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Abstract This work presents the biosorption potential Eichhornia crassipes biomass, collected

from the Nile water, for removing Cu(II) ions. Physicochemical characteristics, proton and Cu2+

binding constants, and biosorption isotherms were studied. The biomass contains 43.3 mg g�1 pro-

tein, 40.76 mg g�1 carbohydrates and 16 types of amino acids. The biomass has large surface area

(4.16 m2 g�1) and pore size (35.93 Å). Proton bindings (pKH1 = 1.8; pKH2 = 1.9; pKH3 = 2.0) and

Cu2+ binding constants (pKM1 = 4.37; pKM2 = 4.24; pKM3 = 3.76) were calculated by Non-Ideal

Competitive Absorption (NICA) model. FT-IR results suggested that AOH, ACOOH and AP‚O

sites are mainly responsible for Cu2+ biosorption. Biosorption isotherms were successfully fitted by

two Langmuir linearization models. The biosorption mechanism includes ionization and complex-

ation stages. The biomass shows a breakthrough ability for Cu2+ biosorption (qmax = 27.7 mg g�1)

and at pH 4.5.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Copper is one of the most common pollutants found in indus-
trial effluents. Even at low concentrations, it is toxic to organ-
isms like humans. For instance, the extreme consumption of

copper leads to gastrointestinal problems, kidney damage and
anemia and lung cancer (Richard and Shuttleworth, 1996). In
addition, it is toxic in its ionic form at concentrations above

5 mg L�1 (Gagneten and Vila, 2001). For these reasons, the
US-EPA and WHO organizations have recommended copper
concentration in drinking waters not to exceed 1.3 ppm (Wang,
2002).

New technologies are necessary to reduce the concentration
of heavy metals in the environment into acceptable levels.
Biosorption, the process of capturing metal ions by the living

or dead biomass, has a great potential to reach this object
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(Wilde and Benemann, 1993). The discovery and development

of biosorption is the base of a new technology for the removal
of heavy metals from dilute solutions (1–100 mg L�1) (Chong
and Volesky, 1995).

Compared to traditional technologies, biosorption has

many advantages such as the high purity of treated waste-
water and the use of cheap raw material as biosorbent. For in-
stances, Rao et al. (2010) have effectively used a medicinal

herb (Foeniculum vulgari) from India for the removal of
Cd2+ from wastewaters. Oliveira et al. (2011) have studied
the potential of using Sargassum biomass from Brazil as a bio-

sorbent for Sm (III) and Pr (III) from synthetic solutions and
the results were promising for using it as a biosorbent. A suc-
cessful accumulation of chromium from polluted water has

been studied by using Eichhornia crassipes (E. crassipes) from
India as a biosorbent (Mohanty et al., 2006).

Dead aquatic plants are able to remove heavy metal ions
from aqueous solutions. Metal ion uptake by biomass is be-

lieved to occur through interactions with functional groups that
are native to the proteins, lipids and carbohydrates that make
up the cell wall (Mohanty et al., 2006). To maximize the effi-

ciency of the dead biomass, the identity of the functional groups
responsible for metal binding is very important. The informa-
tion obtained from these determinations is useful for future at-

tempts to enhance the adsorption capacity to selectively adsorb
specific metal ions. Moreover, the identity of the functional
groups will be helpful for determining the mechanisms respon-
sible for the binding of the targeted metal ions.

E. crassipes is water hyacinth, found in large amounts
around the fields of irrigations and in the fresh water bodies
through the year in tropical and subtropical countries includ-

ing Egypt (Schneider et al., 1995). The potential of using E.
crassipes as alive or a dead biomass to remove metal ions from
solutions was recently investigated. The results showed that it

is a promising cheap biosorbent source for metal ions (Schnei-
der et al., 1995; Soltan and Rashed, 2003).

Little is known about the types and amounts of functional

groups located on E. crassipes as well as proton and Cu2+

binding constants with E. crassipes (Schneider et al., 1995; Sol-
tan and Rashed, 2003). Moreover, extensive researches have
been done on the roots parts while little is known about leaves

and stems. Therefore, the present work aims to investigate the
physicochemical characteristics of the leaves and stems of E.
crassipes biomass in their dead state that help studying their

reactivity towards copper absorption at different pH’s and
hence suggesting a mechanism for the biosorption process.

2. Materials and methods

2.1. Chemical reagents and preparation of solutions

All the chemical reagents are from Merck and BDH grade.

Stock solutions of copper (1000 and 500 mg L�1) were pre-
pared from Cu(NO3)2Æ3H2O in ultrapure water. A stock
NaOH (0.3 M) solution was freshly prepared in deionized
water. Stock solutions of 0.3 M and 0.1 M HNO3 were freshly

prepared and standardized by NaOH standard solution
(Komy et al., 2006). Periodic standardization for NaOH was
made by using standard solution of 0.1 M oxalic acid. All solu-

tions were kept in a refrigerator at 5 �C until measurements
were undertaken.
A Milli-Q water purification system was used. All glassware

were cleansed for 1 week in 1:1 HNO3, 1 week in 1:1 HCl and
1 week in ultrapure water to prevent any contaminations
(Komy, 1993).

2.2. Sampling and preparation of biomass

The living biomass sample was collected from large floating

masses in the River Nile at Sohag city (�500 km from Cairo),
Egypt. The leaves and stems parts of the plant were used in the
present study to obtain the dead biomass. For removal of any

sand and other trapped debris, the parts were washed with
Nile, tap and ultrapure waters. The biomass was then freeze-
dried, ground and sieved through 0.25 mm mesh sieve. The

produced powder was washed in 0.001 M NaNO3 and three
times in 0.01 M NaNO3 (Plette et al., 1995) and finally dried.

2.3. Physicochemical characteristics of natural sample

Biomass C, H, N and P analysis were made with a LECO
CHN-600 analyzer model CHN-600. Jenway UV/Vis spectro-

photometer model 6405 for quantification of total protein and
carbohydrate in the biomass by using methods described by
Lowery et al. (1951) and Hedge and Hofreiter (1962),

respectively.
Surface area and pore size of the biomass were determined

by standard BET assumption using N2-adsorption isotherm
using a Nova surface analyzer model 2000 with a method de-

scribed by Gregg and Sing (1982).
For qualitative/quantitative description of the amino acid

content in the biomass, Eppendorf amino acid analyzer model

IC-3000 was used. Shimadzu Infrared (FT-IR) spectropho-
tometer model 470 was used to investigate the functional
groups on the biomass.

SEM photographs was used to describe the surface mor-
phology of E. crassipes biomass before and after biosorption
of Cu2+ while EDAX analysis were used as a primary fast test

to identify the capability of biomass to accumulate Cu2+ on its
surface. Therefore, EDAX analysis was performed for 30 mg
of the dry biomass before and after the biosorption experiment
(in a solution containing 3.7 mg L�1 of Cu2+ and maintained

for 150 min of shaking).

2.4. Influence of pH and time on Cu2+ biosorption by E.
crassipes

For estimation of the influence of pH on Cu2+ absorption,

300 mg of dried biomass was mixed with 148 lL of 500 mg L�1

Cu2+ (final concentration 3.7 mg L�1) in a set of 10 flasks at
different pH’s (2.5–6.0) and completed to a total volume of
20 mL with NaNO3 (0.1 M). The flasks were then agitated

for 3 h at 25 �C to reach equilibrium and centrifuged at
10,000 rpm for 20 min. The resulting supernatants were ana-
lyzed for the residual Cu2+ by atomic absorption spectrometry

using Buck scientific AAS model 210 VGP (USA). The Cu2+

uptake at each pH was calculated using the following
equation:

½Cu2þ�ads ¼ ½Cu
2þ�total � ½Cu

2þ�remain ð1Þ

where [Cu2+]ads is the adsorbed Cu
2+ concentration, [Cu2+]total

is the total concentration of the added Cu2+ and [Cu2+]remain is
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the remaining Cu2+ concentration at equilibrium. The whole

experiment was replicated three times for precision.
For estimation of the effect of equilibrium time on Cu2+

absorption, 300 mg of dried biomass was mixed with 148 lL
of 500 mg L�1 Cu2+ (final concentration 3.7 mg L�1) in a set
of six flasks at pH 4.5 and completed to a total volume of
20 mL with NaNO3 (0.1 M). Afterwards, the flasks were agi-
tated at different time intervals (25–240 min) at 25 �C to attain

the sorption equilibrium, centrifuged at 10,000 rpm and finally
analyzed for the residual Cu2+ AAS as before. Again, the
Cu2+ uptake at each pH was calculated using Eq. (1) and

the overall experiment was repeated three times for precision.

2.5. Isothermal studies

For carrying out the isothermal study, 300 mg dried biomass
was mixed with 20 mL NaNO3 (0.1 N) in 10 flasks at fixed pH

3.5. Then, Cu2+ was added increasingly to obtain a range of
Cu2+ concentration from 2 to 25 mg L�1. The resulting mix-
tures were stirred for 3 h at 25 �C, centrifuged at 10,000 rpm
and analyzed for the residual Cu2+ by AAS as before. This

experiment was repeated at pH 4.5 and 5.5 for comparison.
Two Langmuir linearization models by Pardo et al. (2003)

and Norton et al. (2004) were used to calculate the biosorption

parameters at each pH.

1=q ¼ 1=qmax þ 1=ðKf½M�Þ ðPardo-modelÞ ð2Þ

½M�=q ¼ 1=ðqmaxbÞ þ ½M�=qmax ðNorton-modelÞ ð3Þ

where qmax is the monolayer maximum absorption capacity
(mg g�1), b is Langmuir constant (L mg�1) which is related
to the energy of absorption, [M] is the concentration of Cu2+

in the solution at equilibrium, q is the amount of Cu2+ bound

to the biomass surface at equilibrium (mg Cu2+biomass) and
finally Kf is the Langmuir equilibrium constant.

Eqs. (2) and (3) have given their authors’ name for simplic-

ity in the further discussion.

2.6. Proton binding and Cu2+binding constants

For determining the values of proton bindings (types, amounts
and binding constants) of biomass, conductometric and poten-
tiometric titrations were performed using a Jenway conductiv-

ity meter model 4320 and a Orion digital pH/mV meter model
701A, respectively. In the conductometric (potentiometric)
titration, a suspension of 200 (500 mg) dried biomass in

200 mL NaNO3 (0.1 N) was titrated against HNO3 and NaOH
solutions. For a good description of the acid–base properties,
constant ionic strength (0.1 M NaNO3) was maintained during

the titration (Benedetti et al., 1995).
It should be mentioned that the equivalent point in the con-

ductometric titration is represented by an intersection of two

straight lines (James and Parks, 1982). The amount of proton
binding (NT, mol g�1) was calculated by summing up the two
equivalent points in the NaOH and HNO3 titrations. While in
the potentiometric titration, the total amount of proton bind-

ing (NT, mol g�1) was calculated from the difference between
the total proton amounts in the presence and absence of
biomass.

Non-Ideal Competitive Absorption model (NICA), a theo-
retical model, was used for quantitative description of the pro-
tonation behavior of E. crassipes surface:
KHi ¼ ai½Hþ�=ð1� aiÞ ð4Þ

where KHi is the proton binding constant of type i acidic site, ai
represents the degree of dissociation of type i acidic cite and

[H+] is the final concentration of protons in the titration sys-
tem (Plette et al., 1995).

For estimation of Cu2+ binding constants (stability con-
stant of Cu-biomass system), 300 mg dry weight of biomass

was mixed with 148 lL of 500 mg L�1 Cu2+ (final concentra-
tion 3.7 mg L�1) at different pH’s (2–6) and completed to a to-
tal volume of 20 mL with 0.1 M NaNO3. The suspensions were

then shaken for 3 h at 25 �C, centrifuged at 10,000 rpm to ex-
clude the biomass and analyzed for the residual Cu2+ in the
supernatant using AAS technique.

For quantitative description of Cu2+ binding constants
(KMi), a theoretical model (NICA) was used:

KMi ¼ hi=fð1� hiÞgai½M2þ� ð5Þ

where KMi is the metal binding constant to type i acidic site, hi
is the fraction of type i acidic site occupied by Cu2+ and [M2+]
is the concentration (mol L�1) of added Cu2+ (Komy et al.,
2006; Seki and Suzuki, 2002; Komy, 2004).

3. Results and discussion

3.1. Physicochemical characteristics of biomass

Table 1 shows the results of elemental analysis, total protein,
carbohydrates, surface area and pore size for E. crassipes
biomass.

The biomass shows a significant content of total protein
and carbohydrates as well as the elemental analysis is illus-
trated in Table 1. This reflected that the biomass tissue has
abundant function groups (ACOOH, ANH2, ANHA, AOH,

C‚O, and PO�34 ) that giving a primary anticipation for the
biomass capability to react with the Cu2+ through chelation
with those sites (Komy et al., 2006).

E. crassipes has a relative high surface area and pore size
(4.16 m2 g�1 and 35.93 Å) what present an evidence for the
great physical contact between the biomass surface and the

Cu2+ ions in solutions and suggest the entrapment of the
Cu2+ ions inside those large pores. The former results are
comparable to those (4.56 m2 g�1 and 1.17 Å) of Pseudomonas
biomass in a previous study (Komy et al., 2006).

Fig. 1 describes the scores (%) of amino acids in the biomass.
Proline, Glutamic, Aspartic and Leucine acids represent the
major (74%) group of amino acids in the biomass while, Histi-

dine, Isoleucine and Methionine are minor (4.12%). The per-
cent of Proline and Isoleucine in the present study was found
to be slightly higher than those obtained for the same biomass

studied by Ghabbour et al. (2004). This could be attributed to
the difference in the biomass habitat where temperature, graz-
ing and nutrients influence the chemical composition of the

growing plant from region to another (Weaver, 1946). The
above result ensures the abundance of certain chelating centers
(ACOOH and ANH2) in the biomass which are capable of
capturing Cu2+ ions from aqueous solutions.

Figs. 2a and b describe the FT-IR spectra before and after
Cu2+ (3.7 mg L�1) biosorption, respectively. Fig. 2a displays a
number of absorption peaks indicating the complex nature of

the examined biomass as follows; 3421.2 cm�1 (bonded, AOH
and ANH), 2926.4 cm�1 and 600.9 cm�1 (CAH), 1252 cm�1



Table 1 Characteristics of E. crassipes sample.

Elemental content % (g/g) Major organic content

Element % Parameters mg g�1 ±sda

C 35.2 Total protein 43.30 ±0.20

H 5.14 Carbohydrates 40.76 ±0.24

N 3.83

P 0.98 Surface characteristics

EDAX analysis % Cu Surface area, SBET (m2 g�1 ± sd) 4.16 ±0.11

Before biosorption 0.7 Pore size, rp (Å ± s.d.) 35.93 ±0.27

After biosorption 1.54

a sd is the standard deviation.

Figure 1 Percentages of amino acids in E. crassipes biomass (g

individual amino acid/g total amino acids).
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(P‚O phosphonate or phosphoramide), 1061.9 cm�1 (CAO of
aliphatic alcohol) and 1635.8 cm�1 (strong, asymmetric
stretching of RACOO�, aromatic C‚C, C‚O in RACHO,
C‚O of quinones or in conjugation with alkenes) (Yang

et al., 2010). Fig. 2b shows a remarkable shift in FT-IR bands
for some ionizable functional groups after the biosorption of
Cu2+. Generally, all of the absorption bands (stretching) after

biosorption of Cu2+ were shifted from their original positions.
There are three obvious shifts (>15 cm�1) in the absorption
bands of OAH bending from 1384.1 to 1402.4 cm�1, P‚O

stretching from 1252 to 1274 cm�1 and in the absorption band
of OAC stretching from 1061.9 to 1078.3 cm�1. This result is
an indication of the biosorption process. Similar results of –
OH and –C‚O groups were obtained in a previous study on

the same biomass collected from China (Zhou et al., 2011).
Moreover, a previous study on Cr6+ biosorption by E. crass-
ipes, collected from India, revealed a shift in the absorption

band of AOH group after biosorption process (Mohanty
et al., 2006). This suggests that AOH group is a main constit-
uent in E. crassipes samples around the world and acts as a

major chelating center in the plant material.
SEM photographs in Fig. 3a and b are describing the sur-
face morphology of E. crassipes biomass before and after bio-
sorption of Cu2+, respectively. Fig. 3a indicates that the
untreated biomass is characterized with a hollow structure.

A similar SEM result was observed in Brazil by Schneider
et al. (1995). Fig. 3b shows that Cu2+ ions possess sphere
and needle shapes with domination of the latter and uniformly

distributed over the surface of biomass. Moreover, the uptake
of Cu2+ in the pores was appeared to be higher than the in rest
of biomass surface (Fig. 3b, intrinsic image).

According to EDAX analysis result, Table 1, shows that the
biomass contains a natural amount of Cu representing 0.7% of
its dry weight and it should be absorbed during the plant’s life
(Omanayi et al., 2011). This quite higher value of naturally ad-

sorbed Cumight corresponds to the high contamination of Nile
water with Cu2+. After biosorption process, Cu2+ amount in
the biomass surface increased to 1.54% that is mainly attributed

to the biosorption process (Iqbal et al., 2009). These results
match with the FT-IR results, which exhibit significant shifts
in the bands of AOH, AP‚O and C‚O groups due to Cu2+

complexation.
Accordingly, the above results of biomass characteristics

suggest the heterogeneity of biomass surface and its variable

chemical content with the presence of mainly three (AOH,
COO�, and AP‚O) acidic sites on the biomass responsible
for the Cu2+ biosorption.

3.2. Influence of pH and time on Cu2+ biosorption by E.
crassipes

3.2.1. Influence of pH
Fig. 4a illustrates the influence of pH (2.5–6.0) on the absorp-

tion of Cu2+ onto surface of E. crassipes. It was observed that
with increasing the pH from 2.5 to 3.25, a rapid increase in the
Cu2+ uptake by the biomass took place. This is probably due
to additional active sites are introduced to copper biosorption

within this pH range. On increasing the pH from 3.25 to 5.5, a
slight decrease in the Cu2+ uptake was observed. At pH > 5.5,
the absorption of Cu2+ decreases rapidly due to the formation

of hydroxylated complexes of Cu2+. This finding suggests that
the amount of Cu2+ uptake is dependent on the pH value. As
a result, the optimum pH range for Cu2+ biosorption is 3.25–

5.5. Likely, Schneider et al., (1995) stated that optimum pH
range of Cu2+ uptake by E. crassipes biomass was between
5.0 and 6.6. This variation might be attributed to the difference

in the chemical composition of the two biomasses. Thus, the
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Figure 2 Infrared spectrum of dry E. crassipes biomass (a: before biosorption and b: after biosorption of 3.7 mg L�1 Cu2+ by 300 mg

dry biomass).

Figure 3 Scanning electron microscope images of E. crassipes

biomass (a: before biosorption and b: after biosorption of

3.7 mg L�1 Cu2+ by 300 mg dry biomass).
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pH dependence of Cu2+ uptake is related to solution chemis-

try and functional groups of the biomass. In this respect,
Sheng et al., (2004) indicated that all Cu2+ species in all bio-
systems exist in the ionic form at pH < 4.0. Subsequently,

the increase in Cu2+ uptake by the biomass in the present
study at pH 2.5–3.25 cannot be explained on the base of
change in metal speciation, as hydrogen ions will compete with
Cu2+ for the active sites of cell wall of biomass.

3.2.2. Effect of time
The result in Fig. 4b indicates the effect of equilibrium time up
to 240 min on Cu2+ absorption by E. crassipes biomass. The
amount of absorbed Cu2+ increases rapidly from 15 to
75 min, which signifies the progress of Cu2+ biosorption by

the biomass. Upon increasing the equilibrium time from 75
to 150 min, the adsorbed Cu2+ increases slightly. Finally, with
increasing time from 175 to 225 min, insignificant change in

the adsorbed Cu2+ was observed. Therefore, the optimum
time to do biosorption experiments for Cu2+ using E. crassipes
is 150 min. This result suggests that the biosorption process

has two stages, the first one is fast (15–75 min) while the sec-
ond one is slow (75–150 min).

3.3. Biosorption isothermal study for Cu2+ – E. crassipes system

Maximum absorption capacity (qmax) and Langmuir constants
(b) and (Kf) were evaluated at pH 3.5, 4.5 and 5.5 by applying

Pardo-model and Norton-model using Eqs. (2) and (3), respec-
tively. Results of their values are shown in Table 2.

Generally, good fitting between the experimental and theo-

retical data was obtained on applying the two models. This
indicates that the two models are adequate to describe the
behavior of Cu2+ biosorption by E. crassipes biomass where

the values of R2 (correlation coefficient) exceed 94% in the
two models (Pardo et al., 2003). R2 coefficient gives the amount
of variance explained by the model, so it can be used to eval-
uate the goodness of fitting at different pH values (Pardo et al.,
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Figure 4 Influence of (a: pH and b: contact time) on Cu2+ biosorption in a system composed from 300 mg biomass, 3.7 mg L�1 Cu2+

and 20 mL of 0.1 M NaNO3.

Table 2 Isothermal parameters (qmax, Kf and b), calculated at different pH’s using the Pardo- and Norton-models represented in Eqs.

(2) and (3).

pH Pardo-model Norton-model

qmax (mg g�1) ±sd Kf ±sd R2 qmax (mg g�1) ±sd b ±sd R2

3.5 11.6 ±0.12 0.45 ±0.01 0.949 17.69 ±0.14 0.028 ±0.0022 0.932

4.5 27.7 ±0.09 0.39 ±0.01 0.983 24.89 ±0.21 0.016 ±0.0020 0.987

5.5 18.3 ±0.14 0.56 ±0.02 0.979 21.11 ±0.11 0.026 ±0.0013 0.944
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2003). Moreover, a good Fitting by Pardo-model was noticed
at the three pH’s with the best one observed at at pH 4.5 with
highest R2 values (Table 2).
Fig. 5a–c shows the linear fitting at pH (3.5, 4.5 and 5.5)
against the concentration of Cu2+ using Norton-model. Simi-
larly, the value of R2 in Table 2 indicated that the best fit was
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Figure 5 Linearized biosorption isotherms for Cu2+-E. crassipes system by using Norton-model at (a: pH 3.5, b: pH 4.5 and c: pH 5.5).
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at pH 4.5 in Norton-model. This result matches well with that

obtained by Pardo-model at pH 4.5 suggesting that at such pH
the maximum absorption was fulfilled. Thus, based on Nor-
ton-model, the linear fittings for copper-biomass system, at

the three pH’s, can be represented as follows:

M=q ¼ 2:019þ 0:056 ½Cu� ðpH ¼ 3:5Þ ð6Þ

M=q ¼ 2:511þ 0:040 ½Cu� ðpH ¼ 4:5Þ ð7Þ

M=q ¼ 1:822þ 0:047 ½Cu� ðpH ¼ 5:5Þ ð8Þ

The values of qmax, b and Kf parameters were used to eval-
uate the biosorption isotherm in this work. These data are

compared with E. crassipes biomass collected from Brazil
(Schneider et al., 1995) and India (Dave et al., 2009). It is
found that Kf value in the present study (0.39) is higher 1.62

times than that of Brazilian sample (0.24), whereas it is lower
16 times than that of Indian sample (6.05) (Table 2). Similarly,
the b value in the present study is lower 0.55 times than of In-

dia-sample (0.029) (Dave et al., 2009). Likewise, qmax in the
present study obtained by Norton-model (24.89) is very close
to that obtained by the Brazilian sample (23.1) (Schneider
et al., 1995), while qmax obtained by Pardo-model (27.7) is

1.2 times lower than that obtained from the Indian sample
(33.4) (Dave et al., 2009). The inconsistency in the values of
the qmax, b and Kf, calculated for Cu2+ biosorption by the

same biomass species from different locations, may be attrib-
uted to the variation in their habitat which alter the chemical
composition and physical characteristics of the biomass and

hence the ability and mechanism of biosorption (Omanayi
et al., 2011).

3.4. Acid–base properties and proton bindings on E. crassipes

A recent study by Mane et al. (2011) on the same biomass
showed that the higher acidic content of the plant is directly

connected to its metal binding functions. Accordingly, the
importance of estimating the types, amounts and binding con-

stants of acidic sites on the biomass has been aroused to dis-
cuss the biosorption mechanism of Cu2+ by E. crassipes.

Figs. 6a–c represent the acid–base titrations of E. crassipes

biomass by increasing the pH from 2 to 11.5 using potentiomet-
ric and conductometric titrations. The dotted curve in Fig. 6a
shows the potentiometric titration for the biomass suspension

system; a relation between XHexp, the equilibrium concentra-
tions of total protons in mol g�1 (Y-axis), vs. pH values (X-
axis). Noticeably, the inflection in the dotted curve (XHexp) is

broad and poorly defined to describe the protonation properties
as it is highly affected by the amount of protons on the biomass.

This result ensures the diversity of binding sites on the
tested biomass and leads us to use a theoretical model (NICA),

which is reported by Plette et al. (1996). The results of biomass
characterization awakened the existence of mainly three active
sites (AOH, ACOO� and APO�34 ) describing the biosorption

of Cu2+ by the biomass. Therefore, the theoretical (NICA) fit-
ting will be performed on the assumption of the presence of
three acidic sites. More description on the theoretical model

was described elsewhere (Komy et al., 2006; Seki and Suzuki,
2002; Komy, 2004). Thus, Eq. (4) can be rewritten as follows
with considering the three sites:

XHi ¼ N1½H�=ðKH1 þ ½H�Þ þN2½H�=ðKH2 þ ½H�Þ
þN3½H�=ðKH3 þ ½H�Þ ð9Þ

where N1, N2 and N3 represent the amounts of the three acidic
sites which have dissociation constants KH1, KH2 and KH3,

respectively. XHi and [H] are the calculated H+ concentration
(mol g�1) and the total measured one in the solution at equilib-
rium, respectively.

To evaluate these constants, a NICA model was applied
using the experimental XHexp in Eq. (9). Practically, the exper-
imental XHexp (dotted curve) was fitted with the theoretical
XHtheor (solid line) in Fig. 6a using Microsoft excel 2003 (solver

add-in). As could be observed from Fig. 6a, there is a great
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fitting between the theoretical and experimental values at each
pH (R2 = 0.997). The results of the six parameters (N1, N2, N3,
KH1, KH2 and KH3) are listed in Table 3. The total number of

acidic sites (NT = N1 + N2 + N3) was found to be
NT = 1.65 · 10�2 mol g�1.

To confirm the last result (NT), the total amount of acidic

sites was re-measured by conductometric titration for the same
biomass system, as shown in Fig. 6b and c. The total amount of
acidic sites conductometrically was NT = 1.69 · 10�2 mol g�1

(calculated as mentioned in Section 2.5). There is high agree-
ment between the two NT values with a relative error of 2.39%.
No reported data on the acidic sites of E. crassipes was
found, so a comparison between the present data of E. crassipes
with that of Pseudomonas aeruginosa (Komy et al., 2006) and

Cumin (Komy, 2004) species was made. Values of
N2 = 1.16 · 10�2 mol g�1 and pKH2 = 1.94 in the present
study are analogous toP. aeruginosa (N2 = 1.21 · 10�2 mol g�1

and pKH2 = 1.92) (Komy et al., 2006) but quite similar to
Cumin (N1,2 = 7.87 · 10�3 mol g�1 and pKH1,2 = 1.88)
(Komy, 2004). Accordingly, this acidic site is mainly found in

all of E. crassipes, P. aeruginosa and Cumin. The values of
pKH are identical to Glutamic (apKCOO�= 2.2) and Aspartic



Table 3 (i) Proton bindings’ constants (pKHi) and their concentration (Ni) on the E. crassipes sample.

(ii) Cu2+ binding constants (pKMi).

(i) Acidic sites (ii) Cu-bindings’ constants

Ni (mol g�1) ±sd* pKHi= ±sd pKMi= ±sd

N1 3.6 · 10�3 ±8.3 · 10�4 pKH1 1.8 ±0.177 pKM1 4.37 ±0.04

N2 1.2 · 10�2 ±4.1 · 10�3 pKH2 1.9 ±0.049 pKM2 4.24 ±0.03

N3 1.4 · 10�3 ±4.0 · 10�4 pKH3 2.0 ±0.055 pKM3 3.76 ±0.04
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(apKCOO�= 2.1) acids (Solomons, 1994) which are amino
acids characterizing all the three biomasses.

N1 and N3 in the present study are of lower values com-
pared to those of P. aeruginosa (N1 = 2.16 · 10�2 and

N3 = 6.87 · 10�3 mol g�1), while pKH1 and pKH3 are so close
to the pKH1 = 1.66 and pKH3 = 2.16 of P. aeruginosa biomass
(Komy et al., 2006). In addition, Proline and APO3�

4 have pKH

of 2.0 (Solomons, 1994) and 2.15 (Harvey, 1956), respectively,
indicating that the other acidic sites (1 and 3) correspond to the
Proline and phosphate centers which are found in both E.

crassipes and P. aeruginosa (Komy et al., 2006).
The difference between Ni values in the present study and

the other two biomasses may be related to: (i) variation in per-
centage of Proline, Glutamic, Apartic and Leucine acids from

one species to another, (ii) the protein series on E. crassipes
may partially hydrolyzed to poly peptides (i.e. more free sites
are produced), (iii) the presence of an additional (PO3�

4 ) site

in E. crassipes and (iv) the low surface area (4.18 m2 g�1) of
biomass. Finally, results in (Table 3) show that the values of
pKHi of E. crassipes biomass are close to each other (1.8, 1.9

and 2.0) but lower than the standard values of pKCOOH corre-
sponding to the major amino acids (Proline = 2.0, Glu-
tamic = 2.2, Aspartic = 2.1 and Leucine = 2.3) (Solomons,

1994) and pKa (PO3�
4 ¼ 2:1) (Harvey, 1956) in E. crassipes

biomass.

3.5. Binding constants of Cu2+

A Non-Linear Least Squares Regression (NLLSR) coupled
with NICA model were used to evaluate Cu2+ binding con-

stants (KM1, KM2 and KM3) with the three acidic sites. More
description and details on the NICA model were described
elsewhere (Komy et al., 2006; Seki and Suzuki, 2002; Komy,

2004). Shortly, the NLLSR method with NICA model was ap-
plied with the following two assumptions: (i) the biomass con-
tains three main acidic sites (AOH, ACOOH and PO3�

4 )
responsible for the biosorption of Cu2+, (ii) the biosorption

process corresponds to monodentate binding sites. So, Eq.
(5), can be rewritten with considering the values of (N1, N2,
N3, KH2, KH2 and KH3), as follows:

XMexp ¼ ðN1KH1KM1½M2þ�Þ=ðKH1KM1½M2þ� þ KH1 þ ½H�
� �

þ fðN2KH2KM2½M2þ�Þ=ðKH2KM2½M2þ� þ KH2

þ ½H�g þ fðN3KH3KM3½M2þ�Þ=ðKH3KM3½M2þ�
þ KH3 þ ½H�g

ð10Þ

where [H] is the concentration (mol g�1) of H+ in the solution.
The experimental value of adsorbed Cu2+ (XMexp) was fitted

with the theoretical (XMtheor) and plotted as Y-axis vs. the
pH as X-axis. Microsoft excel 2003 (solver add-in) was used
for the fitting. The results of pKMi are listed in Table 3.

Fig. 6d illustrates the non-linear fitting between the XMexp

(dotted line) and XMtheor (solid line) vs. the pH. A distinctive
fitting between the theoretical and experimental lines was ob-
tained (Y-residual = 6.88 · 10�15 and R2 = 0.997), Fig. 6d.

The results in Table 3 indicate that pKM1, pKM2 and pKM3

values are almost identical suggesting AOH, ACOOH and
PO3�

4 sites to be the major acidic sites to bind with Cu2+. In
addition, the NLLSR method with NICA can be applied suc-

cessfully for determining the Cu2+ binding constants.
Taking into consideration the complexity of the chemical

composition of the E. crassipes, several mechanisms (ion ex-

change, complexation, coordination and microprecipitation)
can occur at the same time, depending on the aqueous environ-
ment (Sheng et al., 2004). In viewof that, the interaction between
Cu2+ and the E. crassipes biomass can be suggested as follows:

X� SY$ X� S� þYþ ð11Þ

X� S� þ Cu2þ $ X� S� Cuþ ð12Þ

where X represents the biomass surface and ASY is the acidic
site on the biomass surface (Y = any cation including H+).
Eqs. (11) and (12) stand for the ionization/deprotonation

and ion exchanging/complexation processes, respectively. In
other words, they represent the acid–base titration and the bio-
sorption reaction of Cu2+ by E. crassipes, respectively. Typi-

cally, with increasing the pH up to 4.5, the positive charge
on the biomass decreases and more negatively charged sites be-
come available for Cu2+ absorption. The availability of sur-

face charges is not the only factor determining the degree of
Cu2+ uptake but the ionization/deprotonation process of the
acidic sites affects as well.

4. Conclusion

In the present study it had been clearly shown that E. crassipes

could be potentially used as an economically cheap biosorbent
for Cu2+ removal from aqueous solutions. Variables like as pH,
adsorbent initial concentration and time were investigated.

Primary FT-IR, EDAX, acidic sites, surface area, pore size
and elemental investigations showed a readiness of biomass to
chelate with metal ions like Cu2+. A strong shift in the absorp-

tion bands of –OH,AC‚O andAPO sites was noticed after the
biosorption process indicating their responsibly for Cu2+

biosorption.

Two Langmuir transformations were applied successfully
for the biosorption process resulting in a maximum biosorption
capacity qmax (27.7 mg g�1) and (24.89 mg g�1) at the optimum
pH 4.5. This compares well with qmax of the same biomass from

India (33.4) and Brazil (23.1) in previous studies. Applying
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NICAmodel of Langmuir resulted in 3 Cu2+ binding constants

(pKMi = 4.37, 4.24 and 3.76) with the biomass surface.
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