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Introduction: Systemic Lupus Erythematosus (SLE) is a complex, multisystem autoimmune disorder characterized
by extensive inflammation that affects nearly all organ systems in the body. It is primarily mediated by auto-
antibodies and immune complexes, and it predominantly affects women more than men. This study employs
an in-silico approach to identify key genes potentially involved in the pathogenesis of SLE.

Objectives: To identify key genes potentially involved in SLE pathogenesis using in-silico approach.

Methods: High-throughput sequencing dataset GSE97264, from the Gene Expression Omnibus (GEO) database,
which contains RNA transcriptome data from CD8" T-cells of 18 SLE patients and 14 healthy controls was
utilized for the analysis. Differentially expressed genes (DEGs) were identified using the Bioconductor DESeq2
package in R platform. Gene Ontology (GO) and pathway enrichment analyses were performed using the Top-
pGene suite. Motif analysis of the genes’ promoter regions was conducted using HOMER software. Protein-
protein interaction (PPI) and Reactome functional interaction (FI) networks were created using Cytoscape plu-
gins StringApp and ReactomeFIViz, and analysed to identify hub genes.

Results: Our analysis identified 931 DEGs, with 577 upregulated and 354 downregulated. GO and pathway
enrichment analyses indicated that upregulated genes were associated with immune responses, including cyto-
kine production and receptor activation. Motif analysis identified key regulatory motifs linked to immune
regulation in upregulated genes and T-cell activation in downregulated genes. PPI and FI networks analyses
revealed 29 cell cycle-associated hub genes, with 10 genes—CDK1, TPX2, BIRC5, CCNA2, BUB1, BUBIB,
AURKA, KIF2C, PLK1, and CDCA8—common to both biological networks, suggesting their crucial role in SLE
pathogenesis.

Conclusion: This study suggests that dysregulation of the identified 10 genes may impact immune responses and
contribute to the autoimmune-like conditions observed in SLE. Several of these genes are also implicated in other
autoimmune diseases, highlighting their potential as SLE biomarkers. Despite their known roles in other
immune-related diseases involving CD8"' T cells, their direct association with SLE had not been previously
established. This novel finding underscores the potential of these genes as therapeutic targets and may contribute
to the development of diagnostic tools.

1. Introduction exact causes of SLE remain largely unknown; however, scientists have

identified several potential triggers, such as genetic, environmental, and

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune dis-
ease characterized by the immune system’s attack on its own tissues,
which can affect both sexes. This leads to inflammation and, in some
cases, permanent tissue damage affecting various body parts including
the skin, joints, heart, lungs, kidneys, and brain (Cojocaru, 2011). The
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inflammatory factors (Robinson et al., 2021). It is postulated that an
impairment in the normal clearance of apoptotic and necrotic cells may
result in immune system dysregulation, whereby the immune system is
misled into fighting itself, leading to SLE (Robinson et al., 2021). The
course of disease progression is not linear, often characterized by relapse
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and remission phases, leading to considerable variability among pa-
tients, which presents significant difficulties in diagnosis and thera-
peutic interventions (Cojocaru, 2011).

The pathophysiology of SLE is mediated by autoantibodies and im-
mune complexes. A deficiency in complement proteins (C1, C2, C3, C4)
impairs the efficient removal of apoptotic cells by macrophages,
resulting in the exposure of nuclear material and internal proteins (an-
tigens). These antigens are captured by Antigen-Presenting Cells (APCs)
and presented to naive T-helper cells, triggering their activation and
differentiation. In SLE, IL-4 secretion favors T-helper 2 cell maturation,
which in turn promotes antibody-mediated immune responses. Auto-
antibody production, particularly anti-nuclear antibodies (ANA) and
anti-double-stranded DNA (anti-dsDNA) antibodies, is attributed to
activated B-cells that evolve into plasma cells, which remember the
antigen and secrete more autoantibodies. (Robinson et al., 2021).

When autoantibodies bind to nuclear proteins, they trigger inflam-
mation through various mechanisms. Immune complexes may deposit
on organs or bind to Fc receptors on immune cells, leading to comple-
ment activation and the release of pro-inflammatory cytokines like in-
terferons and TNF-alpha (Robinson et al., 2021). After surrounding
immune cells become sensitized to the antigens, they release cytokines
upon recognizing the nuclear antigen through the TOLL-like receptor,
exacerbating the inflammatory response and further damaging nearby
cells. The inflammation eventually subsides due to the immune system’s
innate regulation (Robinson et al., 2021).

CD8" cytotoxic T cells, part of the host defence mechanism, are
activated by APCs presenting antigens via MHC-I molecule. Several
studies have reported varied functions of CD8" cells in SLE. In SLE pa-
tients, systemic CD8" T cells demonstrate diminished effector functions
and cytolytic activity, which compromises their ability to efficiently
clear infections and autoreactive B-cells. These cells also demonstrate
increased infiltration capacity, especially in the kidneys, contributing to
organ damage (Chen and Tsokos, 2021). Despite various assumptions
about the role of CD8™ T cells in SLE, the precise scenario remains un-
clear, warranting further exploration.

In this study, we have utilised the dataset from Buang et al., depos-
ited in the Gene Expression Omnibus Database, containing mRNA
samples from blood CD8" T cells of SLE patients and healthy controls
(Buang, 2021). We identified Differentially Expressed Genes (DEGs)
between the SLE and control samples using the DESeq tool and cate-
gorized the upregulated and downregulated genes. To understand the
functional and biological significance of these genes, we performed
Gene Ontology (GO), Gene Family, and Reactome Pathway Enrichment
analysis using the ToppGene Suite server. We also built a Reactome
Functional Interactome Network and a STRING protein—protein inter-
action (PPI) network to identify hub genes in both networks. This study
aims to unveil previously unexplored pathogenic genes, enhancing un-
derstanding of SLE’s genetic-environmental interplay, aiding in diag-
nosis and treatment.

2. Methods and Materials
2.1. Rna-seq data from SLE patients and healthy controls

The raw data for this study were sourced from the RNA tran-
scriptome deposited by Buang et al.,, (Buang, 2021) in the Gene
Expression Omnibus (GEO) database under the entry GSE97264. The
transcriptome was obtained from the blood CD8" T cells of SLE patients
and healthy controls. The study included 16 SLE patients with active
disease, 18 with less active disease, and 14 healthy controls. The British
Isles Lupus Assessment Group (BILAG) and Systemic Lupus Erythema-
tosus Disease Activity Index (SLEDAI score) were used to classify the
patients. For this study, we selected data from patients with active SLE
and healthy controls from the GSE97264 dataset.
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2.2. Differential Gene expression analysis

The differential gene expression (DGE) analysis was conducted using
DESeq2, a Bioconductor package, in R platform. Initially the count data
was converted into “DESeqDataSet” object using the function ‘DESeq-
DataSetFromMatrix’ from DESeq2 package v 1.40.2. Then the DGE
analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) dis-
tribution was performed using the ‘DESeq’ function. The function fol-
lowed a default workflow of estimating size factors, estimating
dispersions, fitting model and testing (replacing outliers and refitting
genes). The Wald test was employed to evaluate the significance of
DEGs. The resulting p-values were then adjusted for multiple testing
using the Benjamini-Hochberg (BH) method to control for the false
discovery rate (FDR). Finally, the genes that have logoFC > |1| and padj
(FDR) < 0.05 were considered as DEGs.

2.3. Gene Ontology and pathway enrichment analyses

GO functional and pathway analyses was performed using the Top-
pGene Suite server. GO analyses (biological process, molecular function,
cellular component), gene family, and pathway enrichment analyses
were executed using the ToppFun function. The probability distribution
function was selected for the p-value method, and a cut-off criterion of
Gene count < 2 and FDR B&H q value < 0.05 was applied in the Top-
pFun function for these analyses (Premanand and Reena Rajkumari,
2023).

2.4. Motif analysis

The Homer v4.11 software was used to identify gene-based motifs in
the promoter regions of the DEGs. For this study, the promoter regions
were defined as 2,000 bp upstream and 200 bp downstream of the
transcriptional start sites based on RefSeq genes (Hg38)). Motifs with a
maximum length of 12 bases were probed, with a Benjamini-Hochberg-
corrected p-value threshold of < 0.05 (Premanand and Reena Rajku-
mari, 2023).

2.5. STRING protein—protein network analysis

The STRING database was used to construct the PPI network for the
identified DEGs. The Cytoscape plugin stringApp v2.0.1 was employed
to generate the PPI interaction network, setting the highest confidence
interaction score at 0.900 to refine the network (Premanand and Reena
Rajkumari, 2023).

2.6. Reactome functional interaction network analysis

ReactomeFIViz v8.0.6, a Cytoscape tool, was used to create networks
using the Reactome functional interaction (FI) network. The tool utilizes
Reactome, a biological pathway database, to derive interaction infor-
mation. The FI network for our DEGs was built using the 2022 version of
the Reactome FI network (Premanand and Reena Rajkumari, 2023).

2.7. Network analysis and hub gene identification

Hub genes in the PPI and FI networks were identified using the
Cytohubba v0.1 plugin. They were ranked according to six topological
centralities and algorithms, including Maximal Clique Centrality (MCC),
Maximum Neighbourhood Component (MNC), Density of Maximum
Neighbourhood Component (DMNC), Degree, Closeness, and Between-
ness (Premanand and Reena Rajkumari, 2023).
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3. Results
3.1. Identification of DEGs in SLE CD8" T cells

The DGE analysis identified 931 genes as DEGs with, 354 genes
downregulated and 577 upregulated in CD8" T cells from active SLE
patients compared to healthy controls (Supplementary I). The top 10
upregulated and downregulated genes are shown in Fig. 1. Additionally,
the DEGs identified in our analysis are statistically depicted using a
volcano plot in Fig. 1.

3.2. Gene Ontology and pathway enrichment analyses

Gene family enrichment analysis revealed that the upregulated DEGs
are associated with immunoglobulins and CD molecules, while down-
regulated DEGs are linked to keratins, collagens, fibronectin
(Supplementary II-1). GO functional enrichment analysis (Fig. 2, Sup-
plementary 1I-2) showed distinct profiles for DEGs in SLE. Upregulated
genes were predominantly associated with inflammation-related GO
terms across three categories: molecular function (MF), biological pro-
cess (BP), and cellular component (CC). Specifically, the enriched GO
MF terms included antigen binding and toll-like receptor binding. In the
CC category, terms like IgA and IgG immunoglobulin complexes were
prominent. Meanwhile, BP terms highlighted were adaptive immune
response, chronic inflammatory response, cytokine production, innate
immune response, interferon-mediated signaling pathway, and leuko-
cyte migration involved in the inflammatory response (Fig. 2, Supple-
mentary II-2). These terms collectively suggest heightened
inflammatory activity consistent with the clinical manifestations typi-
cally observed in SLE (Gottschalk et al., 2015).

Conversely, downregulated genes were enriched with GO MF terms
such as oxidoreductase activity, and BP terms like G protein-coupled
receptor signaling pathway, Wnt signaling pathway, and cell-cell
signaling by Wnt (Fig. 2, Supplementary II-2). The enrichment of these
GO terms for downregulated DEGs reflects disrupted immune responses
characterized by altered chemotaxis, impaired adhesion, and modified
CD8" T cell function, a known feature of SLE pathology (Gottschalk
et al., 2015).

Pathway enrichment analysis enriched Reactome pathways such as
FCGR3A mediated IL-10 synthesis, activation of B cell receptor, and
several cell cycle associated pathways for upregulated DEGs. On the
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other hand, pathways related to matrisome, basement membrane and
collagen were enriched for the downregulated DEGs (Supplementary II-
3).

3.3. Motif analysis of dysregulated genes in SLE

The motif enrichment analysis on the promoter regions of DEGs
provided insights on the potential transcription factors that might play a
significant role in SLE pathogenesis (Fig. 3, Supplementary II-4&5).
Downregulated genes had motifs for transcription factors such as MyoG,
ASCL1, LRF, Gatal, EGR1, E2A, and NFAT (Fig. 3). MyoG, a basic helix-
loop-helix (bHLH) family member, is involved in MEF2's immune
response in T lymphocytes (Maglott, 2007). ASCL1, also a bHLH factor,
plays a role in T-cell development and the Wnt/p-catenin pathway
(Johansson et al., 2009). LRF, a Kruppel family member, is crucial for T
cell differentiation (Carpenter, 2012), while GATA1, a zinc finger
transcription factor, is linked with T-cell differentiation (Sundrud,
2005). EGR1, another zinc finger transcription factor, activates macro-
phage transcription and is associated with immune response genes,
including Tumor Necrosis Factor (Woodson and Kehn-Hall, 2022). E2A,
a bHLH member, is essential for early B and T cell development (Wan,
2022). NFAT, a redox-dependent factor, affects CD8™ T cell cytotoxicity
and metabolism (Klein-Hessling, 2017). The enrichment of these tran-
scription factor motifs in the down-regulated genes suggests immune
system aberration in SLE.

Upregulated genes were enriched with motifs for IRF4, T1SRE, E2F7,
E2F3, E2F1, IRF1, ISRE, IRF3, and IRF2 (Fig. 3). The Interferon Regu-
latory Factor family members (IRF1, IRF2, IRF3, and IRF4) were notably
enriched, suggesting their involvement in SLE’s pro-inflammatory pro-
cesses (Matta, 2017). IRF1 is involved in pro-inflammatory transcrip-
tion, characteristic of SLE pathology (Matta, 2017), while IRF2 responds
to persistent IFN signaling, leading to CD8™ T cell exhaustion (Lukhele,
2022). IRF3 activation is associated with increased type I interferon
expression in dendritic cells (Santana-de Anda, 2014), and IRF4 over-
expression is linked to CD8" T cell exhaustion (Man, 2017). The pres-
ence of T1ISRE hints at increased type 1 interferon gene expression.
E2F1's role in T cell apoptosis and its association with T cell cycle pro-
gression (Cao, 2004), alongside E2F7 and E2F3's links to CD8" T cell
infiltration, further reveal SLE’s complex cellular mechanisms (Wang,
2018). ISRE motifs in cytokine genes contribute to heightened type 1
interferon production, reflecting altered mitochondrial state of CD8" T
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Fig. 1. Volcano plot depicting the distribution of the DEGs identified in the SLE samples with the cut-off values log2FC>|1| and g-value < 0.05 and top 10 Up-

Regulated and Down-Regulated DEGs Identified in the Study.
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Fig. 2. Gene Ontology analysis result of DEGs (FDR<0.05) using ToppGene Suite.
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Fig. 3. Motif enrichment analysis result.

cells in SLE patients (Buang, 2021).

3.4. Construction and investigation of STRING protein—protein
interaction network for the identification of hub genes

The primary PPI network, after discarding the disconnected nodes,
constructed by the StringApp had 249 nodes (215 upregulated genes, 26

downregulated genes, and 8 linker genes) and 1478 edges (Fig. 4). To-
pological analysis revealed a clustering coefficient of 0.531, network
diameter of 12, network density of 0.048, characteristic path length of
4.302, and an average of 11.871 neighbors per node. The nodes were
further subjected to functional enrichment analysis by utilizing the
STRING plugin available within the StringApp. This analysis enriched
pathway terms related to cell cycle checkpoints, interferon alpha/beta
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Fig. 4. Protein-Protein interaction network built using stringApp The circles are designated for the genes (nodes) while the lines represent the edges. The down-
regulated genes are represented using the red nodes while the upregulated genes are represented using the green nodes. Linker genes have been represented using
blue nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Top 20 hub genes determined using various topological methods and centrality measures in the String’s protein—protein interaction network.
Topological Algorithms Centralities
MCC MNC DMNC DEGREE BETWEENNESS CLOSENESS
CDK1® CDK1“ PBK CDK1® FN1 CDK1®
KIF11* CCNA2" NEK2 CCNA2® AURKAY CCNA2*
BUB1* CCNB1? AURKAY CCNB1# BRCA1 CCNB1?
KIF20A" cDC20P MKI67 CcDC20? STAT1 BUB1B*
TOP2AP BUB1p PTTG1 BUB1? CXCL10 CcDC20P
KIF2CP BUB1B" TTK® KIF11° ISG15 BUB1?
BUB1B® KIF11? CEP55° BUB1B" PCNA KIF11?
CCNB1? KIF20AP CENPE KIF20A" LCN2 TOP2AP
DLGAPS” TOP2AP NUSAP1P TOP2AP EGF KIF20AP
CDC20P DLGAP5? NCAPG DLGAP5” IL10 DLGAPS”
CDCA8* KIF2CP PRC1 KIF2CP CCNA2" PLK1Y
UBE2C? CENPF* CDCA8* CENPF* CDK1“ TPX2"
TPX2" CCNB2? ASPM® CCNB2* LTF CCNB2?
CENPF® TPX2" MELK?® TPX2" CENPA UBE2C?
CCNA2® CDCA8* KIF15 PLK1" ITGA2B AURKAY
CEP55° AURKB' BIRC5” CDCA8* BUB1B® KIF2CP
MELK?® PLK1" CENPF* BIRC5" TYMS CENPF*
NUSAP1? BIRCS" CDCA3 AURKBY RAD51 AURKBY
TTK® NUSAP1P GBP4 NUSAP1? CD40LG CDCA8*
CCNB2? UBE2CP UBE2CP ASPM® MMP9 BIRC5”

The symbol code designates the presence of the highlighted genes in more than two columns— « indicates presence in five columns, p indicates presence in four
columns, y indicates presence in three columns, and § indicates presence in two columns.
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signaling, cytokine signaling, IL-24 signaling and type II interferon
signaling (Supplementary II-6). While GO analysis linked the PPI
network genes to processes associated with cell cycle and immune sys-
tem, such as apoptosis, chromosome segregation, DNA damage
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response, cytokine-mediated signaling pathway, and interleukin 27
signaling (Supplementary II-6).

To identify central or hub’ genes in the PPI network, we applied four
topological analysis methods- MCC, DMNC, MNC, and Degree — along
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with two measures of centrality, Closeness and Betweenness
(Premanand and Reena Rajkumari, 2023). The top 20 hub nodes (genes)
identified for each category in the PPI network are listed in Table 1.
Genes appearing in at least three of the categories are considered sig-
nificant and they are CDK1, KIF11, BUB1, KIF20A, TOP2A, KIF2C,
BUB1B, CCNB1, DLGAPS5, CDC20, CDCAS8, UBE2C, TPX2, CENPF,
CCNA2, NUSAP1, CCNB2 and BIRCS.

3.5. Construction and investigation of Reactome functional interaction
network for the Identification of hub genes

The primary FI network, after discarding the disconnected nodes,
generated using the ReactimeFIViz tool comprised of 361 nodes (278 up-
regulated and 83 downregulated genes) and 4081 edges (Fig. 5). To-
pological analysis of this FI network revealed an average node count of
22.609, a network diameter of 14, a characteristic path length of 3.958,
a clustering coefficient of 0.481, and an average network density of
0.0653 neighbors. Pathway enrichment and Gene Ontology biological
process analyses were conducted using the inbuilt network function
plugin in ReactomeFIViz. This analysis highlighted terms predominantly
related to the cell cycle, such as mitotic cell cycle, cell division, chro-
mosome segregation, cell cycle checkpoint, mitotic prometaphase and
G1/8S transition (Supplementary II-7).

Similar to the PPI network, the top 20 hub nodes (genes) for each
category in the FI network were identified using four topological anal-
ysis methods and two centralities. These hub nodes are detailed in
Table 2. Genes appearing in at least three of the categories are consid-
ered significant and they are CDK1, CCNA2, AURKA, CDCA5, NDC80,
CDCAS8, CENPE, ZWINT, CCNB2, SPC25, BUB1, BUB1B, PLK1, EXO1,
FOXM1, NEK2, TPX2, KIF2C and BIRC5.

3.6. Prospective genetic markers of SLE pathology

A total of 29 hub genes were identified from the analysis of PPI and FI
networks, (Supplementary II-8). All these hub genes were found to be
up-regulated. Among these, 10 genes — CDK1, TPX2, BIRC5, CCNA2,
BUBI1, BUB1B, AURKA, KIF2C, PLK1 and CDCA8 were found to be hub
genes in both networks and are thus considered to be prospective genetic
markers of SLE pathology. GO biological process and pathway

Table 2
Top 20 hub genes determined using various topological methods and centrality
measures with in the Reactome’s functional interaction network.

Topological Algorithms Centralities

MCC MNC DMNC DEGREE BETWEENESS  CLOSENESS
ZWINT'  CDK1® $GO1° CDK1* STAT1® CDK1*
CDK1 CCNA2P  SPC24 CCNA2®  BRCA1® CCNA2P
CCNB2Y  PLK1" KNL1 PLK1" FCGR1A PLK1Y
SKA1 CDCA8"  CDCA3 CDCA8"  BIRCSY AURKA"
SPC25"  EXO1Y CENPN EXO1" TEAD3 EXO1Y
NDC80P  CCNB2'  IGHV2-26 AURKA?  GLIS1 FOXM1"
SKA3® AURKA?  IGHV1-24 CCNB2Y HLA-DRA NEK2Y
CCNA2®  FOXM1' IGHV1-69D FOXM1'  GLIS2 STAT1®
AURKA?  NEK2' IGHV3-43 NEK2Y KIT CDCASP
BUB1Y NDC80P  IGHV5-51 NDC80"  E2F1 CENPEP
BUB1B'  ZWINT'  IGHV6-1 ZWINT'  CHEK1 NDC80*
CDCAS"  CDCAS?  OIP5 CDCA5$  PLCB1 BRCA1®
CCNB1®  CENPE’  IGKV1-27 CENPEP CDK1* CDCAS5P
CDC20°  BUBIB'  IGKV1-8 BUB1B'  CTBP2 KIF11
$GO1° SPC25"  IGKV1-6 SPC25" CDKN1A KIF2C!
AURKB  TPX2' CENPM TPX2Y CCR5 CENPF
CDC25C  KIF2CY CKS2 KIF2C! MET CCNB1
CENPEP  BUB1Y PTTG1 BUB1Y VEGFA TPX2Y
CDCA8"  CENPA®  SKA3® CENPA®  EGF CDC20°

The symbol code designates the presence of the highlighted genes in more than
two columns— a indicates presence in five columns, ff indicates presence in four
columns, y indicates presence in three columns, and § indicates presence in two
columns.
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enrichment analyses implicated these genes in several cell-cycle related
processes (Supplementary II-9).

CDK1, a serine-threonine kinase and part of the M phase-promoting
factor, plays a pivotal role in the cell cycle, particularly at the G1-S and
G2-M checkpoints. It is instrumental in the IFN type I induced phos-
phorylation of STAT-1 and elevating ISG expression, a process central to
SLE prognosis and inflammation (Wu, 2016). Inhibition of CDK1 has
been linked to reduced expression of pro-inflammatory genes (Mehl,
2022). TPX2, a key protein in mitotic spindle development and function,
is associated with increased expression of pro-inflammatory cytokines.
Studies in CRS-affected mice suggest that silencing TPX2 diminishes
inflammation, indicated by changes in GSK3p, IL-10, TNF-a, IL-6, and IL-
8 levels (Gu et al., 2020). BIRC5 which encodes the protein survivin,
significant for immune system maintenance, shows enrichment in leu-
kocytes accumulated in inflamed tissues, a common feature in autoim-
mune disorders. It particularly affects the activity threshold of cytotoxic
T lymphocytes against other survivin-expressing cells (Pahlavan, 2019).
In rheumatoid arthritis, BUB1 is associated with abnormal cell prolif-
eration, migration, invasion, PI3K/Akt pathway disruption, and pro-
inflammatory cytokine release (He, 2023). AURKA, found in psoriasis
patients, promotes inflammation by impeding autophagy-mediated
AIM2 inflammasome suppression and activating the Akt/mTOR
pathway. It has also been linked to increased TNF- a expression in gastric
mucosa of mice with gastrointestinal cancer (Tang, 2021). KIF2C, cod-
ing for Mitotic centromere-associated kinesin, influences cell motility
and migration by affecting the actin-MT cytoskeleton and FA turnover
(Moon, 2021). BUBI1B, linked to exhausted T-cell signature and in-
flammatory CD8" cells, has been shown to reduce invasion and prolif-
eration in RCC cell lines upon knockdown (Sekino, 2021). PLK1,
increases the activity of the NLRP3 inflammasome, a critical component
in SLE pathophysiology. It affects the microtubule-organizing centre
architecture and activation of NLRP3 causes cell damage and death in
lupus nephritis (Baldrighi, 2023). CDCAS8, essential for mitosis and
chromosome segregation, has shown a significant correlation with
tumor purity and immune cell infiltration levels in a study (Wan, 2022).
CDCAS5, AURKB, CCNB1, and FOXM1, enriched in the transcriptomes of
SLE patients, correlate with autoantibody titers (Mikhail, 2022). NDC80
and its constituent SPC25, were linked to increased levels of pro-
inflammatory cytokines and chemokines in RA and are involved in
regulating cell proliferation through the PK/AKT/Notchl signaling
pathway (Luo, 2023). CENPE, an autoantigen in systemic sclerosis, has
been found to trigger the formation of specific autoantibodies (Rattner,
1996). ZWINT, significant for kinetochore and mitotic checkpoint
function, is implicated in enhanced CD8" T cell infiltration (wang, s.,
et al., ZWINT is a cancer prognosis and immune infiltration-related
biomarker from pan-cancer analysis., et al., 2023). NEK2 over-
expression affects IL-22 mediated inflammation and cytokine produc-
tion in psoriasis patients (Peng, 2023). KIF20A and DLGAPS5, correlated
with elevated pro-inflammatory cytokines in RA, along with CDC20, a
hub gene in the disease, are integral to inflammatory processes (Luo,
2023). CCNB2, positively correlated with various immune cells, plays a
role in immune infiltration (Zou, 2020). NUSAP1, causing aberrant
mitosis, is positively correlated with inflammatory gene expression (Mo,
2023). UBE2C is associated with regulating the expression of several
immunological checkpoints including chemokines (Yu, 2022). CENPF
expression is closely tied with CD8" T cell immunological infiltration
(Li, 2022). Exol, KIF11, and TOP2A, enriched in SLE and other auto-
immune conditions, are critical in the disease’s pathology (Sun, 2015).

Since most of the hub genes were associated with cell-cycle func-
tions, a single-sample Gene Set Enrichment Analysis (ssGSEA) of 16 gene
sets related to cell-cycle processes and diseases (Supplementary I1-10)
obtained from the GSEA-MSigDB webserver was conducted on the
samples using the GSVA v1.52.3 and GSEABase v1.66.0 Bioconductor
packages. The ssGSEA heatmap (Fig. 6) revealed that these 16 gene sets
are up-regulated in SLE-active patients compared to healthy controls.
This upregulation of cell-cycle-related gene sets suggests that the hub
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Fig. 6. Single sample gene set enrichment analysis (ssgsea) of cell cycle related gene sets on the samples.

genes involved in cell-cycle functions likely play a significant role in SLE
pathology. Therefore, these hub genes are proposed as potential bio-
markers and therapeutic targets for further investigation in SLE.

4. Discussion

Our study identified 931 genes with differential expression between
control and diseased samples, including 577 upregulated and 354
downregulated genes (Supplementary I). To elucidate the biological
significance of these DEGs, we utilized the ToppGene Suite server. The
analysis revealed that the upregulated genes predominantly belong to
immune-related gene families, such as immunoglobulins, C-type lectin
domain family, and kinesins, among others (Supplementary II-1). These
genes are crucial in various immune responses, including toll-like re-
ceptor binding and cytokine production, as indicated by Gene Ontology
(GO) enrichment analysis (Fig. 2). Pathway enrichment analysis further
underscored their involvement in pathways such as FCGR3A-mediated
IL-10 synthesis, B cell receptor activation, and several cell cycle-
related pathways (Supplementary 1I-3). Conversely, the down-
regulated genes are associated with gene families including keratins,
type II collagens, fibronectin type III domain-containing proteins, re-
ceptor tyrosine kinases, FERM domain-containing proteins, low-density
lipoprotein receptors, and fibulins (Supplementary 1I-1). These down-
regulated genes are linked to signaling pathways such as G protein-
coupled receptors and Wnt signaling (Fig. 4). Pathways related to the
matrisome, basement membrane, and collagen were particularly
enriched for the downregulated genes in pathway enrichment analysis
(Supplementary II-3).

Our investigation also identified several motifs in the promoter re-
gions of both downregulated and upregulated genes. Downregulated
genes exhibited motifs for transcription factors involved in T- cell acti-
vation (MyoG), T-cell differentiation (LRF, GATA1), regulation of T-cell
development (ASCL1), transcriptional activation, TNF signalling and
maturation of immune cells (EGR1), B and T-cell development (E2A)
and cell cytotoxicity (NFAT). Notably, GATA1l is linked to

transcriptional regulation of dendritic cell development and lineage
separation of dendritic cells and macrophages (Gutiérrez, 2007). In
contrast, upregulated genes had motifs for IRF1, IRF3, and IRF4 (im-
mune regulatory transcription factors), as well as T1ISRE and ISRE.
These motifs are associated with increased type 1 interferon production
and expression. The binding of IRFs to ISRE motifs in the promoter re-
gions of cytokine genes results in heightened type 1 interferon produc-
tion and continuous exposure to IFNa in SLE patients. This may lead to
alterations in mitochondrial metabolism of CD8™ T cells, contributing to
their apoptosis (Buang, 2021).

The analyses of two biological networks namely the String PPI and
Reactome FI networks, identified 29 important genes. Among these, 10
genes—CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA, KIF2C,
PLK1, and CDCA8—were found to be enriched in both networks. These
common hub genes play significant roles in the abnormalities observed
in CD8" T cells in SLE.

CDK1 facilitates the phosphorylation of STAT-1, upregulates ISG
expression and enhances type 1 IFN signalling, which has been linked to
accelerated disease activity in SLE patients (Wu, 2016). TPX2 was
associated with increased production of pro-inflammatory cytokines and
could thus be contributing to the exaggerated inflammation seen in SLE
patients (Gu et al., 2020). BIRC5 was associated with CD8" T cell pro-
duction, innate and adaptive immune responses and increased accu-
mulation of defective CD8" T cells in tissues. Moreover, cytotoxic T
lymphocytes expressing this gene were found to have a lowered activity
threshold against survivin expressing cells, implying that these cytotoxic
T cells became increasingly active and attacked healthy cells expressing
survivin, leading to autoimmune-like conditions (Pahlavan, 2019).

Pathways such as E2F targets, interferon alpha response, G2M
checkpoint, IL6-JAK-STAT signalling, interferon gamma response, and
inflammatory response were all regulated by CCNA2, which also in-
creases CD8" T cell invasiveness (Jiang, 2022). BUBI facilitates cyto-
kine release, regulates the PI3K/Akt signaling pathway associated with
autoimmune development, and enhances tissue infiltration (He, 2023).
AURKA promotes inflammation, activates the Akt/mTOR and is
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associated with increased TNF-a expression which may have an impact
on inflammation, CD8" T cell apoptosis, and the production of auto-
antigens (Tang, 2021). KIF2C enrichment suggests a potential dysregu-
lation of motility and migratory functions of the CD8" T cells (Moon,
2021). BUBIB is linked to exhausted T cell signature, inflammatory
CD8* and IFN-gamma signature, cell proliferation and invasion (Sekino,
2021). The activation of the NLRP3 inflammasome is crucial in auto-
immune development by triggering the production of pro-inflammatory
cytokines and inducing pyroptosis through GSMD. PLK1 enriched in our
study is a major player in NLRP3 inflammasome activation suggesting a
central role of this gene in SLE pathogenesis (Baldrighi, 2023). Finally,
CDCAS8 may be involved in determining the immunological environment
linked to SLE pathology because of the positive correlation found be-
tween CDCAS8 expression and immune cell infiltration in SLE, including
B cells, CD8" T cells, CD4™ T cells, and macrophages (Wan, 2022).

Our study aligns with the previously established role of CD8™ T cell
in the clinical manifestation of SLE which indicated that these cells
exhibit improper cytotoxic activity, increased infiltration in the sites of
tissue damage and increased cytokine production (Chen and Tsokos,
2021). Although this aspect of the disease had been previously explored,
the specific genes responsible for these abnormalities were not well
understood. In this study, we utilised computational methods to inves-
tigate the genes underlying these aberrations by analysing the RNA
transcriptome from SLE patients. We identified genes such as CDKI1,
TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA, KIF2C, PLK1 and CDCA8
as biomarkers of dysfunctional CD8" T cells in SLE patients. These genes
may serve as potential therapeutic targets and warrant further investi-
gation to elucidate their roles more comprehensively.

5. Conclusion

SLE represents a highly complex multigenic disorder characterized
by its multifaceted nature and the diverse array of factors influencing its
symptomatology. Despite extensive research, the precise mechanisms
underlying its pathophysiology remain elusive. Our study leveraged
bioinformatics tools to pinpoint genes potentially instrumental in the
aberrant functioning of CD8" T cells in SLE patients. We identified ten
key genes — CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA,
KIF2C, and PLK1, along with CDCA8 — as critical in this context.
Although these genes are primarily recognized for their roles in cell
cycle regulation, our analysis suggests they may also have a broader
impact. Their dysregulation could influence immune responses, poten-
tially contributing to the autoimmune-like conditions observed in SLE
and similar disorders. Importantly, some of these genes have been
implicated in other autoimmune diseases, indicating their potential as
biomarkers for SLE. However, to fully understand their relevance and
mechanism in SLE pathology, further targeted studies are necessary.
This research represents a significant step toward unraveling the genetic
underpinnings of SLE, and could guide future diagnostic and therapeutic
strategies.
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