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A B S T R A C T   

A new proportional stochastic order is defined based on the concept of quantile residual life. In addition, a new 
aging class of life distributions, namely, decreasing proportional failure rate distributions, was defined. More-
over, two other aging classes based on the proposed stochastic ordering are defined and investigated: decreasing 
proportional α-quantile residual life and its dual increasing proportional α-quantile residual life. The relationship 
between the proportional failure rate and proportional α-quantile residual life has been discussed. Some well- 
known and useful models are classified in terms of the proportional α-quantile residual life function. Finally, 
a new modified Pareto distribution with a decreasing proportional failure rate and an increasing proportional 
α-quantile residual life function was presented and studied.   

1. Introduction 

The concept of stochastic orders has aroused great interest in the 
fields of reliability engineering and survival analysis. Based on various 
related concepts, different orders are defined and extended, for example, 
the distribution function, failure rate (FR) function, mean residual life 
(MRL) function, and α-quantile residual life (α-QRL) function. Mean-
ingful relationships exist between the different orders defined by these 
concepts, which have been adequately addressed in the literature (Lai 
and Xie, 2006; Shaked and Shantikumar, 2007). Let T be a lifetime 
random variable with density function fT and distribution function FT. 
The simplest reliability measure, reliability function (RF), is defined by 
RT(t) = 1 − FT(t). The conditional residual life, Tt = T − t|T > t, is the 
cornerstone of many concepts in reliability theory, e.g., the FR function 
which indicates the instantaneous risk of failure at time t, is the density 
function of Tt at zero, 

λ(t) = fTt (0) =
fT(t)
RT(t)

, t ≥ 0. (1) 

In reliability engineering, survival analysis, and other related fields, 
examining the shape of the FR function of a data set can be very helpful 
for researchers to find an appropriate model. Some common shapes of 

the FR function include increasing, decreasing, bathtub, and unimodal 
(Lai and Xie, 2006). Another well-known measure of conditional resid-
ual life is the MRL 

m(t) = E(Tt) =

∫∞
t RT(x)dx

RT(t)
, t ≥ 0. (2) 

The MRL function and its shape are closely linked to the FR function. 
For example, when FR increases (decreases), MRL decreases (increases). 
MRL is very useful in reliability theory and survival analysis, but for 
some models, it may not exist or researchers may face some shortcom-
ings. For example, if the data are censored or the underlying distribution 
is skewed or heavily tail-heavy, the empirical MRL function cannot be 
calculated, or a single long-term survivor has an unusual influence 
(Schmittlein and Morrison, 1981; Lai and Xie, 2006; Lillo, 2005). In such 
situations, it is better to apply the α-QRL function or median residual life 
function, which represents the special case α = 0.5. The α-QRL is 
defined as the α-quantile of Tt and can be expressed as follows: 

qα(t) = R− 1
T (αRT(t) ) − t, 0 < α < 1, t ≥ 0, α = 1 − α. (3) 

In the context of reliability and survival analysis, qα(t) indicates, 
among the devices that have survived to time t, the time at which we 
expect (1 − α)% of the remaining devices to survive. Similar to other 
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well-known reliability measures, the α-QRL function has been exten-
sively studied in the literature. A class of lifetime distributions charac-
terized by the decreasing (increasing) α-QRL function over time has been 
introduced and studied (Haines and Singpurwalla, 1984). The problem 
of determining the distribution by its α-QRL or median residual life 
function, the α-QRL function and the concept of α-QRL order have been 
investigated and studied (Arnold and Brockett, 1983; Gupta and Lang-
ford, 1984; Joe and Proschan, 1984a, 1984b). In addition, the life dis-
tribution characterized by its α-QRL functions and a Bayesian regression 
model for the median residual life span investigated (Joe, 1985; Gelfand 
and Kottas, 2003). The α-QRL function for a class of life distributions 
with the property of resetting the clock to zero was investigated (Rao 
et al., 2006). The Kaplan-Meier survival estimator used to estimate the 
median residual life in a nonparametric framework (Jeong et al., 2008) 
and the α-QRL measure considered to introduce and investigate the 
α-QRL order (Franco-Pereira et al., 2011). They investigated the rela-
tionship between FR and other orders of the α-QRL order. The α-QRL 
concept extended to include a multivariate context (Shafaei et al., 2018). 
On the other hand, the concept of proportional FR function and pro-
portional orders was proposed and studied (Belzunce et al., 1995; Bel-
zunce et al., 1998; Lariviere and Porteus, 2001; Ramos-Romero and 
Sordo-Diaz, 2001; Belzunce et al., 2002; Lariviere, 2006). In addition, 
the concept of proportional mean residual life (PMRL) order defined and 
discussed (Kayid et al., 2014). They demonstrated that the PMRL order is 
stronger than the MRL order. 

Given the applicability and preference of the α-QRL function over the 
MRL function, this study aims to define a new family of stochastic orders 
based on a comparison of their α-QRL functions in a proportional 
framework. The rest of this study is organized as follows. Section 2 
contains preliminary remarks on stochastic orderings and some neces-
sary results. Section 3 proposes and investigates the new stochastic 
ordering, namely the α-proportional quantile residual lifetimes 
(α-PQRL). This order is indexed by α ∈ (0,1), and a well-known special 
case occurs when α = 0.5, which refers to the proportional median re-
sidual life order. In addition, a new aging class of distributions with 
decreasing proportional FR (DPFR) is defined. Based on the new order, 
two new aging classes, decreasing proportional α-QRL (α-DPQRL) and 
increasing proportional α-QRL (α-IPQRL) are defined. The relationship 
between the PFR and the α-PQRL was investigated. Then, the behavior 
of the PFR and α-PQRL functions was explored for some known lifetime 
distributions. In Section 4, a new modified Pareto (MP) distribution in 
the DPFR class was introduced and discussed. Finally, Section 5 con-
cludes the paper. 

2. Stochastic and proportional orders 

First, we need to check some predefined stochastic orderings and 
associated outcomes. Let F1(R1) and F2(R2) be the distribution functions 
(RFs) of T1 and T2, respectively. Then, T1 is smaller than T2 in the usual 
stochastic order, T1≤stT2, if and only if 

R1(t) ≤ R2(t), for all t ∈ R. (4) 

Equivalently, in the view of the inverse of the distribution function, 
T1≤stT2, if and only if 

F− 1
1 (p) ≤ F− 1

2 (p), for all p ∈ (0, 1). (5) 

As a stronger order, T1 is said to be smaller than T2 in the FR order, 
T1≤FRT2, if and only if the fraction R2(t)/R1(t) be an increasing function 
in t. 

Let Ti,s = Ti− s|Ti > s be the conditional residual life of Ti, i = 1,2. It 
can be checked that T1≤FRT2 if and only if 

T1,s≤stT2,s, for all s ∈ R,

which shows that the FR order is stronger than the ordinary sto-
chastic order. Based on the MRL function, T1 is said to be smaller than T2 

in the MRL order, T1≤MRLT2, if and only if m1(t) ≤ m2(t), for all t ≥ 0. It 
can be verified that m1(t) ≤ m2(t) if and only if 

∫ ∞

t
R2(u)du

∫ ∞

t
R1(u)du

, is increasing in t. 

From this discussion, we see that the usual stochastic and MRL orders 
are weaker than the FR order, i.e. 

T1≤FRT2→ T1≤stT2 and T1≤MRLT2. 
The concept of proportional FR ordering was proposed (Belzunce 

et al., 1995). T1 is smaller than T2 in the proportional FR order, 
T1≤PFRT2, if for each x ∈ (0,1], xT1≤FRT2. Furthermore, a random var-
iable T is said to be increasing proportional failure rate (IPFR) if for each 
x ∈ (0,1], xT ≤FRT. This corresponds to the condition that tλ(t) increases 
in t. The function g(t) = tλ(t) is defined as a generalized FR function 
(Lariviere and Porteus, 2001). 

The following definition is needed for stating some results related to 
proportional orders. 

Definition 1. A function g is star-shaped if g(pt) ≤ pg(t), for all t and 
p ∈ [0,1], or equivalently g(t)/t is non-decreasing in t. Similarly, g is anti- 
starshaped if g(pt) ≥ pg(t), for all t and p ∈ [0,1], or equivalently if g(t)/t 
is non-increasing in t. 

Using the MRL, T1 is said to be smaller than T2 in the PMRL order if 
for every x ∈ (0,1], xT1≤MRLT2. This ordering and some results in reli-
ability engineering and renewal theory was demonstrated and the anti- 
starshaped MRL distributions was considered and discussed their rela-
tionship with the proposed ordering (Kayid et al., 2014). 

From another point of view, T1 is smaller than T2 in the α-QRL order, 
T1≤α− QRLT2, if and only if q1,α(t) ≤ q2,α(t), for all t ≥ 0. Franco-Pereira 
et al. [5] have discussed the relationship of this order to some other 
known orders. It is clear that T1≤α− QRLT2 for every α ∈ (0, 1) if and only 
if there exists a 0 < β < 1 such that T1≤α− QRLT2 for every α ∈ (0,β). 

It is a well-known result that T1≤FRT2 implies T1≤α− QRLT2, α ∈ (0,1). 
The following result shows that the inverse is also true under a mild 
condition. 

Lemma 1. T1≤FRT2 if and only if there exists a 0 < β < 1 such that 
T1≤α− QRLT2 for every α ∈ (0,β). 

3. The α-PQRL order 

Assume that q1,α(t) and q2,α(t) stand for the α-QRL functions of 
random variables T1 and T2, respectively. Here, we propose a new class 
of stochastic orders. 

Definition 2. T1 is smaller than T2 in α-PQRL order if xT1≤α− QRLT2, for 
all x ∈ (0,1] or equivalently, T1≤α− QRLxT2, for all x ∈ [1,∞). 

Definition 3. A random variable T is said to be α-DPQRL if xT≤α− QRLT, 
for all x ∈ (0, 1] or equivalently, T≤α− QRLxT, for all x ≥ 1. 

The IPFR has been defined and studied (Lariviere and Porteus, 2001). 
Here, we propose a new dual class for IPFRs, namely, the DPFR class of 
distributions. 

Definition 4. A random variable T is said to be DPFR if T≤FRxT, for all 
x ∈ (0, 1] or equivalently, xT≤FRT, for all x ∈ [1,∞). 

Definition 5. A random variable T is said to be α-IPQRL if T≤α− QRLxT, 
for all x ∈ (0, 1] or equivalently, xT≤α− QRLT, for all x ∈ [1,∞). 

However, the DPFR and α − IPQRL classes seem strange at the first 
sight, we propose a MP model for these classes that might be useful for 
real-world data problems (see Section 4). It has been demonstrated that 
lifetime span T is an IPFR if and only if its PFR function is increasing 
(Lariviere, 2006). The following result shows that T is DPFR if, and only 
if its PFR function is decreasing. 

Theorem 1. A random variable T is DPFR if and only if the PFR 
function tλ(t) be decreasing in t. 
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Proof. Let T be DPFR, i.e., T≤FRxT, for every x ∈ (0,1]. It is equivalent 
to. 

λ(t) ≥
1
x

λ(t/x), t ≥ 0, x ∈ (0,1],

where λ(t) is the FR of T. Multiplying both sides by t, we have 

tλ(t) ≥
t
x

λ(t/x), t ≥ 0, x ∈ (0, 1].

Now, let t ≤ s be two arbitrarry points. Then we take x = t/s, thus 
tλ(t) ≥ sλ(s) which shows that tλ(t) is decreasing. The only if part follows 
in an inverse manner. 

Definition 6. A random variable T is α-QRL starshaped (α-QRLS) if its 
α-QRL function is starshaped. Also, T is α-QRL anti-starshaped 
(α-QRLAS) if its α-QRL function is anti-starshaped. 

The following result proves that for an α-IPQRL (α-DPQRL) random 
variable T, the function q*

α(t) = qα(t)/t is increasing (decreasing) in t and 
vice versa. Thus we call it the α-proportional quantile residual life 
(α-PQRL) function. In the light of Definition 6, T is α-IPQRL (α-DPQRL) if 
and only if it is α-QRLS (α-QRLAS). 

Theorem 2. The random variable T is: 
(i). α-IPQRL if and only if the α-PQRL function q*

α(t) be increasing in t. 
(ii). α-DPQRL if and only if the α-PQRL function q*

α(t) be decreasing 
in t. 

Proof. (i). Assume that T is α-IPQRL, i.e., T≤α− QRLxT for every x ∈ (0,
1]. Note that the α-QRL function of xT is xqα(t/x) where qα(t) is the 
α-QRL function of T. Thus, 

xqα(t/x) ≥ qα(t),

and by dividing both sides to t, we have 

qα(t/x)
(t/x)

≥
qα(t)

t
.

Now, let t < s be two arbitrarry points. Then, by taking x = t/s we 
have 

qα(s)/s ≥ qα(t)/t,

which shows that q*
α(t) is increasing. The proof of (ii) is similar. 

Similar to other stochastic orderings, if T1 and T2 are lifetime random 
variables, the components with lifetime T2 are more reliable than the 
components with lifetime T1. If you fix x = 1, T1≤α− PQRLT2 implies 
T1≤α− QRLT2. The following example shows that T1≤α− QRLT2 does not 
imply that T1≤α− PQRLT2. This implies that the α-PQRL order is stronger 
than the α-QRL order. 

Example 1. Let T1 and T2 be two random variables with the median 
residual life functions M1(t) = I(0,2)(t)

(
t2 + 1

)
+I[2,∞)(t)5 and M2(t) =

t2 +1, respectively. Note that M1(t) characterizes a class of distributions 
satisfying 

2R1
(
t2 + t + 1

)
I(0,2)(t)+2R1(t + 5)I[2,∞)(t) = R1(t), t ≥ 0,

and M2(t) characterizes a class of distributions satisfying 

2R2
(
t2 + t + 1

)
= R2(t), t ≥ 0.

It is clear that T1≤0.5− QRLT2. Now we take x = 0.5 and show that 
. Let M*

1(t) be the median residual life function of 

0.5T1. Then, M*
1(t) = I(0,1)(t)

(

2t2 +1
2

)

+ I[1,∞)(t)2.5. Note that 

M*
1(0.9) = 2.12 > M2(0.9), i.e., . It shows that 

. Similarly, we can show that neither T1 nor T2 are 
0.5-DPQRL. 

The following theorem illustrates the relationship between the IPFR 
and α-DPQRL classes. More precisely, IPFR is a subclass of α-DPQRL. It 
was found that the role of IPFR class in maximizing α-DPQRL and supply 
chain contract problems (Lariviere, 2006). The following conclusions 
can easily be drawn from Theorem 3 (Joe and Proschan, 1984), so the 
proof is omitted. 

Theorem 3. (i). If T is IPFR (DPFR) then for every α, it is α-DPQRL 
(α-IPQRL). 

(ii). IPFR (DPFR) if and only if it is α-DPQRL (α-IPQRL), for all α ∈ (0,
β) for some 0 < β < 1. 

These results state that if the PFR function tλ(t) be increasing 
(decreasing) then the α-PQRL function qα(t)/t is decreasing (increasing). 

The following result shows the relationship between PFR and α-PQRL 
orders. 

Lemma 2. (i). T1≤PFRT2 implies T1≤α− PQRLT2, α ∈ (0,1). 
(ii). T1≤PFRT2 if and only if there exists a 0 < β < 1 such that 

T1≤α− PQRLT2 for every α ∈ (0,β). 
Proof. In view of Corollary 3.6 (Franco-Pereira et al., 2011), the 

proof is straightforward. 
The following theorem presents equivalent conditions for the pro-

posed order. 

Theorem 4. The following assertaions are equivalent: 
(i). T1≤α− PQRLT2. 
(ii). xq1,α(t) ≤ q2,α(xt), for all x ∈ (0,1]. 
(iii). R2

(
xR− 1

1 (αu)
)
≥ αR2

(
xR− 1

1 (u)
)
, for all x ∈ (0,1]. 

Proof. The statement T1≤α− PQRLT2 is equivalent to xT1≤α− QRLT2, for 
each x ∈ (0, 1]. The α-QRL function of xT1 is xq1,α(t/x). Thus, the con-
dition (i) is equivalent to the following statement for every x ∈ (0,1] and 
t ≥ 0. 

xq1,α(t/x) ≤ q2,α(t),

which results in the statement (i) by a simple transformation t/x to t. 
To show that (ii) and (iii) are the same, note that (ii) can be written as 

x
(
R− 1

1 (αR1(t)) − t
)
≤ R− 1

2 (αR2(xt)) − xt,

which by taking R2 from both sides of this inequality and assuming 
R1(t) = u, we have 

R2
(
xR− 1

1 (αu)
)
≥ αR2

(
xR− 1

1 (u)
)
,

which is (iii). 
If the α-QRL function qα(t) is decreasing, then clearly qα(t)/t is 

decreasing, i.e., qα(t) is anti-starshaped. Thus, the class of distributions 
with decreasing α-QRL functions is a subset of α-DPQRL or equivalently 
α-QRL anti-starshaped (α-QRLAS) distributions. The following theorem 
provides a more general equivalent condition for this class of distribu-
tions. 

Theorem 5. T is α-DPQRL if and only if x1T≤α− QRLx2T for every 
x1 ≤ x2. 

Proof. Let Ti = xiT, i = 1,2. It is easy to check that the α-QRL of Ti is 
qi,α(t) = xiqα(t/xi) where qα(t) is the corresponding α-QRL of T. Thus 
x1T≤α− QRLx2T is equivalent to. 

x1qα(t/x1) ≤ x2qα(t/x2) for every t ≥ 0.

Taking x = x1/x2 and r = t/x1, it can be rewritten as 

xqα(r) ≤ qα(xr) for every r ≥ 0 and x ∈ (0,1].

Appealing to Theorem 2, the result follows. □ 
The following result provides a sufficient condition under which 

T1≤α− QRLT2 implies T1≤α− PQRLT2. 

Theorem 6. If T1≤α− QRLT2 and T1 or T2 be α-QRLAS, then 
T1≤α− PQRLT2. 

Proof. Let T1 be α-QRLAS, then we have. 
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xT1≤α− QRLT1≤α− QRLT2, for every 0 < x ≤ 1,

which by transitivity of the α-QRL order, it results that xT1≤α− QRLT2, 
for every 0 < x ≤ 1. 

Let T2 be α-QRLAS, then 

T1≤α− QRLT2≤α− QRLxT2, for every x ≥ 1,

which implies that T1≤α− QRLxT2 for every x ≥ 1, i.e., T1≤α− PQRLT2. □ 
The following theorem provides another necessary and sufficient 

condition for α-QRLAS class by applying a random coefficient. 

Theorem 7. A random variable T is α-QRLAS if and only if for every 
random variable X with support (0, 1] which is independent of T, 
XT≤α− QRLT. 

Proof. Let T be α-QRLAS. Then for every x ∈ (0,1], xT≤α− QRLT, or 
equivalently. 

R− 1
Z (αRZ(t) ) ≤ R− 1

T (αRT(t) ), for every x ∈ (0, 1], (6)  

where Z = xT. We show that for every random variable X independent 
of T, we have XT≤α− QRLT, i.e., 

R− 1
Y (αRY(t)) ≤ R− 1

T (αRT(t)), (7)  

where Y = XT. The inequality (6) can be rewritten as in the following. 

R− 1
Z (αRZ(t) ) = inf{s : RT(s/x) ≤ αRT(t/x) } ≤ Ct , for every x ∈ (0,1],

(8)  

where Ct is constant with respect to x. Note that RY(y) =
∫ 1

0 
RT(y/x)fX(x)dx where fX shows the density function of X. On the other 
hand, the inequality (7) is equivalent to the following: 

R− 1
Y (αRY(t) ) = inf{s : RY(s) ≤ αRY(t) } (9)  

= inf
{

s :
∫ 1

0
RT(s/x)fX(x)dx ≤ α

∫ 1

0
RT(t/x)fX(x)dx

}

≤ Ct . (10) 

Let Q = sup0<x≤1R− 1
Z (αRZ(t)). Then it is clear that R− 1

Y (αRY(t)) ≤ Q. It 
shows that R− 1

Y (αRY(t)) ≤ Ct as claimed. 
Now, suppose that XT≤α− QRLT for every random variable X inde-

pendent of T. For every x ∈ (0,1], take X be degenerate at x, i.e., P(X =

x) = 1. It implies that xT≤α− QRLT for every x ∈ (0,1] and in turn T is 
α-QRLAS. 

4. Reliability models 

In this section, some well-known distributions that are used exten-
sively in reliability theory, survival analysis and many other scientific 
fields are considered and the behavior of the PFR and α-PQRL functions 
are examined. Assume T from the Weibull distribution with the RF 

R(t) = exp{ − (bt)a
}, a > 0, b > 0, t ≥ 0.

Then, the PFR function is 

tλ(t) = abata, a > 0, b > 0, t ≥ 0,

which clearly is increasing in t. The α-PQRL function is 

qα(t)
/

t = ( − lnα + (bt)a
/bta )

1
a − 1, a > 0, b > 0, t ≥ 0,

and decreases in t, for all parameter values, so T is α-DPQRL and, by 
Theorem 2, α-QRLAS. 

The gamma distribution is determined by the density function 

f(t) =
ba

Γ(a)
ta− 1e− bt , a > 0, b > 0, t ≥ 0.

The PFR function of the gamma model could be written as in the 
following: 

tλ(t) =
(∫ ∞

0

1
t

(
1 +

u
t

)a− 1
e− budu

)− 1

,

which is increasing in t, for all parameter values. This shows that, by 
Theorem 3, the gamma model is α-DPQRL. 

Consider the inverse Weibull model with the distribution function 

F(t) = exp( − βt− α), t ≥ 0.

Its PFR function is 

tλ(t) = αβt− α[exp(βt− α) − 1]− 1
, t ≥ 0,

that is increasing in t, for all parameter values. Thus the inverse 
Weibull model is IPFR and hence α-DPQRL. On the other hand, the 
truncated normal distribution with the density function 

f(t) =
1

aσ
̅̅̅̅̅̅
2π

√ exp
(

−
1

2σ2(t − μ)2
)

, μ ∈ R, σ > 0, t ≥ 0,

is IFR and IPFR and in turn α-DPQRL. 
In addition, the Lognormal distribution is defined by the following 

density function: 

f(t) =
1

tσ
̅̅̅̅̅̅
2π

√ exp
(

−
1

2σ2(lnt − μ)2
)

, μ ∈ R, σ > 0, t ≥ 0.

The PFR is 

tλ(t) =
1̅̅̅
̅̅̅

2π
√

σ

exp
(

− 1
2σ2(lnat)2

)

1 − Φ
(

lnat
σ

) ,

where a = exp( − μ). To show that this function has the form of an upside 
down bathtub shaped (unimodal), we write the PFR function as follows: 

tλ(t) =
exp

(

− 1
2t

2
)

∫∞
t exp

(

− 1
2z2

)

dz
,

where y = ln(at)/σ. By some straightforward algebra, it could be 
checked that tλ(t) is upside down bathtub shaped. 

The Gompertz distribution is identified with the RF 

R(t) = exp( − β(ct − 1) ), β > 0, c > 1, t ≥ 0.

Then, the PFR function of the Gompertz model is 

tλ(t) = ln(c)βtct , β > 0, c > 1, t ≥ 0,

which is increasing in t. Thus, the Gompertz model is also has the 
α-DPQRL property. 

The Lomax distribution is defined by the RF 

R(t) = (1 + βt)− α
, α > 0, β > 0, t ≥ 0.

The PFR function is 

tλ(t) =
αβt

1 + βt
, α > 0, β > 0, t ≥ 0.

which is an increasing function for all parameter values, so the 
Lomax model is α-DPQRL. 

The Log-logistic distribution is recognized by the RF 

R(t) =
1

1 + (at)b, a > 0, b > 0, t ≥ 0.

The PFR function is 

tλ(t) = b
abtb

1 + abtb, a > 0, b > 0, t ≥ 0,

which is an increasing function for all parameter values and it fol-
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lows that the Log-logistic distribution is α-DPQRL. 
Let T follows the Pareto model with the reliability 

R(t) = (c/t)a
, c > 0, a > 0, t ≥ c. (11) 

Then, the PFR function is 

tλ(t) = a, c > 0, a > 0, t ≥ c,

which is constant in the support. In addition, the α-PQRL function is 
constant and equals to 

qα(t)
/
t = α−

1
a − 1, c > 0, a > 0, t ≥ c.

It could be checked that the constant PFR function characterizes this 
Pareto model. This point hints that there may be a modified version of 
Pareto exhibiting decreasing PFR function. 

In the rest of this section, we propose a new MP model which is 
characterized by the RF 

R(t) =
( c

bt
b

c
t
)a
, t ≥ c, a > 0, b > 1, c > 0. (12) 

Note that, for b = 1, the proposed model reduces to the Pareto 
reliability model (11). The probability density function (PDF) and the 
PFR function of the proposed MP model are respectively as follows: 

f(t) =
(c

b

)a
at− ab

ac
t

(
1
t
+

clnb
t2

)

, t ≥ c, a > 0, b > 1, c > 0,

and 

tλ(t) = a
(

1+
clnb

t

)

, t ≥ c,

which is a decreasing function, i.e., the model is DPFR. 
Fig. 1 shows the density and FR functions of the MP model (12) for 

some parameter values. The PFR and proportional median residual life 
functions are shown in Fig. 2, showing a decreasing shape for the PFR 
and an increasing shape for the proportional median residual life 
functions. 

Let T follows from the proposed MP model (12). Then, the k th 
moment is 

E
(
Tk) = ckR(c)+

∫ ∞

c
ktk− 1R(t)dt.

It can be shown that when k ≥ a, E
(
Tk

)
is infinite. But, for k < a, it is 

finite and we have the following upper bound for it. 

E
(
Tk) < ckR(c)+

kck

a − k
.

Specially, E(T) is infinite for a ≤ 1 and finite for a > 1. 
The quantile at point p of the MP model can be computed numeri-

cally by solving the equation R(t) = 1 − p, which simplifies to solving the 
following equation in terms of t ≥ c. 

c
t
b

c
t − 1

− p = 0,

which has not algebraic solution. The α-PQRL function of the MP 
model is 

q*
α(t) =

1
t
R− 1(αR(t)) − 1 t ≥ c, a > 0, b > 1, c > 0,

which could be computed numerically. Since the MP model is DPFR, 
by Theorem 7, it is α-IPQRL, i.e., q*

α(t) is an increasing function. 

4.1. Simulations study of MP 

For generating a sample from the MP distribution, one random 
sample of the standard uniform distribution is simulated. Then the 
sample of MP is computed by solving the equation F(X) = U. In this 
simulation study, some parameter valus are selected. Then, in every run 
r = 1000 replicates of samples of sizes n = 50 or 100 are generated. The 
maximum likelihood estimates of the parameters are computed for every 
sample and finally the bias (B) and mean squared error (MSE) are 
calculated. Every cell of Table 1 shows one run. The maximum likeli-
hood estimates are computed by optimizing the log-likelihood function 
and applying the “optim” function with the default method “Nelder- 
Mead” in R. The initial values applied in the optimization process are 
taken randomly from the uniform distribution. The simulation results 
are reported in Table 1 and clearly indicate that the estimator is 
consistent. 

4.2. Applications 

Table 2 shows intervals between successive failures of the air con-
ditioning system of Boeing 720 jet airplanes, reported and described 
(Proschan, 1963). The maximum likelihood estimates of the parameters 
of MP model and three alternatives Pareto, gamma and Weibull are 
calculated and abstracted in Table 3. Also, the Akaike information cri-
terion (AIC), the Kolmogorov Smirnov (KS) and Cramer Von Mises 
(CVM) statistics are computed. The p-value of the KS and CVM for PM 

Fig. 1. The density and FR function of the MP model for some values of parameters.  
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model shows relatively large values and based on these statistics, the PM 
outperforms the Pareto, gamma and Weibull models. The empirical 
distribution function and the estimated distribution functions of MP, 
Pareto, gamma and Weibull are plotted in Fig. 3and graphically in-
dicates a good fit for MP and Pareto. 

5. Conclusion 

The proposed α-PQRL order can be applied to extend the aging 
classes of the distributions. Based on this ordering, two aging classes 
α-DPQRL and α-IPQRL are defined and analyzed. In addition, a subset of 
α-IPQRL, namely the DPFR class of distributions, is defined and dis-
cussed. As investigated, many of the known lifetime models belong to 
the IPFR and α-DPQRL class. We have proposed a new lifetime model in 
the DPFR and α-IPQRL class to show that this class of distributions could 
be very useful in reliability theory, survival analysis, and other related 
fields. The preservation properties of the proposed stochastic ordering 
and aging classes as well as a family of exponentiality tests for these new 
classes are interesting topics in reliability engineering that are still open 
problems. 
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Fig. 2. The PFR and median residual life function of the MP model for some values of parameters.  

Table 1 
The simulation results for estimation the parameters of the MP model. In every 
cell, the first, second and third lines are related to parameters a, b and c 
respectively.  

Parameters n 

50 100 

B MSE B MSE 

a = 0.9,b = 1.05, c =

2 
− 0.0368 
0.6685 
0.0442 

0.0321 
1.7411 
0.0043 

− 0.0326 
0.2417 
0.0219 

0.0168 
0.4767 
0.0009 

a = 1.5,b = 1.02, c =

3 
− 0.1086 
0.6174 
0.0412 

0.1142 
3.0881 
0.0034 

− 0.0884 
0.3180 
0.0197 

0.0658 
0.6736 
0.0008 

a = 2,b = 1.01,c = 1 − 0.1604 
0.7042 
0.0102 

0.2401 
4.7020 
0.0002 

− 0.1658 
0.3678 
0.0047 

0.1392 
0.8959 
0.00004 

a = 1,b = 1.07, c =

1.5 
− 0.0470 
0.7156 
0.0276 

0.0419 
3.1275 
0.0016 

− 0.0401 
0.2752 
0.0143 

0.0215 
0.5649 
0.0004  

Table 2 
Interval between failures.  

47 57 48 29 502 12 70 21 29 386 

59 27 153 26 326       

Table 3 
Comparing the proposed MP model with alternatives.  

Model â b̂ ĉ AIC K-S 
p-value 

CVM 
p-value 

MP  0.5382 1.0699 11.99  176.29 0.2199 
0.4627 

0.1315 
0.4554 

Pareto  0.5979 — 12  176.85 0.2368 
0.3692 

0.1581 
0.3687 

Gamma  0.9109 0.0075 —  177.85 0.2617 
0.2555 

0.1866 
0.2969 

Weibull  0.8884 0.0149 —  177.53 0.2374 
0.3662 

0.1497 
0.3938  

Fig. 3. The empirical distribution function of the interval between failures data 
and the estimated disribution functions of considered models. 
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