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The impact of nanoparticles size on the cohesive energy was investigated by Morse potential for different
metallic cubic structures. The cohesive energy of nanoparticles decreases with reducing its size, which is
agree with corresponding the experimental values of the cohesive energy for Mo and W nanoparticle. It is
found that if the parameter a of Morse potential increases then the range of the interatomic potential
decreases.
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1. Introduction

The size dependence of physical properties of nanoparticles
such as thermal Debye temperature (Sadaiyandi, 2009), elastic
strength (Bian et al., 2014), Young modulus (Price et al., 2006),
and melting point (Schlexer et al., 2019) is one of important sub-
ject. A drastical change was found in the physical properties when
the dimensions of the material reduced to nano size. The most
important quantity to investigate the physical properties of
nanoparticles is cohesive energy. Cohesive energy is the energy
required to partition the solid material into disconnected particles
by breaking all its bonds, which can be used to derive most of the
thermodynamical properties of materials (Qi et al., 2005).

Many potential functions were used to investigate the size
dependence of cohesive energy such as Lennard-Jones (or LJ (12-
6)) potential (Qi and Wang, 2004) and Mie-type potential
(Barakat et al., 2007). Moreover, a hypothetical model about the
effect nanoparticle size on the cohesive energy has been studied
by Qi, 2005.

The experimental values of the cohesive energy for Molybde-
num (Mo) and Tungsten (W) were reported respectively as follow
�410 kJ/mol (with size 2000 atoms) and �619 kJ/mol (with size
7000 atoms) (Kim et al., 2002). However, the bulk cohesive energy
of Mo is �598 kJ/mol and W is �824 kJ/mol (Edgar, 1993). The
observed values of the cohesive energy show that the decreasing
of nanoparticles size leads to decreasing the cohesive energy of
nanoparticles.

The structure of this paper is as follows: theory and model of
the calculation of cohesive energy for nanoparticles using Morse
potential in Section 2. The numerical results discussions will be
presented in Section 3.
2. Theory and model

In current model, it is affirmed that the nanoparticle has ini-
tially cubic structure: simple cubic (SC), body-centered cubic
(BCC) or face-centered cubic (FCC). The atoms within the nanopar-
ticle are all in equilibrium and the two atoms i and j separated by a
distance rij in nanoparticle are interacting with each other via
Morse potential function (Morse, 1929).
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where D is the depth of the potential at the equilibrium distance
between the atoms. The parameter a ¼ ar0 (a is the Morse potential
parameter) depends on type and structure of the metal (Girifalco
and Weizer, 1959). Girifalco and Weizer, 1959 calculated the
parameter a for different cubic metals, for example, the values of
a for Molybdenum (Mo) and Tungsten (W) are equal to 2.368 and
2.225 respectively. Lim also obtained the relationship between the
a parameter in Morse potential and the n parameter (with
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Fig. 1. Morse potential curves for different values of a: a ¼ 3 is represented by the solid black line,a ¼ 4 is represented by the dashed blue line, and a ¼ 5 is represented by
the dotted red line.

Fig. 2. The effect of a parameter in the long range term A0
1 r�0
� �

for different structures: simple cubic is represented by solid blue line, body-centered cubic is represented by
black dotted line, and face-centered cubic is represented by red dashed line.
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m ¼ 2n) in Lennard-Jones potential (Lim, 2003, 2007). The effect of
a parameter in Morse potential is shown in Fig. 1, where decreasing
of a parameter soften the repulsive wall and enlarge the potential
range.

The cohesive energy of nanoparticles equal to the total energy
of all n atoms in the nanoparticles is given by

En ¼ 1
2

Xn
i¼1

Xn
j ¼ 1
i–j

Uij rij
� �

:
ð2Þ

Inserting Eq. (1) into Eq. (2);

En ¼ nD
2
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where
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aij ¼ rij=r (r is the nearest distance between two atoms), and
r� ¼ r=r0 is reduces nearest distance between two atoms. The
terms A1 r�ð Þ and A2 r�ð Þ are represented to the long-range and
short-range terms respectively (Lim, 2007).

The cohesive energy of the nanoparticle with n atoms in equi-
librium configuration should be obtained by minimizing the entire
energy of the nanoparticle regarding to the reduced space between
nearest two atoms r� as follows

dEn

dr�
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where r�0 is the equilibrium reduced nearest distance between two
atoms in the nanoparticle, which can be obtained by solving the Eq.
(5) numerically using Newton-Raphson Method.



Fig. 3. The effect of a parameter in the short range term A0
2 r�0
� �

for different structures: simple cubic is represented by solid blue line, body-centered cubic is represented by
black dotted line, and face-centered cubic is represented by red dashed line.

Fig. 4. The impact of particle size in the relative cohesive energy of simple cubic nanoparticles with diverse values of a parameters: a ¼ 3 is represented by solid black line,
a ¼ 3:1 is represented by dashed blue line, and a ¼ 3:2 is represented by dotted green line.
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The cohesive energy that given by Eq. (3) is for n atoms. How-
ever, the cohesive energy per atom in equilibrium configuration is

Ea ¼ D
2

A2 r�0
� �� 2A1 r�0

� �� �
: ð6Þ

The relative cohesive energy (which is free from the parameter
D) of the nanoparticle is the proportion of cohesive energy for n
atoms to the corresponding cohesive energy of bulk material E0 is

Ea

E0
¼ P0

2
A2 r�0
� �� 2A1 r�0

� �� �
; ð7Þ

where P0 ¼ 2= A0
2 r�0
� �� 2A0

1 r�0
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, A0
1 r�0
� �

and A0
2 r�0
� �

are the corre-
sponding long range and short range terms of bulk material. The
effect of the a parameter for different cubic metal structures on
A0

1 r�0
� �

and A0
2 r�0
� �

are shown in Figs. 2 and 3 respectively. The val-
ues of A0

1 r�0
� �

and A0
2 r�0
� �

go to infinity when a < 3 for different
cubic metal structures which is not physically accepted. Thus, the
considered values of the a parameter in present article are a � 3.
3. The numerical results and conclusions

The curves in Figs. 4–6 represent the relative cohesive energy of
nanoparticle as function of n-atoms are obtained from Eqs. (5) and
(7). The relative cohesive energy curves are calculated for different
cubic metallic structures and different values of the a parameter.
The red cycles in Fig. 6 are denoted for experimental values of rel-
ative cohesive energy for Mo nanoparticle which is 0.6856 in the
size n ¼ 2000 and W nanoparticle which is 0.7512 in the size
n ¼ 7000 (Kim et al., 2002).

The results in the Figs. 4–6 show the size impact of nanoparticle
on the cohesive energy, where the relative cohesive energy
increases as the nanoparticle size increases, and lean towards the
corresponding cohesive energy of bulk metal. The higher the a
parameter, the lower the potential reaction range, which resem-
bles the effect of reducing the size of nanoparticles that destabilize
the coherent energy as found in Barakat et al., 2007. After system-
atic search to find the possible candidate values of the a parameter



Fig. 5. The impact of particle size in the relative cohesive energy of body-centered cubic nanoparticles with diverse values of a parameters: a ¼ 3 is represented by solid black
line, a ¼ 3:1 is represented by dashed blue line, and a ¼ 3:2 is represented by dotted green line.

Fig. 6. The impact of particle size in the relative cohesive energy of face-centered cubic nanoparticles with diverse values of a parameters: a ¼ 3 is represented by solid black
line, a ¼ 3:1 is represented by dashed blue line, and a ¼ 3:2 is represented by dotted green line. The red circles are denoted for experimental values (Kim et al., 2002).
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to predict the experimental values for the relative cohesive energy
of Mo and W nanoparticles. It is found that the candidate values of
the a parameter for Mo and W nanoparticles respectively are 3.03
and 3.095.

In conclusion, Morse potential is used to study the impact of the
size of the nanoparticles on the cohesive energy for different
metallic cubic structures. It is found that the range of atom–atom
interaction in Morse potential can be controlled only by one
parameter a rather than two parameters m; nð Þ in Mie-type poten-
tial (Barakat et al., 2007). The present calculations show that Morse
potential is a powerful candidate to study the thermodynamical
properties of nanoparticle, where the calculated results of the
cohesive energy are consistent with corresponding the experimen-
tal values of the cohesive energy for Mo and W nanoparticle.
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