
Journal of King Saud University – Science 32 (2020) 3301–3306
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
Review
Time response of fractional automatic control systems
https://doi.org/10.1016/j.jksus.2020.09.014
1018-3647/� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: orfeakos74@gmail.com (A.K. Lazopoulos).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
D. Karaoulanis a, A.K. Lazopoulos b,⇑
aΝΤUA External Science Collaborator, Korai 21, Chalandri, Athens, Greece
bMathematical Sciences Department, Hellenic Army Academy Vari, GR16673, Greece

a r t i c l e i n f o
Article history:
Received 9 September 2019
Revised 7 September 2020
Accepted 8 September 2020
Available online 21 September 2020

Keywords:
K-Fractional Derivative
K-Space
SISO control systems
PID control systems
Stability
Inverse transformation
a b s t r a c t

*K-Fractional Derivative (K-FD) is the only non-local Derivative satisfying the demands of Differential
Topology. Hence, it is most suitable to investigate the stability of simple SISO and PID control systems.
Their behavior is compared in real-time Space in the introduced K-Space(K-S). According to the defini-
tion of K-Fractional Derivative and its correspondence to K-Space, those K-FDs may be viewed as clas-
sical Derivatives of transformed new functions and variables in that Space. Firstly the system is analyzed
inK-S. Afterward, the derived results provide us information about the response of the system in the real
Space, by the inverse transformation as proposed from the theory.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
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1. Introduction

Fractional Calculus (FC), originated by Leibnitz, 1849, Liouville,
1832, and Riemann,1876, is a novel mathematical area applied to
modern advances in physics, engineering, etc. Many books describe
the applications of FC in these various fields (Kilbas et al., 2006;
Samko et al., 1993; Podlubný, 1999a; Oldham and Spanier, 1974).
More specifically, as far as engineering is concerned, there are
many FC applications in bioengineering, viscoelasticity, electronics,
robotics, signal processing, and control theory. Let us point out that
fractional Derivatives abolish the local character of the conven-
tional Derivatives. Therefore, they are non-local and most suitable
for phenomena that describe the point of interest, as well as the
neighborhood around that point. Hence, viscoelasticity and non-
local mechanics (Voyiadjis and Sumelka, 2019; Lazopoulos and
Lazopoulos, 2019b; Sumelka and Voyiadjis, 2017) along with some
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https://doi.org/10.1016/j.jksus.2020.09.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:orfeakos74@gmail.com
https://doi.org/10.1016/j.jksus.2020.09.014
http://www.sciencedirect.com/science/journal/10183647
http://www.sciencedirect.com


D. Karaoulanis, A.K. Lazopoulos Journal of King Saud University – Science 32 (2020) 3301–3306
aspects of control (Axtell and Bise, 1990, Chen, 2006, Matusu,
2011) and signal processing are favorite fields for FC. Especially
in control theory was a new generalization of the classical
PID-controller, the idea of P IkDl-controller (Podlubný, 1999b),
involving fractional-order integrator and fractional-order differen-
tiator. That original idea has been proven to be more efficient for
the control of fractional-order dynamical systems than the classical
one. Incidentally, the contribution of Oustaloup, 1983, 1991, 1994
should be pointed out, successfully introducing the fractional-
order controller to develop the so-called CRONE-controller (Com-
mande Robuste d’Ordre Non Entrier controller). That controller
also exhibits many advantages, compared to the classical PID-
controller. Further applications may be met (Hernández-Acosta
et al., 2020; Hernández et al., 2019). Also, ideas concerning short
memory phenomena (Podlubný, 1999b), page 203, may be dis-
cussed using the non-local fractional Derivatives. Nevertheless,
all fractional Derivatives behave like operators, not Derivatives, since
they fail to satisfy the demands of Differential Topology for being
Derivatives corresponding to differentials. Hence no geometry and
consequently, mathematical physics may be established with the
use of those fractional Derivatives. In reality, all the well-known
fractional Derivatives have mainly an operation character, instead
of a derivative’s one. However, physicists like to substitute com-
mon Derivatives to fractional ones without mathematical justifica-
tion. There are three prerequisites for defining a derivative
corresponding to a differential, Chillingworth, 1976:

1. Linearity D af xð Þ þ bg xð Þð Þ ¼ aDf xð Þ þ bDg xð Þ
2. Leibniz ruleD f xð Þ � g xð Þð Þ ¼ Df xð Þ � g xð Þ þ f xð Þ � Dg xð Þ
3. Chain ruleD gf xð Þð Þ ¼ Dg f xð Þð Þ � Df xð Þ

Those perquisites are necessary for defining a differential corre-
sponding to the Derivative. Since no differential geometry,
mechanics and physics may be established without mathemati-
cally defined Derivative, the use of fractional Derivatives in math-
ematics and applied sciences, like physics, mechanics, economics,
etc. is questionable.

Lazopoulos and Lazopoulos, 2016, trying to fill that gap, pro-
posed the fractional L-derivative. Nevertheless, that effort was
not successful, since again the conditions demanded by differential
topology were not fully satisfied. Lately, Lazopoulos and
Lazopoulos, 2019a; Lazopoulos and Lazopoulos, 2019b proposed
the K-Fractional Derivative, that is a modification of the fractional
L-Derivative, along with the fractional K-Space where the K-
Fractional Derivative behaves according to conventional derivative
rules in the K-S. Therefore, the main advantage of the method, as
mentioned above, is that K-Fractional Derivative is a legitimate
derivative: It is the only fractional Derivative defined according
to the rules demanded by differential geometry. Nevertheless, this
advantage requires a price to be paid because it introduces more
complexity than the usual methods with fractional operators (i.e.,
K-Space is needed).

In the present article, the stability of simple SISO and PID con-
trol systems will be investigated, comparing their behavior in real
time–space and K-S. It is assumed that the proposed system
behavior is governed in K-Space from K-Fractional Derivatives.
According to the previous definition of K-FD and its correspon-
dence to K-S, those K-Fractional Derivatives may be viewed as
classical Derivatives of transformed new functions and variables
in that Space. The analysis of the system in K-Space and the
derived results provide us information about the response of the
system in the real Space by the inverse transformation according
to the proposed theory. Capital letters denote the functions and
the variables inK-S, and the letter c indicates the order of the frac-
tional Derivative.
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2. The K-Fractional Derivative

A very brief outline of fractional calculus will be presented in
the present chapter, while the interested reader is referred to refs.
(Kilbas et al., 2006; Samko et al., 1993; Podlubný, 1999a) for
further study.

The left and right fractional integrals, for a real fractional
dimension 0 < c are defined by,

aI
y
xf xð Þ ¼ 1

C cð Þ
Z x

R
a

f sð Þ
x� sð Þ1�c

ds ð1Þ

xI
c
bf ðxÞ ¼

1
CðcÞ

Z b

x

f ðsÞ
ðs� xÞ1�c ds ð2Þ

c is the order of fractional integrals whereC(x)=(x-1)!withC(c)
Euler’s Gamma function. Further, the left Riemann-Liouville’s frac-
tional derivative (RL) is defined by:

aRLDc
xf ðxÞ ¼

d
dx aI

1�c
x f ðxÞð Þ

� �
¼ 1
Cð1� cÞ

d
dx

Z x

a

f ðsÞ
ðx� sÞc ds ð3Þ

whereas the right Riemann-Liouville’s fractional derivative (RL)
derivative is defined by:

xRLDc
bf ðxÞ ¼

d
dx xI

1�c
b f ðxÞð Þ

� �

¼ � 1
Cð1� cÞ

d
dx

Z b

x

f ðsÞ
ðs� xÞc ds ð4Þ

Let us point out that for the left fractional integrals and
Derivative

aRLD1�c
x aI

1�c
x f xð Þ

� �
¼ f xð Þ ð5Þ

A similar relation is valid for the right Riemann-Liouville deriva-
tive and right fractional integral.

The K-Fractional Derivative (K-FD) has been defined as

aKDc
xf ðxÞ ¼

aRLDc
xf ðxÞ

aRLDc
xx

ð6Þ

Recalling the definition of the Riemann Liouville’s fractional
Derivative, Eq. (3), the K-FD is expressed by,

aKDc
xf xð Þ ¼

d aI
1�c
x f ðxÞ
dx

d aI
1�c
x x

dx

¼ d aI
1�c
x f ðxÞ

d aI
1�c
x x

ð7Þ

Considering as

X ¼ a I
1�c
x xand FðXÞ ¼ a I

1�c
x f ðxÞ ð8Þ

theK-FD appears to behave like a conventional derivative inK-
S (X, F(X)) with local properties. The Fractional Differential Geom-
etry may be constructed as a conventional differential geometry in
K-Space, (X, F(X)). Therefore, it is easily understood that the pri-
mary goal of this method is to transfer the data from the initial
to K-S, solve the corresponding differential equation and then go
back, through a Riemann-Liouville derivative, to the initial Space,
through Eq. (5). The procedure is going to be demonstrated and
clarified in the following part of the article.
Fig.1. First-order system with feedback.



Fig.3. Output y(t) in real time–space, for various values of c, when the input u(t) is
the one shown in Fig. 2.

Fig.4. Output y(t) in real time–space, for various values of c, when the input in K-
Space is the Dirac Delta Function.
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3. First order systems

Let us consider the following first-order system with feedback
in Laplace transformation space:

Where U(s) = R(s) is the input, and Y(s) = C(s) is the output of
the system, and T is a time constant that controls the response of
the system. The corresponding transfer function of the system
can be written as:

GðsÞ ¼ 1
T � sþ 1

ð9Þ

We are going to investigate the behavior of such a system in K-
Space. If we impose a unit step function U(X(t)) in K-Space as an
input: (See Fig. 1)

UðXÞ ¼ 1; X P 0
0; X < 0

�
ð10Þ

then the response Y(X(t)) in K-Space is given:

YðXÞ ¼ 1� expð�XðtÞ=TÞ ð11Þ
Using the relation:

XðtÞ ¼ t2�c

Cð3� cÞ ð12Þ

The response Y(X(t)) can be written as:

YðtÞ ¼ 1� expð� t2�c

T � Cð3� cÞÞ ð13Þ

Declaring: b ¼ 2� c; k ¼ � 1
T�Cð1þbÞ , we take:

YðtÞ ¼ 1� expðktbÞ ð14Þ
To get the response y(t) in real time–space, we use the

transformation:

yðtÞ ¼ 0RLD1�c
t ðYðtÞÞ ¼ 1

CðcÞ
d
dt

Z t

0

YðsÞ
ðt � sÞ1�c

ds ) ð15Þ

yðtÞ ¼ tc�1

CðcÞ � 0RLD1�c
t ðexpðktbÞÞ ð16Þ

The corresponding input u(t) in real-time Space is: uðtÞ ¼ tc�1

CðcÞ,

and its graph for various values of c is the one below (Fig. 2):
For this input, the corresponding output y(t) in real-time Space

(for T = 1) is shown below (Fig. 3):
Let us now consider, the input function of the system in K-

Space, to be the Dirac delta function or the so-called impulse func-
tion U(X) = d(X(t)). The corresponding output Y(X) of the system is:

YðXÞ ¼ 1
T
expð�X=TÞ ð17Þ
Fig.2. Input u(t) in real time–space, for various values of c, when the corresponding
input U(X(t)) in K-Space is a unit step function.
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Using the relation: XðtÞ ¼ t2�c
Cð3�cÞ, the above equation is written

as:

YðtÞ ¼ 1
T
expð� t2�c

T � Cð3� cÞÞ ¼
1
T
expðk � tbÞ ð18Þ

Where

b ¼ 2� c; k ¼ � 1
T � Cð1þ bÞ ð19Þ

As in previous analysis, the real time–space response y(t) can be
found by using the relation:

yðtÞ ¼ 1
T

0RLD1�c
t ðexpðktbÞÞ ð20Þ

The input u(t) in the real time–space is:

uðtÞ ¼ 0RLD1�c
t ðdðXðtÞÞ ¼ 1

CðcÞ
d
dt

Z t

0

dðsÞ
ðt � sÞ1�c

ds ð21Þ

Using the well-known relation for the Dirac function:Z
f ðxÞdðx� x0Þdx ¼ f ðx0Þ ð22Þ

we have for the input:uðtÞ ¼ c�1
CðcÞ � tc�2.

For this input, the corresponding output y(t) in real time–space
(for T = 1) is shown below (Fig. 4):

4. Second-Order systems

Let us now investigate the behavior of a standard second-order
system, whose transfer function is:



Fig.5. Output y(t) in real time–space, for various values of c, for f = 0 (no damping),
and unit step input U(X) in K-Space.

Fig. 7. Output y(t) in real time–space, for various values of c, for f = 0.2 and unit
step input U(X) in K-Space.

Fig.8. A classical system with a controller.
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GðsÞ ¼ x2
n

s2 þ 2fxnsþx2
n

ð23Þ

Where f is the so-called damping factor of the system.
In the following analysis, a unit step function U(X) is imposed,

as an input of the system in K-S, and study the system’s behavior
for values of f between 0 and 1. Again, the variable X(t) is the trans-
formed one in K-Space of the time variable t in real time–space. It
is considered that xn = 1.

A) Let f = 0. Then the output is given as:

YðXðtÞÞ ¼ 1� cosðXÞ ¼ 1� cosð tb

Cð3� cÞÞ;whereb ¼ 2� c ð24Þ

The relation can deduce to the time response y(t) in real time–
space:

yðtÞ ¼ 0RLD1�c
t ðYðtÞÞ ¼ tc�1

CðcÞ � 0RLD1�c
t ðcosð tb

Cð3� cÞÞ ð25Þ

The graph of y(t), for various values of c, is shown in Fig. 5:
B) Let f = 1. Then the output is:

YðXðtÞÞ ¼ 1� expð�XÞ � ð1þ XÞ

¼ 1� expð� tb

Cð1þ bÞÞ � ð1þ tb

Cð1þ bÞÞ ð26Þ

Where b ¼ 2� c
The relation can deduce to the time response y(t) in real time–

space:

yðtÞ ¼ 0RLD1�c
t ðYðtÞÞ

¼ tc�1

CðcÞ � 0RLD1�c
t ðexpð� tb

Cð1þ bÞÞ � ð1þ tb

Cð1þ bÞÞÞ ð27Þ
Fig.6. Output y(t) in real time–space, for various values of c, for f = 1 and unit step
input U(X) in K-Space.
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The graph of y(t), for various values of c, is shown in Fig. 6:
C) Let 0 < f < 1. The output in K-Space is:

YðtÞ ¼ 1�
exp½�f � tb

Cð1þbÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p � sinðxd � tb

Cð1þ bÞ þuÞ ð28Þ

Where b ¼ 2� c;xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
;u ¼ tan�1ð

ffiffiffiffiffiffiffiffi
1�f2

p
f Þ

The time response y(t) in real time–space is given by:

yðtÞ ¼ 0RLD1�c
t ðYðtÞÞ

¼ tc�1

CðcÞ � 0RLD1�c
t ð

exp½�f � tb
Cð1þbÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p � sinðxd � tb

Cð1þ bÞ þuÞÞ

ð29Þ
The graph of y(t), for f = 0.2 and various values of c, is shown in

Fig. 7:

5. PID controller and the K-Fractional Derivative

Let us consider a classical system with a controller as shown
below:

In Laplace space R(s) is the input, Y(s) the output, C(s) is the
transfer function of the controller, and P(s) is the transfer function
of the process. The primary purpose of this design is that the value
of the output Y(s) of the system must follow the value of the input
(desired value) R(s). The use of the controller C(s) aims to achieve
this goal and diminish the error E(s) = R(s)-Y(s).

The transfer function of the construction is:

YðsÞ
RðsÞ ¼

PðsÞ � CðsÞ
1þ PðsÞ � CðsÞ ð30Þ

In our analysis, we’ll use a PID controller whose transfer func-
tion is:

CðsÞ ¼ KP þ KI

s
þ KDs ¼ KDs2 þ KPsþ KI

s
ð31Þ

We’ll study a simple 1D physical system that consists of a body
of mass M attached to a wall through spring of constant K and a
damper of constant b in parallel.



Fig.9. Input F(t) in real time–space, corresponds to a unit step input F(T) in K-
Space.
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The body can move horizontally when a force F is exerted on it.
Before we continue our analysis, we want to point out that all

the values of the system parameters (same in previews systems)
are chosen to employ an example and not as corresponding to a
particular (experimental) physical system. Our goal is to describe
more clearly the behavior of our system.

For M = 1, b = 10, K = 20, the transfer function of such a process
is:

PðsÞ ¼ XðsÞ
FðsÞ ¼

1
s2 þ 10 � sþ 20

ð32Þ

Let us investigate the behavior of such a process in K-Space. Let
T(t) be the transformed variable in K-Space of real-time variable t
and X(T) the transformed variable in K-Space of the x(t) of real
time–space. It can be easily proved that without the controller’s
use, the system’s output does not follow the input, and the error
is up to 95%.

With the use of the PID controller, the transfer function of the
system in K-Space becomes:

XðsÞ
FðsÞ ¼

KDs2 þ KPsþ KI

s3 þ ð10þ KDÞs2 þ ð20þ KPÞsþ KI
ð33Þ

For ΚD = 50, KP = 350 jai KI = 300 and unit step input function F
(T):

FðTÞ ¼ 1; T P 0
0; T < 0

�
ð34Þ

The output X(T) in K-Space is:
XðTðtÞÞ ¼ 1� 0:9381 � expð�53:144 � TðtÞÞ � 0:018 � exp

ð�5:8991 � TðtÞÞ � 0:044 � expð�0:9569 � TðtÞÞ

where TðtÞ ¼ t2�c

Cð3� cÞ ð35Þ

It can be shown very quickly that the particular response X(T) in
K-Space has a short response time and zero error.

By putting T(t) in X(T), we take:

XðtÞ ¼ 1� 0:9381 � expð�53:144 � t2�c
Cð3�cÞÞ � 0:018 � expð�5:8991 � t2�c

Cð3�cÞÞ�
�0:044 � expð�0:9569 � t2�c

Cð3�cÞÞ
ð36Þ

To find x(t) in real time–space, we use:

xðtÞ ¼ 0RLD1�c
t ðXðtÞÞ ¼ 1

CðcÞ
d
dt

Z t

0

XðsÞ
ðt � sÞ1�c ds ð37Þ

The input F(t) in real time–space is written as: FðtÞ ¼ tc�1

CðcÞ. The

graph of it for various values of c is shown below:
The corresponding output x(t) for the above inputs F(t) is shown

below:

6. The short memory principle

Adapting the idea of short memory in fractional calculus (Pod-
lubný, 1999 a), page 203, of the horizon, introduced in peridynamic
deformation theory (Lazopoulos and Lazopoulos, 2019b), the non-
local influence is restricted in a neighborhood of time or a point of
distance d. Therefore, the fractional influence is restricted in te(t-d,
t + d). If t and f(t) is time and a function of time t, the corresponding
configurations in the K-Space are defined by,

lF Tð Þ ¼ t�d I
1�c
t f tð Þ ¼ 1

C 1� cð Þ
Z t

t�d

f sð Þ
s� tð Þc ds ð38Þ

Let us point out that
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lT ¼ t�d I
1�c
t tð Þ ¼

d1�c d
c�2 � r

t�1

� �
C 1� cð Þ ð39Þ

Furthermore, the fractional spaceK is defined by lT , Eq.(39) and

lF lT
� � ¼ F t lT

� �� � ð40Þ
Therefore, in the K-Space (T, F(T)) the analysis is performed

with the conventional local procedure. Furthermore, the results
are transferred in the initial Space:

t ¼ dRLD1�c
t F Tð Þð Þ ¼ t � dRLD1�c

t t � dRLI1�ct f tð Þð Þ
� �

¼ f tð Þ ð41Þ
The procedure is repeated for the right K-Space, defining the

right short memory time variable and right short memory function
in the original Space. Indeed, for the right part of the time (t,t + d)
the corresponding K-Space is defined by,

rFðTÞ ¼ t I
1�c
tþd f ðtÞ ¼

1
Cð1� cÞ

Z tþd

t

f ðsÞ
ðs� tÞc ds ð42Þ

Indeed,

rT ¼ I1�ctþd tð Þ ¼ 1
C 1� cð Þ �

Z tþd

t

s
s� tð Þc ds

¼ d1�c � dþ 2 � t � dþ tð Þ � cð Þ
C 3� cð Þ ð43Þ

Again, the results may be transferred into the initial Space
through the relation,

xRLD1�c
xþd F Xð Þð Þ ¼ xRLD1�c

xþd xRLI1�cxþd f xð Þð Þ
� �

� f xð Þ ð44Þ

Further details may help to discuss the peridynamic bar prob-
lem with the horizon in (Lazopoulos and Lazopoulos, 2019b).
7. Discussion

In the present article, the stability of simple SISO and PID con-
trol systems has been studied using non-local mathematically
established fractional Derivatives. The well-established non-local
K-Fractional Derivative, which is transformed in a local one in
the K-Space, yields a sound and well-established mathematical
procedure for creating fractional differential geometry, impossible
for other fractional Derivatives that are used with mathematical
accuracy in various problems in physics, mechanics, biology, etc.
Let us again repeat that no derivation is valid in the initial Space.
Derivations are correct only in the K-S. Comparison with other
fractional Derivatives has been avoided since our perception of



Fig.10. Output x(t) in the real time–space, for various values of c and unit step
input F(T) in K-Space.
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mathematics may not be compared to non-mathematically estab-
lished procedures.

The application of Fractional Calculus in control theory has
gained significant attention over a half of century (Castillo-Garcia
et al., 2013; Tavazoei, 2014). The study of stability and controllabil-
ity of such fractional systems is essential because real physical sys-
tems seem to obey the logic imposed by FC. Our results and
methods (even though they refer to simple systems) aim to con-
tribute to this inquiry, showing that our definition of fractional
Derivative may adequately describe the response of real control
systems.

8. Conclusions

According to our results from the above analysis, one can con-
clude for the SISO system the following: For the first-order system,
the pole s = �1/T < 0 of G(s) is on the left complex plane, so the sys-
tem is stable in K-Space. It’s responses y(t) in real time–space
(Figs. 2-4) in both inputs (unit step and impulse) show that it
remains stable and in real time–space for values of 0 < c � 1.

In the case of a second-order system, when the value of f is

0 < f � 1, the poles s ¼ �fxn � jxn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
are in the left complex

plane, and the system is stable for values of 0 < c � 1 in K-
Space. It also remains stable in real-time Space (Figs. 6-7).
Although in the case of f = 0, where the poles s=±jxn are on the
imaginary axis, the system is critically stable in K-Space. The time
response in real time–space (Fig. 5) shows an increase in the
amplitude of oscillations, as fractional order c decreases. It seems
that in the case of critical stability inK-Space, the system becomes
unstable in real time–space.

As far as the PID system is concerned, by comparing Figs. 9 and
10, we can conclude that the output x(t) follows the input F(t) for
every value of 0 < c� 1. So, it seems that the effect of a classical PID
controller on a process in K-Space continues to have the same
impact on the same process, which is governed by K-Fractional
Derivatives in real time–space.

Finally, by resuming all the above observations, one can deduce
that main control behaviors exhibited from classical control sys-
tems in K-Space, seem to be reproduced in real time–space. How-
3306
ever, further investigation on more complicated systems and
controllers must be done to establish on a mathematical basis
these conclusions.
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