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Tripogon loliiformis, an Australian native resurrection grass having an abundant gene pool for combating
desiccation, can be the putative model system for functional characterization of stress tolerance genes
due to its diploid genome and being a monocotyledonous plant and member of the grass family
(Poaceae), like many important cereal crops. For developing callus mediated regeneration from mature
grains of Tripogon, Murashige and Skoog medium containing growth regulator, 2,4-
dichlorophenoxyacetic acid (2,4-D) at 1.0mgL�1 was the optimum concentration for induction and
proliferation of healthy cream calli. Successful regeneration of shoots from callus clumps in MS medium
supplemented with 2.0mgL�1 6-benzylaminopurine (BAP) and 0.5mgL�1 a-naphthalene acetic acid (NAA)
was obtained from 2 consecutive rounds subculturing of the calli at 3 weeks interval. In addition, rooting
needed another 2 rounds within the same media with 2.0mgL�1 BAP but with 0.25mgL�1 NAA. The tran-
sient expression of UidA gene at 3 days after Tripogon callus transformation, performed with
Agrobacterium tumefaciens strains AGL1 and LBA4404 following rice and Brachypodium distachyon trans-
formation protocols, indicates successful Agrobacterium infection and gene delivery in calli. A stable
transformation system for Tripogon loliiformis can be developed near future following the protocols in this
study.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Climate change is triggering more frequent and prolonged peri-
ods of water deficit by which global food security is extremely
challenged. Exacerbating this issue, the world’s population is pre-
dicted to reach 9.8billions by 2050 (UNIDESA, 2017) with limited
opportunity to expand global arable lands in the future. A 70%
increase in crop productivity in agriculture can feed future popula-
tions satisfyingly though chronical malnutrition is predicted to
cause sufferings to 870million people by 2050 (Friedrich, 2015;
McGuire, 2013). Drought is the major environmental stress factor
enhanced by global warming and increased evaporation, less
precipitation, lowering of the ground water table and reduced soil
water levels that constrains plant growth and crop productivity
(Abdelaal et al., 2020; Hafez et al., 2020). Dehydration, associated
with drought, results in major changes in gene expression, carbo-
hydrate metabolism, photosynthetic-related processes and ultra-
structures in plants (Abdelaal et al., 2018) leading to decreased
yields in major cereal crops including 27.5% in wheat and 25.4%
in rice (Zhang et al., 2018). A logical starting point is to look for nat-
ural genetic resources and unique drought tolerance mechanism in
plants that can tolerate extreme drought conditions to bioengineer
enhanced drought tolerant crops.

A unique group of 135 angiosperm species from 13 families,
commonly stated as resurrection plants, can tolerate up to 95%
water loss (desiccation) in vegetative tissues for prolonged periods
without loss of viability (Challabathula and Bartels, 2013; Farrant
et al., 2012; Gaff, 1977; Gaff and Oliver, 2013). The plant’s ability
to tolerate desiccation is most probably due to a complex assort-
ment of multigenic and multifactorial machinery, for instance,
morphological and anatomical changes (Asami et al., 2018;
Sherwin and Farrant, 1996, 1998), shutdown of photosynthesis
(Aidar et al., 2010; Dinakar et al., 2012), instigation of antioxidant
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systems (Sherwin and Farrant, 1998), variations in carbohydrate
levels (Benina et al., 2013) and cell wall properties (Moore et al.,
2009; Vicré et al., 1999).

Tripogon loliiformis or five-minute grass belongs to the genus
Tripogon, subfamily Chloridoideae and therefore the family Poa-
ceae. It is annual to short-lived perennial grass native to Australia
and New Guinea (Fabillo, 2015). T. loliiformis grows in rocky out-
crops and nutrient poor soils with low water retention (Gaff and
Latz, 1978) and can withstand drought stress to leaf relative water
content below 10%. This extremophyte stimulates some structural,
physiological and biochemical contrivances including leaf folding,
cell wall folding and vacuole fragmentation, photosynthesis shut
down at the initial stage of dehydration to safeguard the photosyn-
thesis machinery, anthocyanin accumulation and maintaining
membrane integrity during desiccation (Karbaschi et al., 2016). T.
loliiformis also accumulates trehalose for the induction and mainte-
nance of autophagy as a pro-survival mechanism for suppression of
programmed cell death and senescence pathways in leaves
(Williams et al., 2015) though the roots do not need autophagy
for desiccation tolerance (Asami et al., 2019). Regulation of genes
by miRNAs, including oxidoreductases and hydrolyases, as well
as SPL, MYB and WRKY transcription factors may constitute a sig-
nificant molecular mechanisms of desiccation tolerance in Tripogon
loliiformis (Njaci et al., 2018). Additionally, transgenic rice plants
expressing an osmotin protein from T. lolliformis, TlOsm, exhibited
increased tolerance to osmotic stresses and maintained growth,
higher water contents, membrane integrity and survival rates com-
pared to the non-transgenic rice plants (Le et al., 2018). The extre-
mophile has some exclusive characteristics to be considered as
experimental model plant for desiccation tolerance studies
denoted as (i) withstanding severe water loss in vegetative tissues,
pigment accumulation during desiccation and being rehydrated
quickly, (ii) large selection of habitats including Australian main-
land, (iii) short life span, (iv) able to grow under greenhouse condi-
tion without much effort, (v) molecular work is straightforward
because the plant is diploid and (vi) monocot and sharing the
indentical family, Poaceae, with the most important staple cereal
crops (Karbaschi, 2015).

Molecular characterization of genes associated with drought
tolerance from this novel plant resource and engineering stress tol-
erance traits in staple crops such as rice, sorghum and wheat is
highly imperative for continued global food security. Transforma-
tion protocols for dicotyledonous resurrection plants such as Cra-
terostigma plantagineum (Toldi et al., 2002) and Ramonda myconi
(Tóth et al., 2006) have been established though there has been
no report of transformation system developed for monocotyle-
donous resurrection plants. Therefore, to our knowledge, this study
is the first to describe a reliable regeneration and Agrobacterium
tumefaciens-mediated transient transformation system in T. loli-
iformis which may lead to establish stable transformation system
to open up the opportunities to study various stress tolerance
genes from this unique resurrection plant.
2. Materials and methods

2.1. Plant materials

Mature grains of Tripogon loliiformis, used for callus induction in
this research, were collected from the Centre for Agriculture and
Bioeconomy (CAB), QUT. The 5 weeks old fresh calli, initiated from
the grains, were employed for regeneration and transformation
experiments. The friable callus was nodular in shape, healthy and
cream white in colour.
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2.2. Media and chemicals

Different media and chemicals used are given in Supporting
Tables 1 and 2.

2.3. Reporter genes and vector backbones

The reporter gene UidA from pCAMBIA2301 (Supporting Fig. 1),
pENTR/D-TOPO� entry vector (Supporting Fig. 2) and pCE104-EYFP
plant expression vector (Supporting Fig. 3) were collected from the
CAB, QUT.

2.4. Seed sterilization and callus induction

Dehusked mature grains of T. loliiformis were washed thrice
with sterile MilliQ water followed by surface sterilization with
70% ethanol for 30s with vortexing and re-washing for 3 times
with MilliQ water to get rid of traces of ethanol. The grains were
then soaked in 6.5% sodium hypochlorite (w/v) for 5min and vor-
texed 3 times at 1min interval followed by washing with MilliQ
water for 7 times. The clean grains were subjected for imbibation
in 0.05% agarose for 2h at room temperature. The pre-sterilized
20 aseptic grains were inoculated on petri dishes (90 � 15mm size)
containing suitable callus induction media with appropriate con-
centrations of 2, 4-D semi-solidified by using 2.5gL�1 of Gelzan.

2.5. Plant regeneration

After incubating the inoculated petri dishes at 27�C under dark
condition inside growth cabinet for 5 weeks, the friable calli were
selected and further multiplied by subculturing to the similar
induction medium under dark for 3 weeks. These 8 weeks old calli
clumps were then subcultured to the regeneration media for
regenerating shoots and roots. 10 calli clumps were subcultured
in each petri dish (90 � 14mm) containing 40mL of MS media sup-
plemented with 30gL�1 sucrose, and 2.5gL�1 of solidifying agent
Gelzan at pH 5.8 in addition to varying concentrations of BAP
(0mgL�1, 1.0mgL�1; 2.0mgL�1 and 3.0mgL�1) and NAA (0mgL�1;
0.25mgL�1 and 0.5mgL�1). All the plates were incubated at 27�C
under dark inside growth cabinet for a week. Finally, the calli were
exposed to light at 70mmoless�1m�2 white fluorescent light inside
growth cabinet with a 16h light/ 8h dark cycle.

2.6. Preparation of constructs for Agrobacterium mediated
transformation

The construct pCE104-UidA-EYFP was prepared by using TOPO
cloning and Gateway LR cloning system. The amplification of UidA
gene from the pCAMBIA2301 vector was done by PCR reactions
employing Q5 High Fidelity DNA polymerase kit. After gel elec-
trophoresis, the amplified gene was purified from agarose gel using
a Freeze ‘N Squeeze DNA gel extraction spin column (Bio-Rad). The
purified PCR product was cloned into pENTR/D-TOPO� vector and
therefore the resulting pENTR-UidA (Supporting Fig. 4) was trans-
formed into electro-competent cells of E. coli by electroporation.
The pENTR-UidA plasmid purification was done using Wizard Plus
SV Minipreps DNA purification system (Promega) for Sanger
sequencing using Big Dye Terminator Cycle Sequencing Kit TM
v3.1 (Applied Biosystems) and Vector NTI Advance 11 software
was applied to analyse the sequencing data.

The digestion of the pENTR-UidA was executed using Cutsmart
buffer and PvuI restriction enzyme. UidA gene together with the
attL1 and attL2 recombination sites was transferred from pENTR
vector into pCE104 destination vector using the GatewayTM LR
ClonaseTM II Enzyme Mix (Invitrogen). The LR reaction mixture
was used to transform 50mL of thawed E. coli XL1 Blue
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chemically-competent cells following the heat shock method
described by Inoue et al. (1990) and the construct pCE104-UidA-
EYFP was subjected to Sanger sequencing for confirmation after
analysing throughVector NTI Advance 11 software. The ultimate
cloned product of pCE104-UidA-EYFP (Supporting Fig. 5) was
transformed into Agrobacterium strains AGL1 and LBA4404 by elec-
troporation. The AGL1 colonies with construct pCAMBIA2301 were
collected from CTCB lab. The colonies were grown in 50mL LB liq-
uid media with 25mgL�1 rifampicin and 50mgL�1 kanamycin and
incubated 48h at 28�C for subsequent use for transformation. The
primers used in every step of cloning are enlisted in Supplemen-
tary Table 3.

2.7. Agrobacterium-mediated transformation and GUS expression
analysis

Fresh 5 week-old Tripogon calli were transformed following
Agrobacterium-mediated transformation method for rice described
in Hoang (2014) (Supporting Fig. 6) and for Brachypodium dis-
tachyon as described by Alves and colleagues (Alves et al., 2009)
(Supporting Fig. 7) with 2 Agrobacterium strains, AGL1 or
LBA4404 harboring single appropriate construct- pCE104-UidA-
EYFP or pCAMBIA2301, were used for transformation. A 100mL ali-
quot of fresh Agrobacterium culture or 200mL of bacterial glycerol
stock was added into 10mL liquid LB media (Supporting Table 1)
with 50mgL�1 kanamycin and 25mgL�1 rifampicin in a 50mL fal-
con tube and shaken on a shaking incubator for 72h at 28�C,
200rpm. After that, PCR reactions and agarose gel electrophoresis
were performed to verify the presence of appropriate construct
within the culture.

Agrobacterium mediated transformation method described in
Hoang (2014) was employed for the transformation of 5 weeks-
old Tripogon calli. 40mL of ATM2 media (Supporting Table 1)
supplemented with 50mgL�1 kanamycin was mixed with 10mL
growing Agrobacterium culture in liquid LB media in an autoclaved
250mL conical flask and kept shaking overnight at 28�C, 200rpm.
On the day of transformation, following the transfer of each
25mL of Agrobacterium culture to a 50mL falcon tube, centrifuga-
tion of the cultures was done at 25�C, 3000rpm for 10min. The
supernatant was discarded and the pellets were suspended in
BRM media (Supporting Table 1) supplemented with 1mLmL�1 of
200lM acetosyringone. For facilitating vir gene induction of
Agrobacterium, the culture was then incubated at room tempera-
ture at a speed of 100rpm in a shaking incubator for 5h. Following
a 5h incubation, an aliquot of 1mL from each falcon tube was taken
to quantify the optical density (OD) employing a spectrophotome-
ter at a wavelength of 600nm (OD600) and the culture was cen-
trifuged at 25�C, 3000rpm for 10min. The supernatant was
discarded followed by suspending the pellets by vortexing in an
appropriate amount of ATM4 media (Supporting Table 1) supple-
mented with 1mLmL�1 of 200lM acetosyringone to acquire the
OD600 of 0.7. Simultaneously, 10mL of the preheated (45�C)
ATM6 media (Supporting Table 1) was added to 20 calli clumps
in a 50mL falcon tube. The calli were allowed to have heat shock
by placing the falcon tube in water bath at 45�C for 5min followed
by keeping in a 4�C fridge for 30min. After the cold shock, ATM6
media was decanted and 10mL of induced Agrobacterium culture
was added. Before being centrifuged at 25�C, 1000rpm for 10min,
the mixture was then shaken at 70rpm at room temperature for
5min. Following that, the calli in the Agrobacterium suspension left
standing inside laminar hood at room temperature for 30min. The
media was then discarded and the calli blotted dry on sterile What-
man filter paper. However, mock transformation was applied by
placing some calli in ATM4media without Agrobacterium. The inoc-
ulated calli were placed on co-cultivation media (Supporting
Table 1) for 3 days at 28�C in dark growth cabinet.
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Tripogon calli were also transformed using Agrobacterium-
mediated transformation method for Brachypodium distachyon as
described by Alves and colleagues (Alves et al., 2009) when
5 weeks-old. Before the day of transformation, 10mL liquid LB
media with Agrobacterium strain harboring the genes of interest
was transferred to a 250mL sterile conical flask and cultured over-
night in 90mL MSB media (Supporting Table 1) supplemented with
45mgL�1 of acetosyringone and 100mgL�1 kanamycin at 28�C with
a speed of 200rpm in a rotary shaker. On the following day, the
overnight culture was transferred to 50mL falcon tube with
25mL in each tube and was centrifuged at 25�C, 3000rpm for
10min. The supernatant was discarded and the pellets in each fal-
con tube were suspended by vortexing in 25mL of MSB media sup-
plemented with 45mgL�1 of acetosyringone. The culture was kept
in a shaker incubator at room temperature for 45min to urge the
acceptable density. The optical density of 1mL of culture from each
falcon tube was measured by spectrophotometer at a wavelength
of 600nm (OD600). The falcon tubes with culture were centrifuged
at 3000rpm for 10min and the supernatant was decanted. The pel-
let was vortexed again in appropriate amount of MSB media sup-
plemented with 45mgL�1 of acetosyringone to prepare the OD600

of the Agrobacterium suspension to 1.0. Approximately 20 Tripogon
calli pieces were transferred into each 90 � 15mm petri plate and
flooded with 15mL of Agrobacterium culture (OD600 of 1.0) for 5min
at room temperature. After inoculation, the calli were desiccated
on sterile Whatman filter paper for 7min in laminar flow and then
co-cultured on MSB3 media (Supporting Table 1) supplemented
with 60mgL�1 of acetosyringone for 3 days. Beside this, some calli
were subjected to be mock-transformed in MSB media without any
Agrobacterium strain.

Transient expression of UidA gene was analysed after three days
of transformation following the strategy described by Jefferson
et al. (1987). The calli were observed under a Zeiss Steri-2000-C
stereomicroscope and pictures were captured with a digital micro-
scope camera Progress�C5 (Jenoptic, Germany).
2.8. Data analysis

All the data were analysed by using the one-way ANOVA at
P � 0.05 in Minitab statistical software version 19.1.1. Tukey’s
HSD tests were used to analyse the significant differences among
the data. Data within the same parameter category followed by dif-
ferent letters are significantly different at P � 0.05.
3. Results

3.1. Establishment of regeneration system for Tripogon loliiformis

3.1.1. Friable callus induction of Tripogon lolliformis from mature
grains

We chose to investigate the suitable concentration of 2,4-D for
embryogenic callus induction from mature grains of Tripogon
among the 4 concentrations (0.5, 1.0, 2.0 and 3.0mgL�1) in MS
media supplemented with 30gL�1. The embryogenic callus was fri-
able, globular in shape and cream white in colour (Fig. 1a). We
observed that embryogenic callus induced in 1.0mgL�1 2,4-D after
5 weeks was the highest in percentage (73%) significantly com-
pared to other concentrations (Fig. 1b). However, at 2.0mgL�1

2,4-D concentration, the percentage of callus induction (defined
as percentage of seeds developing at least 1 callus) was not statis-
tically different with 1.0mgL�1 2,4-D. Not enough amount of calli
formed at low concentration (0.5mgL�1) and high concentration
(3.0mgL�1) to proceed with further experiments of regeneration.
As 2,4-D is a strong growth regulator, We hypothesized that the
higher concentrations (2.0 and 3.0mgL�1) might inhibit plant
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regeneration from calli masses and considered 1.0mgL�1 as the
optimum concentration for callus induction in Tripogon.

3.1.2. Effect of different media in combination with optimised 2,4-D for
callus induction

We investigated whether MS medium supplemented with
1.0mg L�1 2,4-D is the optimum concentration for callus induction.
For this, an experiment was conducted with another medium that
was used successfully for rice callus induction/transformation
namely 2N6 - a modification of N6 medium (Hiei and Komari,
2008) supplemented with 1.0 and 2.0mgL�1 2,4-D (optimum con-
centration for higher percentage of callus induction inferred from
previous experiment). The grains produced 72% of embryogenic
callus after 5 weeks in MS medium supplemented with 1.0mgL�1

of 2,4-D which is significantly higher compared to the percentages
of calli obtained in 2 N6 medium supplemented with 1.0 (56%) and
2.0mgL�1 2,4D (51%), respectively (Fig. 2). We theorized that MS
medium with 1.0mgL�1 2,4-D was most suitable for callus induc-
tion than 2N6 medium.
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3.1.3. BAP and NAA for green point emergence and regenerating
miniature plantlets of Tripogon

Green points emerge from the creamy white calli when
exposed to light and later form healthy shoots. We subcultured
the calli induced in optimised media to MS medium supple-
mented with shoot and root inducing growth regulators (BAP
and NAA) under the effect of light. The percentage of the green
points (defined as percentage of calli developing at least 1 green
point scored by eye) was recorded after 14 days of exposure to
light (Fig. 3a). Almost all the calli obtained green points (100%)
in MS media supplemented with (1) 2.0mgL�1 BAP and 0.5mgL�1

NAA combinations (Fig. 3b); (2) 3.0mgL�1 BAP and 0.25mgL�1

NAA and (3) 3.0mgL�1 BAP and 0.5mgL�1 NAA combinations
when transferred to light for 14 days. The callus in control MS
media without BAP and NAA fail to form any green points at
the same time point. Green points also emerged in calli clumps
when kept in media supplemented with other combinations of
BAP and NAA but in lower percentages. Calli with green points
failed to regenerate shoots and eventually died when subcul-
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tured on MS control and on MS medium with their respective
BAP and NAA combinations for 3 weeks interval. However, the
initiation of shoots ensued on medium with 2.0mgL�1 BAP and
0.5mgL�1 NAA after 3 weeks (Fig. 3c). This result reveals that
higher concentrations of growth regulators in subsequent sub-
culturing of calli was detrimental for regeneration for sensitive
plant like Tripogon. We subcultured the callus with initiated
shoots, obtained from 2.0mgL�1 BAP and 0.5mgL�1 NAA, for
another 3 weeks on media with reducing amount of NAA into
half though the amount of BAP was the same. Shoots emerged
from each callus clumps in MS medium supplemented with
2.0mgL�1 BAP and 0.25mgL�1 NAA (Fig. 3d). Rooting was
obtained from the base of each shoot clumps by subculturing
the regenerated shoots in MS medium supplemented with
2.0mgL�1 BAP and 0.25mgL�1 NAA within 3 weeks (Fig. 3e).
The procedure for regenerating plantlets from embryogenic calli
of Tripogon loliiformis is represented in Fig. 4.
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3.2. Transient expression UidA gene after Agrobacterium-mediated
transformation of T. loliiformis

Tripogon loliiformis is closely related to rice (Oryza sativa) as
both are monocotyledonous plants belonging to the grass family.
We conducted experiment for Tripogon transformation following
the high efficiency rice transformation protocol by Hoang (2014)
where embryogenic calli raised from rice grains were used as the
explants. Histochemical GUS staining for transient UidA gene
expression of 5 weeks old calli after 3 days post transformation
showed intense blue colouration in 59% of the transformed calli.
However, the control embryonic calli without Agrobacterium trans-
formation did not turn blue indicating that gene has been success-
fully delivered to the embryogenic transformed calli after
Agrobacterium infection (Fig. 5).

We also followed Brachypodium distachyon transformation pro-
tocol developed by Alves et al. (2009) because Brachypodium is a
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monocot grass and embryogenic calli is the explant for transforma-
tion like Tripogon. This protocol with few modifications was exper-
imented for transforming Tripogon calli by using two different
Agrobacterium strains viz. AGL1 (pCE104-UidA-EYFP and pCAM-
BIA2301) and LBA4404 (pCE104-UidA-EYFP). 61% of calli expressed
UidA gene for transformation performed with AGL1 (pCE104-UidA-
EYFP), followed by 58% and 36% GUS expression for LBA4404
(pCE104-UidA-EYFP) and AGL1 (pCAMBIA2301), respectively in
3482
the transient expression essay of UidA gene at 3 days after transfor-
mation (Fig. 6).

4. Discussion

Establishment of an efficient tissue culture protocol could be a
criterion for an effective transformation system of a plant (Sant,
2012). Tripogon loliiformis is a inimitable resurrection plant that
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shares the identical family with important cereals including rice
(Karbaschi et al., 2016; Williams et al., 2015). It has been reported
that the well designated methods for cereal transformation gener-
ally involve Agrobacterium tumefaciens-mediated transformation of
cultured tissue, immature and mature embryos followed by callus
culture to regenerate plants (Shrawat and Lörz, 2006). Among the
materials that may be used for initiating callus, mature grains are
the best suited because they can be obtained in quantity and kept
viable for an extended time in the laboratory (Hiei and Komari,
2008). Not only that, different concentrations of 2,4-D starting
from 1mgL�1 upto 4mgL�1, are used for inducing callus in rice
along with either MS or N6 media (Binte Mostafiz and Wagiran,
2018; Hiei et al., 1994; Verma et al., 2011). While each rice cultivar
3483
may have an optimum 2,4-D concentration for callus induction,
one common thing between them is that calli are often induced
from mature grains using different concentrations of 2,4-D in MS
or N6 media. Similarly, in this study we found that embryogenic
callus can be induced from mature Tripogon grains on MS or N6
media supplemented with 3% sucrose and different concentrations
of 2,4-D ranging from 0.5mgL�1 to 3mgL�1, pH 5.8 and solidified
with 2.5gL�1 gelzan (Fig. 1). However, 1mgL�1 2,4-D in MS media
generated the best frequency of callus induction (73%) from
mature Tripogon grains and provided the superlative quality of cal-
lus compared to other 2,4-D concentrations tested (Fig. 2). There-
fore, it was absolutely selected as the most suitable
concentration of 2,4-D for callus induction from Tripogon mature
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grains. Beside callus induction, shoot regeneration is additionally a
necessary step within the protocol of any plant tissue culture. In
many plants, shoots are often regenerated in high frequency from
embryogenic callus employing a suitable combination of a cytoki-
nin, most of the time BAP, and an auxin such as NAA. Poeaim et al.
(2016) reported that a amalgamation of 2.0mgL�1 BAP and
0.5mgL�1 NAA in MS media produced highest plant regeneration
frequency from embryogenic rice callus in Thai rice variety Nam
Roo. A combination of 3mgL�1 BAP and 0.5mgL�1 NAA in 2N6
media has been practised to regenerate shoot from callus of Nip-
ponbare rice cultivar (Hoang, 2014). During this study, we subcul-
tured embryogenic Tripogon callus on MS media supplemented
with 9 different combinations of BAP and NAA (Fig. 3a). We found
that at 14 days post exposure to 16h light and 8h dark at 25 ± 2�C,
100% callus cultured on MS media supplemented with 3 different
combinations of BAP and NAA including 2.0mgL�1 BAP and
0.5mgL�1 NAA (Fig. 3b and 3c), 3.0mgL�1 BAP and 0.25mgL�1

NAA, and 3.0mgL�1 BAP and 0.5mgL�1 NAA turned green, an hon-
est signal for shoot regeneration. Callus cultured on MS supple-
mented with another 6 combinations of BAP and NAA also
turned green but at lower frequency. However, only callus cultured
on MS supplemented with 2.0mgL�1 BAP and 0.25mgL�1 NAA
developed to shoots and roots with a frequency of roughly 60%
in our experiments (Fig. 3d and 3e). Therefore, we developed a tis-
sue culture system for Tripogon loliiformis using embryogenic callus
as suitable material for transformation (Fig. 4).

Following the success of establishment of the tissue culture sys-
tem for Tripogon loliiformis, we investigated a transformation sys-
tem for Tripogon loliiformis based on rice transformation protocol
that was well established in QUT lab (Hoang, 2014). The GUS stain-
ing assay showed UidA gene transient expression in 58.81% of
transformed calli (Fig. 5). We also employed Brachypodium dis-
tachyon transformation protocol (Alves et al., 2009) for Tripogon
transformation because like Tripogon, Brachypodium is a monocot
grass and its embryogenic callus was used for Agrobacterium–
mediated transformation. As shown in result section, Tripogon
embryogenic callus showed transient expression of GUS 3 days
post transformation with different Agrobacterium strains with con-
structs. 61% of calli expressed UidA gene after transformation per-
formed with AGL1 (pCE104-UidA-EYFP), followed by 58% and 36%
for LBA4404 (pCE104-UidA-EYFP) and AGL1 (pCAMBIA2301),
respectively (Fig. 6). These events ensured the successful delivery
of UidA gene from Agrobacterium strains to Tripogon calli.
5. Conclusion

We successfully established the regeneration system for Tri-
pogon loliiformis, the first time described tissue culture set up for
a monocot resurrection plant. In addition to this, the transient
expression of UidA gene in the Agrobacterium tumefaciens- trans-
formed callus reveals that stable transformation system can be
optimized in future with more attempts.
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