC (I) ACC (T) => ATC (I) GCG (A) => GTG (V)				

Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation
ZmPERK1	5	2	ACG (T) => ATG	ZmPERK8	8	3	TCC (S) => TTC	ZmPERK13	319	107	CTC (L) => TTC (F)	ZmPERK20	104	35	CCG (P) => CTC
	38	13	$TCG(S) \Rightarrow TTG$ (L)		31	11	CCG (P) => TCG (S)		850	284	CCG (P) => TCG (S)		121	41	CCC (P) => TCC (S)
	40	14	CCC (P) => TCC (S)		38	13	$CCG(P) \Rightarrow CTG$ (L)		853	285	CCC (P) => TCC (S)		149	50	TCG(S) => TTG(L)
	82	28	CTC (L) => TTC (F)		80	27	GCC (A) => GTC (V)		1187	396	ACC (T) => ATC (I)		182	61	GCA (A) => GT. (V)
	185	62	CCT (P) => CTT (L)		103	35	CCC (P) => TCC (S)		1246	416	CTC (L) => TTC (F)		239	80	CCA (P) => CTA (L)
	215	72	CCC (P) => CTC (L)		107	36	GCA (A) => GTA (V)		1379	460	CCA (P) => CTA (L)		272	91	TCT (S) => TTT (F)
	284	95	CCC (P) => CTC (L)		139	47	CAC (H) => TAC (Y)		1556	519	TCC (S) => TTC (F)		277	93	CCA (P) => TCA (S)
	305	102	ACC (T) => ATC (I)		215	72	CCA (P) => CTA (L)		1744	582	CAC (H) => TAC (Y)		284	95	GCC (A) => GT (V)
	314	105	GCA (A) => GTA (V)	L .	250	84	CCG (P) => TCG (S)		1877	626	ACC (T) => ATC (I)		305	102	CCA (P) => CTA (L)
	328	110	CCT (P) => TCT (S)		278	93	TCG (S) => TTG (L)		1925	642	GCC (A) => GTC (V)		320	107	GCG (A) => GT (V)
	332	111	CCT (P) => CTT (L)		302	101	GCC (A) => GTC (V)		2045	682	CCC (P) => CTC (L)		329	110	GCA (A) => G (V)
	362	121	GCG (A) => GTG (V)	r	308	103	GCA (A) => GTA (V)		2054	685	GCT (A) => GTT (V)				
					329	110	CCT (P) => CTT (L)					ZmPERK21	535	179	CCT (P) => TC (S)
mPERK2	389	130	CCT (P) => CTT (L)		341	114	GCA (A) => GTA (V)	ZmPERK14	92	31	$ACG(T) \Rightarrow ATG(M)$		545	182	CCG (P) => C1 (L)
	391	131	CCA (P) => TCA (S)		428	143	$CCG(P) \Rightarrow CTG$ (L)		170	57	$TCA(S) \Rightarrow TTA$ (L)		550	184	CCA (P) => TC (S)
	406	136	CCG (P) => TCG (S)						386	129	CCT (P) => CTT (L)		566	189	TCT (S) => TT (F)
	440	147	CCA (P) => CTA (L)	ZmPERK9	164	55	CCG (P) => CTG (L)		394	132	CAT (H) => TAT (Y)		641	214	CCT (P) => CT (L)
	469	157	CCG (P) => TCG (S)		166	56	CCA (P) => TCA (S)		752	251	GCA (A) => GTA (V)		749	250	GCG (A) => GT (V)
	512	171	TCA (S) => TTA (L)		230	77	TCG (S) => TTG (L)		923	308	GCA (A) => GTA (V)		815	272	GCG (A) => GT (V)
	566	189	ACG (T) => ATG (M)	r	254	85	GCT (A) => GTT (V)		950	317	GCC (A) => GTC (V)		829	277	CCG (P) => TG (S)
	572	191	TCA (S) => TTA (L)		389	130	GCA (A) => GTA (V)						836	279	CCT (P) => CT (L)
	578	193	CCC (P) => CTC (L)		457	153	CCG (P) => TCG (S)	ZmPERK15	32	11	CCG (P) => CTG (L)		857	286	CCG (P) => C1 (L)
	808	270	CCG (P) => TCG (S)		671	224	TCG (S) => TTG (L)		106	36	CCC (P) => TCC (S)		935	312	CCG (P) => CT (L)
	877	293	CCT (P) => TCT (S)		803	268	GCC (A) => GTC (V)		230	77	GCG (A) => GTG (V)				

S. Shahid, M.A. Sher, F. Ahmad et al.

Table 3B (co	ontinued)													
Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Genes Conservation	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation
	881	294	$TCG(S) \Rightarrow TTG$		922	308	$CTT (L) \Rightarrow TTT (F)$	233	78	$GCG(A) \Rightarrow GTG(V)$	ZmPERK22	34	12	$CAC(H) \Rightarrow TAC$
			(-)		958	320	CAC (H) => TAC (Y)	281	94	GCC (A) => GTC (V)		76	26	CCA (P) => TCA (S)
ZmPERK	3 223	75	CTT (L) => TTT (F)		1358	453	CCC (P) => CTC (L)	326	109	$CCG(P) \Rightarrow CTG(L)$		205	69	CCC (P) => TCC (S)
	317	106	GCT (A) => GTT (V)		1741	581	$CAA (Q) \Rightarrow TAA (X)$	404	135	GCG (A) => GTG (V)		667	223	$CCT(P) \Rightarrow TCT$ (S)
	931	311	CCT (P) => TCT (S)					428	143	$CCG(P) \Rightarrow CTG$ (L)		836	279	$CCA(P) \Rightarrow CTA$ (L)
	1198	400	CAC (H) => TAC (Y)	ZmPERK10	5	2	ACG (T) => ATG (M)	430	144	CCG (P) => TCG (S)		890	297	$CCA(P) \Rightarrow CTA$ (L)
	1277	426	GCC (A) => GTC (V)		8	3	$CCG(P) \Rightarrow CTG$ (L)	439	147	CCG (P) => TCG (S)		1000	334	CAT (H) => TAT (Y)
	1322	441	$ACC(T) \Rightarrow ATC$		10	4	CCG (P) => TCG (S)	488	163	GCG (A) => GTG (V)	r	1033	345	CCC (P) => TCC (S)
	1373	458	CCA (P) => CTA (L)		31	11	CCG (P) => TCG (S)	571	191	CCC (P) => TCC (S)		1040	347	GCT (A) => GTT (V)
	1382	461	$ACC(T) \Rightarrow ATC$		98	33	GCG (A) => GTG (V)	614	205	GCC (A) => GTC (V)		1181	394	TCG (S) => TTG (L)
					476	159	GCG (A) => GTG (V)	659	220	ACC (T) => ATC (I)				. ,
ZmPERK	48	3	TCT (S) => TTT (F)		608	203	GCT (A) => GTT (V)	748	250	CCC (P) => TCC (S)	ZmPERK23	125	42	CCG (P) => CTG (L)
	31	11	CCA (P) => TCA (S)		614	205	$ACA (T) \Rightarrow ATA$ (I)					155	52	$CCG(P) \Rightarrow CTG$ (L)
	38	13	CCG (P) => CTG (L)		884	295	CCG (P) => CTG ZmPERK16 (L)	235	79	CCC (P) => TTC (F)		191	64	$TCG(S) \Rightarrow TTG(L)$
	41	14	TCT (S) => TTT (F)					236	79	CCC (P) => TTC (F)		218	73	GCA (A) => GTA (V)
	74	25	TCT (S) => TTT (F)	ZmPERK11	34	12	CCT (P) => TCT (S)	302	101	CCA (P) => CTA (L)		395	132	$GCC(A) \Rightarrow GTC$ (V)
	89	30	ACT (T) => ATT (I)		77	26	$ACG(T) \Rightarrow ATG(M)$	331	111	CCG (P) => TCG (S)		944	315	$CCA(P) \Rightarrow CTA$ (L)
	107	36	GCG (A) => GTG (V)	i	176	59	$ACT (T) \Rightarrow ATT (I)$	425	142	$ACG(T) \Rightarrow ATG(M)$	ł	1165	389	CCT (P) => TTT (F)
	137	46	CCC (P) => CTC (L)		194	65	$CCG(P) \Rightarrow CTG(L)$	571	191	CCG (P) => TCG (S)		1166	389	CCT (P) => TTT (F)
	164	55	GCG (A) => GTG (V)	i	224	75	CCC (P) => CTC (L)	626	209	CCT (P) => CTT (L)		1405	469	CCG (P) => TCG (S)
	182	61	GCT (A) => GTT (V)		232	78	CCA (P) => TCA (S)	632	211	GCT (A) => GTT (V)		1739	580	GCT (A) => GTT (V)
	197	66	CCA (P) => CTA (L)		239	80	$GCT(A) \Rightarrow GTT(V)$	815	272	TCG (S) => TTG (L)				
	272	91	CCC (P) => CTC (L)		254	85	$CCT (P) \Rightarrow CTT (L)$	1021	341	CAC (H) => TAC (Y)				
					260	87	CCT (P) => CTT (L)	1124	375	GCG (A) => GTG (V)	ł			

(continued on next page)

Table 3B (a	continued)
-------------	------------

Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation
ZmPERK5	208	70	CCC (P) => TCC		289	97	CCT (P) => TTT		1228	410	CAT (H) => TAT				
	236	79	(S) CCG (P) => CTG		290	97	(F) CCT (P) => TTT (F)		1277	426	(Y) GCT (A) => GTT (V)				
	257	86	$ACC(T) \Rightarrow ATC$		340	114	$CCA(P) \Rightarrow TCA$				(•)				
	577	193	$CCG(P) \Rightarrow TCG$		347	116	$GCA(A) \Rightarrow GTA Z$	mPERK17	34	12	$CAC(H) \Rightarrow TAC$				
	686	229	$GCG(A) \Rightarrow GTG$		371	124	$CCG(P) \Rightarrow CTG$		76	26	$CCA(P) \Rightarrow TCA$				
	943	315	$CCA(P) \Rightarrow TCA$		383	128	$GCC(A) \Rightarrow GTC$		205	69	$CCC(P) \Rightarrow TCC$				
	1010	337	$GCC(A) \Rightarrow GTC$ (V)		395	132	$CCT(P) \Rightarrow CTT$ (L)		667	223	CCT (P) => TCT (S)				
	1094	365	GCG (A) => GTG (V)						836	279	$CCA(P) \Rightarrow CTA$ (L)				
			. ,	ZmPERK12	266	89	TCG (S) => TTG (L)		890	297	CCA (P) => CTA (L)				
ZmPERK6	6 49	17	CCA (P) => TCA (S)		268	90	CCG (P) => TCG (S)		1000	334	CAT (H) => TAT (Y)				
	64	22	CCT (P) => TTT (F)		296	99	CCT (P) => CTT (L)		1033	345	CCC (P) => TCC (S)				
	65	22	CCT (P) => TTT (F)		299	100	CCT (P) => CTT (L)		1040	347	GCT (A) => GTT (V)				
	92	31	ACA (T) => ATA (I)		304	102	CCG (P) => TCG (S)		1181	394	TCG (S) => TTG (L)				
	775	259	CTT (L) => TTT (F)		332	111	CCG (P) => CTG (L)								
	1316	439	$TCA(S) \Rightarrow TTA$		356	119	$GCG(A) \Rightarrow GTG Z$ (V)	mPERK18	55	19	CCC (P) => TTC (F)				
	1412	471	$ACA(T) \Rightarrow ATA$ (I)		359	120	GCG (A) => GTG (V)		56	19	CCC (P) => TTC (F)				
	1420	474	CCG (P) => TCG (S)		386	129	GCA (A) => GTA (V)		62	21	GCC (A) => GTC (V)				
	1441	481	CCG (P) => TCG (S)		395	132	CCG (P) => CTG (L)		83	28	GCC (A) => GTC (V)				
					440	147	GCC (A) => GTC (V)		223	75	CTC (L) => TTC (F)				
ZmPERK7	65	22	CCG (P) => CTG (L)		449	150	$ACG(T) \Rightarrow ATG(M)$		317	106	GCT (A) => GTT (V)				
	109	37	CTT (L) => TTT (F)		461	154	TCA (S) => TTA (L)		931	311	CCT (P) => TCT (S)				
	137	46	GCC (A) => GTC (V)		476	159	GCG (A) => GTG (V)		1127	376	$TCA(S) \Rightarrow TTA$ (L)				
	143	48	GCG (A) => GTG (V)		521	174	ACC (T) => ATC (I)		1226	409	GCT (A) => GTT (V)				
	257	86	GCT (A) => GTT (V)		524	175	GCC (A) => GTC (V)		1370	457	CCA (P) => CTA (L)				
	260	87	CCA (P) => CTA (L)		535	179	CCA (P) => TCA (S)		1379	460	ACC (T) => ATC (I)				

S. Shahid, M.A. Sher, F. Ahmad et al.

Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation	Genes	Nucleotide Position	Amino acid Position	Amino acid Conservation
	275	92	GCG (A) => GTG (V)		616	206	CCA (P) => TCA (S)								
	290	97	$TCA(S) \Rightarrow TTA$		620	207	CCT (P) => CTT (L)	ZmPERK19	4	2	CCC (P) => TTC (F)				
	311	104	GCG (A) => GTG (V)		644	215	$CCG(P) \Rightarrow CTG(L)$		5	2	CCC (P) => TTC (F)				
	320	107	GCT (A) => GTT (V)		674	225	TCG(S) => TTG		26	9	$CCG(P) \Rightarrow CTG$				
	323	108	GCT (A) => GTT (V)						38	13	TCG(S) => TTG (L)				
	524	175	$ACA(T) \Rightarrow ATA$						43	15	CCG (P) => TCG (S)				
	614	205	CCC (P) => CTC (L)						59	20	TCT (S) => TTT (F)				
	770	257	GCG (A) => GTG (V)						70	24	CTT (L) => TTT (F)				
									98	33	GCG (A) => GTG (V)				
									194	65	$CCG(P) \Rightarrow CTG$ (L)				
									200	67	CCG (P) => CTG (L)				
									299	100	GCC (A) => GTC (V)				

Fig. 6. (A) RNA editing of the PERK genes results in amino acid conservation. (B) Identified cis-acting elements in ZmPERK gene family promoters.

4. Discussion

Many ancient land plants evolved over the time also possess PERKs genes (Nakhamchik et al., 2004, Qanmber et al., 2019, Chen et al., 2020) which depict that these gene families are present from centuries in the plants. Now a day's modern techniques of DNA sequences have revolutionized the field of DNA sequencing especially the advent of next-generation sequencing technologies, have shorten the time of sequencing with more accuracy in the results. The availability of maize genome assemblies has open the new avenues for studying various functions of genes at genome-wide level. There has been no systematic study of maize to date. However, in our study we discovered 23 ZmPERK genes in the maize genome. In phylogenetic analysis, we divided ZmPERK genes into four groups. The findings demonstrated that *PERK* genes were initially originated in ancient land plants and their orthologous genes may be found throughout the plant kingdom. Plant PERK genes from dicot, monocot, lycophytes, and chlorophytes were assigned to each of the four clades randomly. Our study showed that ZmPERK genes remained evolutionarily conserved, as these were found in each of the species which was used in this study. Furthermore, the expansion of these gene into higher plants

was occurred with the passage of time. According to sequence logos for PERK genes, the protein sequence residues were highly conserved, and no compositional bias was seen across the studied species. To study the evolutionary history of multiple gene families (Ohta, 2010). It is essential to know the structure of the genes. The length of nucleotide and amino acid sequences varied considerably, indicating that the ZmPERK genes are diverse. It is quite worth to study the exon-intron structure as insertion/deletion events play important role in determine the structure of exon-intron. The introns gain or lose have been witnessed throughout eukaryotic diversification. The exon-intron pattern of duplicated genes is similar, whereas more diversification observed in the intron length suggesting that the intron length may be significant in ZmPERK functional diversification. In ZmPERK proteins, different combinations of conserved motifs were identified. Protein motif analysis revealed that protein from same species were tend to fall in the same cluster together. Arrangements of motif were comparable among members of the same subfamily.

The study of gene duplication events is critical as these play crucial role in the genome expansions and alignments (Tamura et al., 2011). The gene duplication events have been witnessed in various transcription factor families of plants (Liu et al., 2011;

Fig. 7. A: *ZmPERK* gene expression patterns at different developmental stages of seed embryos from 15 days after pollination (DAP) to 40 days after pollination (DAP). H-represent expression in high oil content variety while L represent low oil content variety B: Expression pattern of *ZmPERK* gene under drought stress DS-L(Drought stress leave sample) DS-C (Drought stress cob sample) CL(Controled leave sample) CC (Control Cob sample.

Shan et al., 2013). To differentiate whether the gene duplication was the result of tandem or segmental if the duplications are the result of the presence two or more genes the same chromosome, it will be considered as tandem duplication whereas segmental or WGD duplications are when two or more genes are duplicated on different chromosomes. The intron expansion is mainly the result of the tandem duplications and thus give rise to the formation of the new genes (Yang et al., 2008), but we only find evidence of one tandem and eight segmental duplications in this study. In Plants the environmental and selection factors have expanded multiple gene families more than other eukaryotes organisms. The *Ka/Ks* ratios demonstrated that maize *PERK* genes have been subjected to extensive selection, with relatively minimal functional variations due to whole genome and segmental duplication.

ZmPERK genes possess *cis*-elements associated with stress responses in their promoter regions. *ZmPERK* contains *cis*-elements such as MeJA responsive, MYB-binding sites associated with light responsiveness elements, ABA responsive, defense, and stress responsive, low temperature and gibberellin acid (GA) responsive elements. The presence of these cis elements with specified characteristics demonstrated the putative role in plant growth, development, as well as in biotic and abiotic stress response. Synteny is a framework for assessing homologous gene and gene order conservation across genomes of different species. The collinearity between maize and sorghum was shown to be more significant than the collinearity between maize and rice.

Plant growth and development are assisted by RNA editing, which is an effective strategy for regulating gene expression at the post-transcriptional level in higher plant organelle genomes. The discovery and identification of RNA editing sites is critical for a better knowledge of their biological activities and establishing the framework for future research and comprehension of their molecular processes. In this work, the RNA editing sites of chloroplast and mitochondrial genes in maize were predicted. Table 3A lists 196 RNA editing sites predicted in chloroplast genes and 268 in mitochondrial genes (Table 3B). In the chloroplast and mitochondrial genomes, these sites were detected on 23 genes, with an average of 8.5 and 11.26 editing sites per gene, respectively. The transition and conservation of cytosine (C) to uracil (U) was observed in all of the editing sites. Changes in the first and second codon nucleotides were mostly involved for these transitions. The current study laid the groundwork for future research into the biological functions of chloroplast and mitochondrial RNA editing in maize. The expression patterns of genes are closely related to their biological functions. According to expression analyses ZmPERK genes were shown to be important in drought tolerance and oil content accumulation in embryos.

5. Conclusion

The current study found 23 non-redundant *ZmPERK* encoding genes in maize. The *PERK* gene family is conserved among the analyzed plant species, according to their classification, characterization in terms of gene structure, motif, conserved domains, and comparative phylogenetic analyses. Furthermore, gene duplication analysis and syntenic relationship studies reveal that the maize paralogous genes proliferate through segmental duplications, whereas codons went under purifying selection, resulting in a significant expansion of the *ZmPERK* gene family. The existence of

putative *cis*-elements in the *ZmPERK* gene promoter regions suggests that they have a functional role in growth, development, and stress resilience. Most of the genes were found to be up regulated in response to stress and oil content, accumulation showing that they may play a role in stress modulation and development process in maize. Overall, these findings will assist in the functional characterization of maize PERK genes. The candidate *ZmPERK* genes can be employed in a breeding program.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This project was supported by Researchers Supporting Project Number (RSP-2023R7) King Saud University, Riyadh, Saudi Arabia.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jksus.2022.102293.

References

- Abadi, V.A.J.M., Sepehri, M., 2016. Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 69 (1), 9–19.
- Bai, L., Zhang, G., Zhou, Y., et al., 2009. Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J. 60 (2), 314–327.
- Cannon, S.B., Mitra, A., Baumgarten, A., et al., 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4 (1), 1–21.
- Champion, A., Kreis, M., Mockaitis, K., et al., 2004. Arabidopsis kinome: after the casting. Funct. Integr. Genomics 4 (3), 163–187.
- Chen, G., Wang, J., Wang, H., et al., 2020. Genome-wide analysis of proline-rich extension-like receptor protein kinase (PERK) in Brassica rapa and its association with the pollen development. BMC Genomics 21 (1), 1–13.
- Chothia, C., Gough, J., Vogel, C., et al., 2003. Evolution of the protein repertoire. Science 300 (5626), 1701–1703.
- Diévart, A., Dalal, M., Tax, F.E., et al., 2003. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15 (5), 1198–1211.
- Finn, R.D., Bateman, A., Clements, J., et al., 2014. Pfam: the protein families database. Nucleic Acids Res. 42 (D1), D222–D230.
- Higo, K., Ugawa, Y., Iwamoto, M., et al., 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27 (1), 297–300.
- Hwang, Y., Lee, H., Lee, Y.-S., et al., 2016. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth. J. Exp. Bot. 67 (6), 2007–2022.
- Kong, X., Lv, W., Jiang, S., et al., 2013. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 14 (1), 1–15.
- Leng, P., Zhao, J., 2020. Transcription factors as molecular switches to regulate drought adaptation in maize. Theor. Appl. Genet. 133 (5), 1455–1465.

- Letunic, I., Doerks, T., Bork, P., 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43 (D1), D257–D260.
- Liu, Y., Jiang, H., Chen, W., et al., 2011. Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays). Plant Growth Regul. 63 (3), 225– 234.
- Liu, S., Qin, F., 2021. Genetic dissection of maize drought tolerance for trait improvement. Mol. Breed. 41 (2), 1–13.
- Mansfield, T., Hetherington, A., Atkinson, C., 1990. Some current aspects of stomatal physiology. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41, 55–75.
- Morris, E.R., Walker, J.C., 2003. Receptor-like protein kinases: the keys to response. Curr. Opin. Plant Biol. 6 (4), 339–342.
- Mower, J.P., 2009. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 37 (suppl_2), W253–W259.
- Nakhamchik, A., Zhao, Z., Provart, N.J., et al., 2004. A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol. 45 (12), 1875–1881.
- Ohta, T., 2010. Gene conversion and evolution of gene families: an overview. Genes. 1 (3), 349–356.
- Panchy, N., Lehti-Shiu, M., Shiu, S.-H., 2016. Evolution of gene duplication in plants. Plant Physiol. 171 (4), 2294–2316.
- Qanmber, G., Liu, J., Yu, D., et al., 2019. Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. Int. J. Mol. Sci. 20 (7), 1750.
- Samuel, M.A., Ellis, B.E., 2002. Double jeopardy: both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14 (9), 2059–2069.
- Sekhon, R.S., Briskine, R., Hirsch, C.N., et al., 2013. Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS ONE 8 (4), e61005.
- Shan, Q., Wang, Y., Li, J., et al., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31 (8), 686–688.
- Shiu, S.-H., 2001. Plant receptor-like kinase gene family: diversity, functions, and signaling. Sci. STKE. 18, 113–122.
- Shiu, S.-H., Bleecker, A.B., 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. 98 (19), 10763–10768.
- Shiu, S.-H., Karlowski, W.M., Pan, R., et al., 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16 (5), 1220– 1234.
- Shpak, E.D., Berthiaume, C.T., Hill, E.J., et al., 2004. Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Develop 131 (7), 1491– 1501.
- Shpak, E.D., Lakeman, M.B., Torii, K.U., 2003. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA leucine-rich repeat receptor–like kinase signaling pathway that regulates organ shape. Plant Cell 15 (5), 1095–1110.
- Silva, N.F., Goring, D.R., 2002. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol. Biol. 50 (4), 667–685.
- Tamura, K., Peterson, D., Peterson, N., et al., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 (10), 2731–2739.
- Tiwari, Y.K., Yadav, S.K., 2019. High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. Journal of. Plant Biology. 62 (2), 93–102.
- Voorrips, R., 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93 (1), 77–78.
- Xing, Y., Cao, Q., Zhang, Q., et al., 2013. MKK5 regulates high light-induced gene expression of Cu/Zn superoxide dismutase 1 and 2 in Arabidopsis. Plant Cell Physiol. 54 (7), 1217–1227.
- Yang, S., Zhang, X., Yue, J.-X., et al., 2008. Recent duplications dominate NBSencoding gene expansion in two woody species. Mol. Genet. Genomics 280 (3), 187–198.
- Zhu, J.-K., 2016. Abiotic stress signaling and responses in plants. Cell 167 (2), 313–324.