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In this paper, we study the existence of a solution to n X n parabolic systems with variable
coefficients involving Schrodinger operators defined on an unbounded domain of R". We then
discuss the necessary and sufficient conditions of optimality for these systems.
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1. Introduction

Today, optimal control problems of distributed systems, that
include partial differential equations have many mechanical
and technical sources and a variety of technological and scien-
tific applications.

Indeed, many optimal control problems of elliptic systems
involving Schrédinger operators of the distributed type have
been studied, as in Serag (2000, 2004) and Serag and Qamlo
(2005). Whereas some of these problems had positive weight
functions (Serag, 2004; Serag and Qamlo, 2005), others had
constant coefficients, e.g., (Serag, 2000).

The necessary and sufficient conditions of optimality for
2 x 2 parabolic and hyperbolic systems involving Schrodinger
operators have already been discussed in (Bahaa, 2006; Qamlo,
2013).
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In addition, optimal control problems for systems involving
parabolic and hyperbolic operators with an infinite number of
variables have been introduced in (Kotarski et al., 2002; Serag,
2007; Qamlo, 2008, 2009; Bahaa and El-Shatery, 2013).

Furthermore, time-optimal control of infinite order para-
bolic and hyperbolic systems has been studied in (Kowalewski
and Krakowiak, 2008; Kowalewski, 2009).

Here, we discuss the following n X n parabolic systems with
variable coefficients involving Schrédinger operators that are
defined on an unbounded domain of R"

LY+ L,Y=A(x)Y+ F(x,1) in Q,
Y(x) — 0 as |x| — oo, )
Y(x)=0 on Y,
Yi(x,0) = yip(x) Vi=1,---n, in Q,

Y and F are column matrices with elements y; and f;, repec-
tively, In addition, Q = Qx(0,7) with boundary X =0
Q% (0,7) and Q is an unbounded domain of R” with boundary
0Q. and L, is a n x n diagonal matrix of the Schrédinger oper-
ator (—4 + g), the potential ¢ is a positive function that tends
to oo at infinity, and A(x) is an n X n matrix of variable coeffi-
cients a;(x) (1 < ij < n) that satisfy the following conditions:

there exist r > 1 and k > 0 such that
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k
ag(x) € [ 0,————=] Vij=12,....,n, Vxeg, 2
i(X) ((1+X|2)> 2)

ag(x) < yJap(x)az(x) Vij=1,2,...,n, Vxe€Q. (3)

We first prove the existence and uniqueness of the state for
system (1), and we then introduce the necessary and sufficient
conditions of optimality for this system by a set of equations

and inequalities.
2. Some facts and results

To prove our theorems, we recall certain results that are intro-
duced in Djellit and Yechoui (1997) regarding the existence of
the principal eigenvalue ﬂ,; of the following problem:

(=4 +q)y = 1g(x)y in Q,
y—0 as [|x]— oo, 4)
y=0 on I,

where Q is an unbounded connected open subset of R” with
boundary 02 and both the potential ¢ and the weight function
g(x) are measurable functions that tend to zero at infinity.

For n> 2, if 3 >0, f > 1l,a > B, 3k > 0,c > 0 such
that

k ¢

0<g(x) S —» <q(x) S ——57

(1 + |x) (14"
where the eigenvalue problem (4) has a positive principal
eigenvalue A that is simple and associated with a positive
eigenfunction ¢, in V... Moreover [ is characterized by:

P / gD < / (V31 + gy, (6)

()

where
Vy={yeV(Q): [,glul’dx > 0} and

V(Q)={yeD'(Q) :pye*(Q),Vye L} (Q}
P, = p(x),a>0,p(x) = (1+ ‘x‘2)*‘/2’

Furthermore, V(Q) is a Hilbert space with the inner product
W)y = [o,(Vy-Vy+py-y)dx and the corresponding

12
norm ||y||, = (fg(\Vy|2 +p1\y|2)dx> which is equivalent to

1/2
vl = (Jo IV + glP)ax)
Now, to study our system (1), we recall the introduced by
Serag (2000):

Lf,(Q) ={y:Q2—R: /Qg(x)y2dx < o0},
with an inner product (y,V), = [, g(x)y dx. We then have
the following embeddings:
2
V(@) CLAQ) C V().
V(@ cL(Q)cv(Q),
and we introduce the space L*(0,T;V(Q)) of measurable func-
tions ¢ — f{z) which is defined on the open interval (0,7), as

the variable ¢ € (0,7) denotes the time, where 7' < co.
L2(0,T;V(Q)) is a Hilbert space with the scalar product

(0. v = [ OOy

0.1
1/2
, 112
and the norm W(t)HL?(o,T;V(Q)) = (f(o.n “f(Z)HV(Q)dZ) < 0.

Analogously, we can define the space L? (0, T; L;(Q)) =
L*(0),

with the following scalar product:
0800 = [ 080zt = [ sty ar
Then we have the following chain:
L2(0, T; V(R)) CLX(Q) C L*(0, T; V'(2)),
and by the Cartesian product, we have
(L*(0, 75 V()" € (L*(Q))" € (L*(0, T; V'(2)))".

In addition, we will use the following definition of M-matrices
(Bermann and Plemmons, 1979; Serag, 2004).

Definition 1. A nonsingular matrix f = (b;) is an M-matrix if
b; < 0 for i#j,b; > 0 and if the principal minors extracted
from f are positive.

3. The scalar case

In this section, we consider the scalar case (i.e., a system that
consists of one equation):

y(x)

o+ (=44 q)y(x) =g)y(x) +/0x,0)  in Q,

y(x) = 0 as |x] - o )
(x) =0 on ¥,
¥(%,0) = () in o

Proposition 1. Forfe L>(0,T;V'(Q)) and yy(x) € V(Q), there
exists a unique solution y € L*(0,T:V(Q)) for system (7) if
1< Af.

Proof. The continuous bilinear form:

n(t;y, @) = /Q (VyVeo +qyp)dx — /Q g(x)ypdx (8)

is obviously coercive on V().
In fact, we have:

n(t;y,y) = / (V2 + g - / g(x)ydx
- / (V3 + (g + me)lyP)dx — (1 + m)

/ g(x)y’dx, m>0,
Q

Then, from (6):

1+m
n:t; Y7Y > 1_,‘—
( }}) ( Af—i-m

) L(Wﬂz + (g +mg)|y|)dx,

that is,
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1+m 2

) > (1= )bl )
which proves the coerciveness condition of the bilinear form (8) on
V(€2). Then, by the Lax-Milgram lemma, there exists a unique solu-
tion y € L*0,T;V(Q)) for the system (7). Now, we can formulate
the optimal control problem for system (7) as follows:

The space L*(Q) is the space of controls. For a control u €
L*(Q), the state y(u) € L*(0,T;V(Q)) of the system is given by
the solution of the following problem:

2 4 (—A+ q)y(w) = g)y() +fx, ) +u  in Q,
y—0 as |x|— o0
y(u) =0 on >,
y(xaoau) :yO(x) iIl Q
(10)
where y(u) € L*(0, T: V(Q)), 24 m e L0, T: V' (Q)).
The observation equation is given by z(u) = y(u).
For a given z, € L*(Q), the cost function is given by
JO) = 1y0) = zall 20 + MVl 72(0): (11)

where M is a positive constant.
The control problem is to find u € U,; such that J(u) <
J(v)’

where U, is a closed convex subset of LX(Q).

The cost function (11) can be written as was performed by
Lions (1971):

J(v) = a(v,v) = 2L(v) + [|(0)

where a(v,v) is a continuous coercive bilinear form and L(v) is a
continuous linear form on L*(0,T;¥(R2)) .Then using the gen-
eral theory of Lions (1971), there exists a unique optimal con-
trol u € U, such that J(u) = infJ(v) for all v € U,; Moreover,
we have the following proposition that gives the necessary and
sufficient conditions of optimality: [J

2
= zall2():

Proposition 2. Assume that (9) holds. If the cost function is given
by (11), the optimal control u € L?(Q) is then characterized by:

B (At qp(w) - g()p(u) = y(u) =z, in Q,
p—0 as [x|— oo,
p(u) =0 on >,
p(x, T,u) =0 in Q
(12)
where p(u) € L*(0,T; V(Q)), 2% € L*(0, T; V'(Q)).  Further-
more, we have the inequality
(p(u) + Mu,v —u) 2 = 0 Vv € U, (13)

together with (10), where p(u) is the adjoint state.
4. The case of systems
4.1. Operator equation

In this section, we prove the existence and uniqueness of a
solution to system (1), which can be written as follows:

0
2 4 (— A+ q)pi(x

t

Zau Xy +filx,) in Q,

j—0 as |x|— oo,
yi(x) =0 on 3,
yi(x70):yi,0(x) Vi= 172/3’1 in Qa

We introduce the continuous bilinear

(V(Q))" x (V(2))" — R as follows:

n(t;p, ) = Z /Q (VyVo; + qvip;)dx

form n(t;y,):

/ a;(X)y;p,dx — / ai(x)y;pdx,  (14)
—1 Q

Vial)

Proposition 3. If conditions (2) and (3) hold, then the bilinear
form (14) is coercive on (V(Q))" if the matrix:

)v?“(a”)fl —1 -1

- A (azz) 1 -1

(/\T(aﬁ)— ): :
-1 -1 A (@) — 1
(15)

is a nonsingular M-matrix (15); it is assumed that Al (a;) is a
diagonal matrix with elements A} (ay).

A (ay) is the principal eigenvalue for the eigenvalue problem
(4) when we replace the function g(x) with a; (x) in (4).

= Z/(\Vyilzwlyilz) - /ay )73
i=1 JQ Viall
—Z/aﬁ(x)\y,-|2
i=1 JQ
> L 490+ @+ atopl)

_Z/aljx.yy/ 2Z/an |yl
j#

Consider the following variational characterization of A (a;):
i @) [ abf < [(VoP +abP) (16)

By employing this characterization, we obtain the following:

n(t;7,) Z/ IVl + (g + ai(x))yl) /ay X)yiy;
j7=i

1
—zzm/ow T (q+ a)f).

i=1

Proof.

n(t;y,y)

n(t;y,y) =

J

Using (3), we obtain the following:

|Vy| +(q+a,,( ))|y, )—2
> pouy]
j=i+1

n(t;y,y) =

n

1 2
X ajj a 2 A —/ \Y i
(x )]1( )yy/ ?:1 AT(%‘)‘FI Q(' il

+ (g + ai(x) ).
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By the Cauchy-Schwartz inequality and (16), we deduce:

n(tiyy) > 'Z'(l —ﬁ) L4908 + @+ o)

i=1

n 2

S Vawroie

j=i+1

(f (\wz+<q+a,-l-<x>>|y,~|2>)”2 ([P +aram) ))]/2

-3 () [on s atoln)
3 (mw +ata)bil | Jol Vol +ata)l) )

= A (ai) +1 A (a5)+1
j=it1
2
fQIVy,\ +g+ai)l fQ\Vy,I +(q+ay)ly,’
1_1 A (ay)+1 Tay)+1 ’
j=i+1

We then have the following:

>y (Ate) =1 J090P +a+ atpln)
i1 ;“1+(aii) +1 ' '
2”: Jo V0P + @+ a)vl® [, IVy/\ + (g + ap)ly,*
i=1 Ay (@) +1 2y (@) +1
j=it+1

20

n+1

Ty 71) 09 + o)

From (15), we deduce that

. n+1 2 2
> l——F— Vy, i)
> (1 sty 09 o)

i=

Hence

n(t;y,y) = C

S, (17)
i=1

which proves the coerciveness condition of the bilinear form
(14) on (V(L))". Thus, by the Lax-Milgram lemma, there exists
a unique solution y = {yi,ya.. ..V, € (L*(0,T:V(2)))" such
that:

(%’ ‘/’) +n(6y,0) = Llg) Vo (L0, T;V(2)",

where L(¢) is a continuous linear form on (L*(0,7:V()))" that
takes the following form:

17
/f,xt
i=1

As a result, we have the following theorem:

x)dxdt + Z/ym(x)(p (x,0)dx

O

Theorem 1. Under hypotheses (2), (3) and (15), for a given
f=1for L} €(LP0TV(R)))" and yio(x) € V(RQ),
there  exists a  unique  solution y = {y; V2.Vt €
(L2(0,T;V(Q)))" to system (1).

4.2. The control problem

In this section, using the theory of Lions (1971), we discuss the

existence and characterization of the optimal control for sys-
tem (1).

The space (L*(Q))" is the space of controls. For a control

u = {u i, . u} € (LXQ))", the state y(u) = {y1(),ya(u),

)} € (L2(0,T: V()" of system (1) is given by the solu-
tion of:

2 4 (— A+ q)yi(u Za‘/ X)) +fi(x,t) +u;  in O,
Vi — 0 as |X| — 00,
yi(u) =0 on >,
Vi(x,0,u) =y, o(u) Vi=1,2,3,....n in Q,
(18)
with y(u) € (L*(0, T; V(2)))", % € (L*(0, T; V()"
The observation equation is given by z(u) = {zi(u),

ZZ(”):- . '72)1(1/[)} = y(u) =
For a given z; = {z41,20,- - -
tion is given by:

1@).y2 (W), . ..yu)}.
Zan} in (L*(Q))", the cost func-

Jo)=3" /( | 00) =20 310) = )
i=1 s

where M is a positive constant.
(19)

Thus, the control problem is to find infJ(v) over a closed con-
vex subset U,y of (L*(Q))".
The cost function (19) can be written as in Lions (1971):

2
+ MIV[[(12(0))

J(v) =a(v,v) —2L(v) + |

2
»(0) — Zf1||(L2(Q))"7

where a(v,v) is a continuous coercive bilinear form and L(v) is a
continuous linear form on (L*(0,7:¥(2)))". Then using the gen-
eral theory of Lions (1971), there exists a unique optimal con-
trol u € U,y such that J(u) = infJ(v) forallv € U,, Moreover,
we have the following theorem which gives the necessary and
sufficient conditions of optimality.

Theorem 2. Assume that (2), (3) and (15) hold. If the cost
function is given by (19), there exists a unique optimal control
u = {upu, ... u,} € (L¥Q))" such that Jw) < J(v) Vve Uy

Moreover, this control is characterized by the following
equations and inequalities:

‘)g' +(—4+q)p Za,, xX)p;(u (u) — zai in Q,
pi - O as |X| — 00,
pi(u) =0 on 3,
pi(x, T,u)=0 Vi=1,2,3....n in Q,
(20)
where p(u) € (L*(0, T; (Q)))", %2 € (L*(0, T; V'(@)))".
Z/ (pi(u),vi — “i)Lf,(g)dt + M(u,v— “)(LZ(Q))”
i=1 7 (0.7)
=0 VYv=(v,v2, W) € U, (21)
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The above equation can be combined with (18), where
pw) = {p1(w),p> (v), ... p,(u)} is the adjoint state.

u) € (LXQ))" is

Proof. The optimal control u = (uj,uy, ...
characterized by Lions (1971):

if(u)(v,- —u) =0

which is equivalent to

Vv = (v, v2,...,v,) in Uy,

n

Z(J’[(”) — zais ¥;(v) — yi(“))Lz(Q)

i=1

+ M(u, v —u) 2 = 0.

This inequality can be written as follows:

Z L 000 = 20 0) = 3 My ) g =0
(22)
Now,
(0, A7) 0y = Z e (n0. 24 4 -+
Zai/(x)yj(u)>
where
Ay(u) = AL (), 3,0, -, 7,0}

Zal] y/
Z(l')/ y,

) {0‘55“) + (=4 +an(

Ay, (u
Z5 4 (— A+ q)ya(u

2l 4 (— A+ q)p,(u Zan] x)y;(u }

By using Green’s formula

(P, 4Y) 120y

"2 Co

= (AP Yoy

+ (=44 g)p,(u Zaﬂ Dy (10), y,> i

L3(2)

Hence, we have
A'p(u) = A™{p,(u), p,(u), - p,(u)}

{‘7{;',(” (=4 +q)p,(u Zau x)p;(u
Za,z xX)p;(u (23)

—ap, (u
B+ (A + q)ps(u

—dp, (u
1(7)[()+( A+qpn Za/" p/ }

inasmuch as the adjoint equation takes the following form:

—p(u)
ot
Therefore, from Theorem 1, we obtain a unique solution that
satisfies p(u) € (L*0,T:V(Q)))".

This result proves Eq. (20).

+ A'p(u) = y(u) — za.

Now, Eq. (22) can be written as:

/0 n( Iil) 4 (— 4+ gpi(w)

ORI y,»(u>> di+ M(u, v — ) 20 > 0.
=! )

)) dt
L3(@)

Using Green’s formula, we obtain:

1, o (oo

+ M(u, v — ) 2 = 0.

Furthermore, using (18), we have that

Z [, =

which proves (21). O

odt + M(u, >0,

)(LZ(Q))”

Remarks 1.

(1) If ¢ = 0 in system (1), we have some existence results for
the elliptic operator that were discussed in Serag
(1998b).

(2) If ¢ = 0 and n = 2 in system (1), we obtain some results
for the elliptic operator that were introduced in Serag
(1998a).

(3) If a;(x) = g(x) in system (1), we obtain some existence
results for the elliptic operator that were obtained in
Serag and Qamlo (2008).

4) If a;(x) = g(x) and n = 2 in system (1), we obtain some
results for the elliptic operator that were obtained in
Gali and Serag (1995).
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