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Abstract In this paper, a kind of analytical technique for a non-linear problem called the varia-

tional iteration method VIM is used to give approximate solutions for the Kuramoto–Sivashinsky

equations. The VIM is to construct correction functionals using general Lagrange multipliers iden-

tified optimally via the variational theory. This method constructs a convergent sequence of func-

tions, which approximates the exact solution of problems. Comparisons of the obtained results with

exact solutions reveal that this method is very effective and simple and could be applied for non-

linear problems.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In recent years, He’s variational iteration method has been
favorably applied to various kinds of problems; for example,
this scheme is used for solving the fractional KdV–Burgers–
Kuramoto equation (Safari et al., 2009). This technique com-

putes the exact solution of equations using the initial condition
oo.com (M.G. Porshokouhi),

y. Production and hosting by

Saud University.

lsevier
only. It is also important to note that the present method does
not require discretization of the equation. Therefore, it is not
affected by computation round-off errors and one is not faced

with the necessity of large computer memory and time.
Furthermore, using this idea we do not need to solve any linear
or non-linear system of equations. In Biazar and Ghazvini

(2007) VIM is employed to solve fourth-order parabolic equa-
tions. Also, this method is employed in He (1997b) to solve
delay differential equations. The interested reader is referred

to Dehghan and Tatari (2006), Wazwaz (2007), Sweilam and
Khader (2007) for some other applications of the method.

The Kuramoto–Sivashinsky equation is a non-linear evolu-
tion equation and has many applications in a variety of phys-

ical phenomena such as reaction diffusion systems (Kuramoto
and Tsuzuki, 1976), long waves on the interface between two
viscous fluids (Hooper and Grimshaw, 1985) and thin hydro-

dynamics films (Sivashinsky, 1983). The Kuramoto–Sivashin-
sky equation has been studied numerically by many authors
(Akrivis and Smyrlis, 2004; Manickam et al., 1998; Uddin

et al., 2009).
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Consider the Kuramoto–Sivashinsky equation

@u

@t
þ u

@u

@x
þ a

@2u

@x2
þ c

@3u

@x3
þ b

@4u

@x4
¼ 0: ð1Þ

Subject to the initial condition

uðx; 0Þ ¼ fðxÞ; a 6 x 6 b: ð2Þ

And boundary conditions

uða; tÞ ¼ g1ðtÞ; uðb; tÞ ¼ g2ðtÞ; t > 0:

In this paper we use VIM for solving this equation, which was
first proposed by He (1997a), and the convergence of the method

is systematically discussed by Tatari and Dehghan(2007).

2. Using VIM to solve Kuramoto–Sivashinsky equations

To clarify the basic ideas of VIM, we consider the following
differential equation

LuðtÞ þNuðtÞ ¼ gðtÞ;

where L is a linear operator, N is a non-linear operator and
g(t) an inhomogeneous term.

According to VIM, we can write down a correction func-

tional as following

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

kðnÞðLunðnÞ þN~unðnÞ � gðnÞÞdn:

where k is a Lagrange multiplier which could be identified opti-

mally via variational theory, un is the nth approximate solu-
tion, and ~un denotes a restricted variation, i.e. d~un ¼ 0.
Figure 1 The surface shows the solution uðx; tÞ for Example 1 when c

approximate solution (4) and (c) the absolute error between exact and
In this section the application of the VIM is discussed for

solving Eq. (1). According to the correction functional in t –
direction in the following form

unþ1ðx; tÞ ¼ unðx; tÞ þ
Z t

0

kðnÞ @unðx; nÞ
@n

þ ~unðx; nÞ
@~unðx; nÞ

@x

�

þ a
@2~unðx; nÞ

@x2
þ c

@3~unðx; nÞ
@x3

þ b
@4~unðx; nÞ

@x4

�
dn:

Taking the variation with respect to the independent vari-
able un and noticing that dunð0Þ ¼ 0, we get

dunþ1 ¼ dun þ kdunjn¼t �
Z t

0

k0dundn ¼ 0:

Then we apply the following stationary conditions:

k0ðnÞjn¼t ¼ 0; 1þ kðnÞjn¼t ¼ 0:

The general Lagrange multiplier, therefore, could be readily

identified:

k ¼ �1:

And as result, we obtain the following iteration formula

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; nÞ
@n

þ unðx; nÞ
@unðx; nÞ

@x

�

þ a
@2unðx; nÞ

@x2
þ c

@3unðx; nÞ
@x3

þ b
@4unðx; nÞ

@x4

�
dn:
¼ 0:1; k ¼ 1
2

ffiffiffiffi
11
19

q
; x0 ¼ �10: (a) exact solution (3), (b) 3th order of

numerical solutions.



Figure 2 The surface shows the solution uðx; tÞ for Example 2 when c ¼ 0:2; k ¼ 1
2
ffiffiffiffi
19
p ; x0 ¼ �10: (a) exact solution (5), (b) 3th order of

approximate solution (6) and (c) the absolute error between exact and numerical solutions.
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We start with the initial approximation of uðx; 0Þ given by
Eq. (2). Using the above iteration formula, we can obtain
the other components as follows

u0ðx; tÞ ¼ uðx; 0Þ ¼ fðxÞ;
u1ðx; tÞ ¼ u0ðx; tÞ �

R t

0

@u0ðx;nÞ
@n þ u0ðx; nÞ @u0ðx;nÞ@x

þ a @2u0ðx;nÞ
@x2

n

þc @
3u0ðx;nÞ
@x3

þ b @4u0ðx;nÞ
@x4

o
dn;

u2ðx; tÞ ¼ u1ðx; tÞ �
R t

0

@u1ðx;nÞ
@n þ u1ðx; nÞ @u1ðx;nÞ@x

þ a @2u1ðx;nÞ
@x2

n

þc @
3u1ðx;nÞ
@x3

þ b @4u1ðx;nÞ
@x4

o
dn;

..

.

3. Numerical results

In this section, we apply the technique discussed in the previ-
ous section to find numerical solution of the family of Kuram-

oto–Sivashinsky equations and compare our results with exact
solutions. The results reveal that this method is very effective
and simple.

Example 1. Consider the Kuramoto–Sivashinsky equation

@u

@t
þ u

@u

@x
þ @

2u

@x2
þ @

4u

@x4
¼ 0:

With initial condition

uðx; 0Þ ¼ cþ 5

19

ffiffiffiffiffi
11

19

r
11tanh3 kðx� x0Þð Þ � 9 tanh kðx� x0Þð Þ
� �

:

Exact solution of problem is given by

uðx; tÞ ¼ cþ 5

19

ffiffiffiffiffi
11

19

r
11tanh3ðkðx� ct� x0ÞÞ
�

� 9 tanhðkðx� ct� x0ÞÞ�: ð3Þ

For solving by VIM we obtain the recurrence relation

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; nÞ
@n

þ unðx; nÞ
@unðx; nÞ

@x

�

þ @
2unðx; nÞ
@x2

þ @
4unðx; nÞ
@x4

�
dn: ð4Þ

Starting with the initial approximation u0ðx; tÞ ¼ uðx; 0Þ in
(4), successive approximations uiðx; tÞ’s will be achieved.

The plot of exact solution (3), the 3th order of approximate
solution obtained using the VIM and comparison between the

exact and numerical solutions of this example are shown in
Fig. 1.

Example 2. Let us have the following form ofKuramoto–Siva-
shinsky equation

@u

@t
þ u

@u

@x
� @

2u

@x2
þ @

4u

@x4
¼ 0:

With initial condition

uðx; 0Þ ¼ cþ 15

19
ffiffiffiffiffi
19
p tanh3ðkðx� x0ÞÞ � 3 tanhðkðx� x0ÞÞ

� �
:

The solution of the above problem is recognized
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uðx; tÞ ¼ cþ 15

19
ffiffiffiffiffi
19
p tanh3ðkðx� ct�x0ÞÞ� 3tanhðkðx� ct�x0ÞÞ

� �
:

For solving by VIM we obtain the recurrence relation

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; nÞ
@n

þ unðx; nÞ
@unðx; nÞ

@x

�

� @
2unðx; nÞ
@x2

þ @
4unðx; nÞ
@x4

�
dn: ð6Þ

Starting with the initial approximation u0ðx; tÞ ¼ uðx; 0Þ in
(6), the next iterates uiðx; tÞ‘s will be obtained.

The plot of exact solution (5), the 3th order of approximate

solution obtained using the VIM and comparison between the
exact and numerical solutions are shown in Fig. 2.

Example 3. As the last example, we try the case of
a ¼ 1; c ¼ 4; b ¼ 1 in (1) as:

@u

@t
þ u

@u

@x
þ @

2u

@x2
þ 4

@3u

@x3
þ @

4u

@x4
¼ 0:

Its exact solution of above problem reads

uðx; tÞ ¼ cþ 9� 15 tanhðkðx� ct�x0ÞÞþ tanh2ðkðx� ct�x0ÞÞ
�

� tanh3ðkðx� ct�x0ÞÞ
�
: ð7Þ
Figure 3 The surface shows the solution uðx; tÞ for Example 3 whe

approximate solution (8) and (c) the absolute error between exact and
With initial condition

uðx; 0Þ ¼ cþ 9� 15 tanhðkðx� x0ÞÞ þ tanh2ðkðx� x0ÞÞ
�

� tanh3ðkðx� x0ÞÞ
�
:

For solving by VIM we obtain the recurrence relation

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; nÞ
@n

þ unðx; nÞ
@unðx; nÞ

@x

�

þ @
2unðx; nÞ
@x2

þ 4
@3unðx; nÞ

@x3
þ @

4unðx; nÞ
@x4

�
dn: ð8Þ

Using the initial approximation u0ðx; tÞ ¼ uðx; 0Þ in (8),
approximations uiðx; tÞ‘s will be calculated, successively.

The plot of exact solution (7), the 3th order of approximate
solution obtained using the VIM and comparison between the

exact and numerical solutions of this example are shown in
Fig. 3.
4. Conclusion

In this paper the He’s variational iteration method is used to
solve the Kuramoto–Sivashinsky equations. We described
the method, used it on three test problems, and compared
n c ¼ 3; k ¼ 1
2
; x0 ¼ �10: (a) exact solution (7), (b) 3th order of

numerical solutions.
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the results with their exact solutions in order to demonstrate

the validity and applicability of the method. Moreover, only
a small number of iterations are needed to obtain a satisfactory
result. The given numerical examples support this claim.

We use the Maple Package to calculate the functions ob-

tained from the variational iteration method
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