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A B S T R A C T

Introduction: Systemic Lupus Erythematosus (SLE) is a complex, multisystem autoimmune disorder characterized 
by extensive inflammation that affects nearly all organ systems in the body. It is primarily mediated by auto- 
antibodies and immune complexes, and it predominantly affects women more than men. This study employs 
an in-silico approach to identify key genes potentially involved in the pathogenesis of SLE.
Objectives: To identify key genes potentially involved in SLE pathogenesis using in-silico approach.
Methods: High-throughput sequencing dataset GSE97264, from the Gene Expression Omnibus (GEO) database, 
which contains RNA transcriptome data from CD8+ T-cells of 18 SLE patients and 14 healthy controls was 
utilized for the analysis. Differentially expressed genes (DEGs) were identified using the Bioconductor DESeq2 
package in R platform. Gene Ontology (GO) and pathway enrichment analyses were performed using the Top
pGene suite. Motif analysis of the genes’ promoter regions was conducted using HOMER software. Protein- 
protein interaction (PPI) and Reactome functional interaction (FI) networks were created using Cytoscape plu
gins StringApp and ReactomeFIViz, and analysed to identify hub genes.
Results: Our analysis identified 931 DEGs, with 577 upregulated and 354 downregulated. GO and pathway 
enrichment analyses indicated that upregulated genes were associated with immune responses, including cyto
kine production and receptor activation. Motif analysis identified key regulatory motifs linked to immune 
regulation in upregulated genes and T-cell activation in downregulated genes. PPI and FI networks analyses 
revealed 29 cell cycle-associated hub genes, with 10 genes—CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, 
AURKA, KIF2C, PLK1, and CDCA8—common to both biological networks, suggesting their crucial role in SLE 
pathogenesis.
Conclusion: This study suggests that dysregulation of the identified 10 genes may impact immune responses and 
contribute to the autoimmune-like conditions observed in SLE. Several of these genes are also implicated in other 
autoimmune diseases, highlighting their potential as SLE biomarkers. Despite their known roles in other 
immune-related diseases involving CD8+ T cells, their direct association with SLE had not been previously 
established. This novel finding underscores the potential of these genes as therapeutic targets and may contribute 
to the development of diagnostic tools.

1. Introduction

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune dis
ease characterized by the immune system’s attack on its own tissues, 
which can affect both sexes. This leads to inflammation and, in some 
cases, permanent tissue damage affecting various body parts including 
the skin, joints, heart, lungs, kidneys, and brain (Cojocaru, 2011). The 

exact causes of SLE remain largely unknown; however, scientists have 
identified several potential triggers, such as genetic, environmental, and 
inflammatory factors (Robinson et al., 2021). It is postulated that an 
impairment in the normal clearance of apoptotic and necrotic cells may 
result in immune system dysregulation, whereby the immune system is 
misled into fighting itself, leading to SLE (Robinson et al., 2021). The 
course of disease progression is not linear, often characterized by relapse 
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and remission phases, leading to considerable variability among pa
tients, which presents significant difficulties in diagnosis and thera
peutic interventions (Cojocaru, 2011).

The pathophysiology of SLE is mediated by autoantibodies and im
mune complexes. A deficiency in complement proteins (C1, C2, C3, C4) 
impairs the efficient removal of apoptotic cells by macrophages, 
resulting in the exposure of nuclear material and internal proteins (an
tigens). These antigens are captured by Antigen-Presenting Cells (APCs) 
and presented to naive T-helper cells, triggering their activation and 
differentiation. In SLE, IL-4 secretion favors T-helper 2 cell maturation, 
which in turn promotes antibody-mediated immune responses. Auto
antibody production, particularly anti-nuclear antibodies (ANA) and 
anti-double-stranded DNA (anti-dsDNA) antibodies, is attributed to 
activated B-cells that evolve into plasma cells, which remember the 
antigen and secrete more autoantibodies. (Robinson et al., 2021).

When autoantibodies bind to nuclear proteins, they trigger inflam
mation through various mechanisms. Immune complexes may deposit 
on organs or bind to Fc receptors on immune cells, leading to comple
ment activation and the release of pro-inflammatory cytokines like in
terferons and TNF-alpha (Robinson et al., 2021). After surrounding 
immune cells become sensitized to the antigens, they release cytokines 
upon recognizing the nuclear antigen through the TOLL-like receptor, 
exacerbating the inflammatory response and further damaging nearby 
cells. The inflammation eventually subsides due to the immune system’s 
innate regulation (Robinson et al., 2021).

CD8+ cytotoxic T cells, part of the host defence mechanism, are 
activated by APCs presenting antigens via MHC-I molecule. Several 
studies have reported varied functions of CD8+ cells in SLE. In SLE pa
tients, systemic CD8+ T cells demonstrate diminished effector functions 
and cytolytic activity, which compromises their ability to efficiently 
clear infections and autoreactive B-cells. These cells also demonstrate 
increased infiltration capacity, especially in the kidneys, contributing to 
organ damage (Chen and Tsokos, 2021). Despite various assumptions 
about the role of CD8+ T cells in SLE, the precise scenario remains un
clear, warranting further exploration.

In this study, we have utilised the dataset from Buang et al., depos
ited in the Gene Expression Omnibus Database, containing mRNA 
samples from blood CD8+ T cells of SLE patients and healthy controls 
(Buang, 2021). We identified Differentially Expressed Genes (DEGs) 
between the SLE and control samples using the DESeq tool and cate
gorized the upregulated and downregulated genes. To understand the 
functional and biological significance of these genes, we performed 
Gene Ontology (GO), Gene Family, and Reactome Pathway Enrichment 
analysis using the ToppGene Suite server. We also built a Reactome 
Functional Interactome Network and a STRING protein–protein inter
action (PPI) network to identify hub genes in both networks. This study 
aims to unveil previously unexplored pathogenic genes, enhancing un
derstanding of SLE’s genetic-environmental interplay, aiding in diag
nosis and treatment.

2. Methods and Materials

2.1. Rna-seq data from SLE patients and healthy controls

The raw data for this study were sourced from the RNA tran
scriptome deposited by Buang et al., (Buang, 2021) in the Gene 
Expression Omnibus (GEO) database under the entry GSE97264. The 
transcriptome was obtained from the blood CD8+ T cells of SLE patients 
and healthy controls. The study included 16 SLE patients with active 
disease, 18 with less active disease, and 14 healthy controls. The British 
Isles Lupus Assessment Group (BILAG) and Systemic Lupus Erythema
tosus Disease Activity Index (SLEDAI score) were used to classify the 
patients. For this study, we selected data from patients with active SLE 
and healthy controls from the GSE97264 dataset.

2.2. Differential Gene expression analysis

The differential gene expression (DGE) analysis was conducted using 
DESeq2, a Bioconductor package, in R platform. Initially the count data 
was converted into “DESeqDataSet” object using the function ‘DESeq
DataSetFromMatrix’ from DESeq2 package v 1.40.2. Then the DGE 
analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) dis
tribution was performed using the ‘DESeq’ function. The function fol
lowed a default workflow of estimating size factors, estimating 
dispersions, fitting model and testing (replacing outliers and refitting 
genes). The Wald test was employed to evaluate the significance of 
DEGs. The resulting p-values were then adjusted for multiple testing 
using the Benjamini-Hochberg (BH) method to control for the false 
discovery rate (FDR). Finally, the genes that have log2FC > |1| and padj 
(FDR) < 0.05 were considered as DEGs.

2.3. Gene Ontology and pathway enrichment analyses

GO functional and pathway analyses was performed using the Top
pGene Suite server. GO analyses (biological process, molecular function, 
cellular component), gene family, and pathway enrichment analyses 
were executed using the ToppFun function. The probability distribution 
function was selected for the p-value method, and a cut-off criterion of 
Gene count < 2 and FDR B&H q value < 0.05 was applied in the Top
pFun function for these analyses (Premanand and Reena Rajkumari, 
2023).

2.4. Motif analysis

The Homer v4.11 software was used to identify gene-based motifs in 
the promoter regions of the DEGs. For this study, the promoter regions 
were defined as 2,000 bp upstream and 200 bp downstream of the 
transcriptional start sites based on RefSeq genes (Hg38)). Motifs with a 
maximum length of 12 bases were probed, with a Benjamini-Hochberg- 
corrected p-value threshold of < 0.05 (Premanand and Reena Rajku
mari, 2023).

2.5. STRING protein–protein network analysis

The STRING database was used to construct the PPI network for the 
identified DEGs. The Cytoscape plugin stringApp v2.0.1 was employed 
to generate the PPI interaction network, setting the highest confidence 
interaction score at 0.900 to refine the network (Premanand and Reena 
Rajkumari, 2023).

2.6. Reactome functional interaction network analysis

ReactomeFIViz v8.0.6, a Cytoscape tool, was used to create networks 
using the Reactome functional interaction (FI) network. The tool utilizes 
Reactome, a biological pathway database, to derive interaction infor
mation. The FI network for our DEGs was built using the 2022 version of 
the Reactome FI network (Premanand and Reena Rajkumari, 2023).

2.7. Network analysis and hub gene identification

Hub genes in the PPI and FI networks were identified using the 
Cytohubba v0.1 plugin. They were ranked according to six topological 
centralities and algorithms, including Maximal Clique Centrality (MCC), 
Maximum Neighbourhood Component (MNC), Density of Maximum 
Neighbourhood Component (DMNC), Degree, Closeness, and Between
ness (Premanand and Reena Rajkumari, 2023).
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3. Results

3.1. Identification of DEGs in SLE CD8+ T cells

The DGE analysis identified 931 genes as DEGs with, 354 genes 
downregulated and 577 upregulated in CD8+ T cells from active SLE 
patients compared to healthy controls (Supplementary I). The top 10 
upregulated and downregulated genes are shown in Fig. 1. Additionally, 
the DEGs identified in our analysis are statistically depicted using a 
volcano plot in Fig. 1.

3.2. Gene Ontology and pathway enrichment analyses

Gene family enrichment analysis revealed that the upregulated DEGs 
are associated with immunoglobulins and CD molecules, while down- 
regulated DEGs are linked to keratins, collagens, fibronectin 
(Supplementary II-1). GO functional enrichment analysis (Fig. 2, Sup
plementary II-2) showed distinct profiles for DEGs in SLE. Upregulated 
genes were predominantly associated with inflammation-related GO 
terms across three categories: molecular function (MF), biological pro
cess (BP), and cellular component (CC). Specifically, the enriched GO 
MF terms included antigen binding and toll-like receptor binding. In the 
CC category, terms like IgA and IgG immunoglobulin complexes were 
prominent. Meanwhile, BP terms highlighted were adaptive immune 
response, chronic inflammatory response, cytokine production, innate 
immune response, interferon-mediated signaling pathway, and leuko
cyte migration involved in the inflammatory response (Fig. 2, Supple
mentary II-2). These terms collectively suggest heightened 
inflammatory activity consistent with the clinical manifestations typi
cally observed in SLE (Gottschalk et al., 2015).

Conversely, downregulated genes were enriched with GO MF terms 
such as oxidoreductase activity, and BP terms like G protein-coupled 
receptor signaling pathway, Wnt signaling pathway, and cell–cell 
signaling by Wnt (Fig. 2, Supplementary II-2). The enrichment of these 
GO terms for downregulated DEGs reflects disrupted immune responses 
characterized by altered chemotaxis, impaired adhesion, and modified 
CD8+ T cell function, a known feature of SLE pathology (Gottschalk 
et al., 2015).

Pathway enrichment analysis enriched Reactome pathways such as 
FCGR3A mediated IL-10 synthesis, activation of B cell receptor, and 
several cell cycle associated pathways for upregulated DEGs. On the 

other hand, pathways related to matrisome, basement membrane and 
collagen were enriched for the downregulated DEGs (Supplementary II- 
3).

3.3. Motif analysis of dysregulated genes in SLE

The motif enrichment analysis on the promoter regions of DEGs 
provided insights on the potential transcription factors that might play a 
significant role in SLE pathogenesis (Fig. 3, Supplementary II-4&5). 
Downregulated genes had motifs for transcription factors such as MyoG, 
ASCL1, LRF, Gata1, EGR1, E2A, and NFAT (Fig. 3). MyoG, a basic helix- 
loop-helix (bHLH) family member, is involved in MEF2′s immune 
response in T lymphocytes (Maglott, 2007). ASCL1, also a bHLH factor, 
plays a role in T-cell development and the Wnt/β-catenin pathway 
(Johansson et al., 2009). LRF, a Kruppel family member, is crucial for T 
cell differentiation (Carpenter, 2012), while GATA1, a zinc finger 
transcription factor, is linked with T-cell differentiation (Sundrud, 
2005). EGR1, another zinc finger transcription factor, activates macro
phage transcription and is associated with immune response genes, 
including Tumor Necrosis Factor (Woodson and Kehn-Hall, 2022). E2A, 
a bHLH member, is essential for early B and T cell development (Wan, 
2022). NFAT, a redox-dependent factor, affects CD8+ T cell cytotoxicity 
and metabolism (Klein-Hessling, 2017). The enrichment of these tran
scription factor motifs in the down-regulated genes suggests immune 
system aberration in SLE.

Upregulated genes were enriched with motifs for IRF4, T1SRE, E2F7, 
E2F3, E2F1, IRF1, ISRE, IRF3, and IRF2 (Fig. 3). The Interferon Regu
latory Factor family members (IRF1, IRF2, IRF3, and IRF4) were notably 
enriched, suggesting their involvement in SLE’s pro-inflammatory pro
cesses (Matta, 2017). IRF1 is involved in pro-inflammatory transcrip
tion, characteristic of SLE pathology (Matta, 2017), while IRF2 responds 
to persistent IFN signaling, leading to CD8+ T cell exhaustion (Lukhele, 
2022). IRF3 activation is associated with increased type I interferon 
expression in dendritic cells (Santana-de Anda, 2014), and IRF4 over
expression is linked to CD8+ T cell exhaustion (Man, 2017). The pres
ence of T1ISRE hints at increased type 1 interferon gene expression. 
E2F1′s role in T cell apoptosis and its association with T cell cycle pro
gression (Cao, 2004), alongside E2F7 and E2F3′s links to CD8+ T cell 
infiltration, further reveal SLE’s complex cellular mechanisms (Wang, 
2018). ISRE motifs in cytokine genes contribute to heightened type 1 
interferon production, reflecting altered mitochondrial state of CD8+ T 

Fig. 1. Volcano plot depicting the distribution of the DEGs identified in the SLE samples with the cut-off values log2FC>|1| and q-value < 0.05 and top 10 Up- 
Regulated and Down-Regulated DEGs Identified in the Study.
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cells in SLE patients (Buang, 2021).

3.4. Construction and investigation of STRING protein–protein 
interaction network for the identification of hub genes

The primary PPI network, after discarding the disconnected nodes, 
constructed by the StringApp had 249 nodes (215 upregulated genes, 26 

downregulated genes, and 8 linker genes) and 1478 edges (Fig. 4). To
pological analysis revealed a clustering coefficient of 0.531, network 
diameter of 12, network density of 0.048, characteristic path length of 
4.302, and an average of 11.871 neighbors per node. The nodes were 
further subjected to functional enrichment analysis by utilizing the 
STRING plugin available within the StringApp. This analysis enriched 
pathway terms related to cell cycle checkpoints, interferon alpha/beta 

Fig. 2. Gene Ontology analysis result of DEGs (FDR<0.05) using ToppGene Suite.

Fig. 3. Motif enrichment analysis result.
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Fig. 4. Protein-Protein interaction network built using stringApp The circles are designated for the genes (nodes) while the lines represent the edges. The down
regulated genes are represented using the red nodes while the upregulated genes are represented using the green nodes. Linker genes have been represented using 
blue nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Top 20 hub genes determined using various topological methods and centrality measures in the String’s protein–protein interaction network.

Topological Algorithms Centralities

MCC MNC DMNC DEGREE BETWEENNESS CLOSENESS

CDK1α CDK1α PBK CDK1α FN1 CDK1α

KIF11β CCNA2α NEK2 CCNA2α AURKAγ CCNA2α

BUB1β CCNB1β AURKAγ CCNB1β BRCA1 CCNB1β

KIF20Aβ CDC20β MKI67 CDC20β STAT1 BUB1Bα

TOP2Aβ BUB1β PTTG1 BUB1β CXCL10 CDC20β

KIF2Cβ BUB1Bα TTKδ KIF11β ISG15 BUB1β

BUB1Bα KIF11β CEP55δ BUB1Bα PCNA KIF11β

CCNB1β KIF20Aβ CENPE KIF20Aβ LCN2 TOP2Aβ

DLGAP5β TOP2Aβ NUSAP1β TOP2Aβ EGF KIF20Aβ

CDC20β DLGAP5β NCAPG DLGAP5β IL10 DLGAP5β

CDCA8α KIF2Cβ PRC1 KIF2Cβ CCNA2α PLK1γ

UBE2Cβ CENPFα CDCA8α CENPFα CDK1α TPX2β

TPX2β CCNB2β ASPMδ CCNB2β LTF CCNB2β

CENPFα TPX2β MELKδ TPX2β CENPA UBE2Cβ

CCNA2α CDCA8α KIF15 PLK1γ ITGA2B AURKAγ

CEP55δ AURKBγ BIRC5β CDCA8α BUB1Bα KIF2Cβ

MELKδ PLK1γ CENPFα BIRC5β TYMS CENPFα

NUSAP1β BIRC5β CDCA3 AURKBγ RAD51 AURKBγ

TTKδ NUSAP1β GBP4 NUSAP1β CD40LG CDCA8α

CCNB2β UBE2Cβ UBE2Cβ ASPMδ MMP9 BIRC5β

The symbol code designates the presence of the highlighted genes in more than two columns— α indicates presence in five columns, β indicates presence in four 
columns, γ indicates presence in three columns, and δ indicates presence in two columns.
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signaling, cytokine signaling, IL-24 signaling and type II interferon 
signaling (Supplementary II-6). While GO analysis linked the PPI 
network genes to processes associated with cell cycle and immune sys
tem, such as apoptosis, chromosome segregation, DNA damage 

response, cytokine-mediated signaling pathway, and interleukin 27 
signaling (Supplementary II-6).

To identify central or ’hub’ genes in the PPI network, we applied four 
topological analysis methods- MCC, DMNC, MNC, and Degree − along 

Fig. 5. Reactome functional interaction network created using ReactomeFIViz The circles are designated for the genes (nodes) while the lines represent the edges. 
The downregulated genes are represented using the red nodes while the upregulated genes are represented using the green nodes. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
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with two measures of centrality, Closeness and Betweenness 
(Premanand and Reena Rajkumari, 2023). The top 20 hub nodes (genes) 
identified for each category in the PPI network are listed in Table 1. 
Genes appearing in at least three of the categories are considered sig
nificant and they are CDK1, KIF11, BUB1, KIF20A, TOP2A, KIF2C, 
BUB1B, CCNB1, DLGAP5, CDC20, CDCA8, UBE2C, TPX2, CENPF, 
CCNA2, NUSAP1, CCNB2 and BIRC5.

3.5. Construction and investigation of Reactome functional interaction 
network for the Identification of hub genes

The primary FI network, after discarding the disconnected nodes, 
generated using the ReactimeFIViz tool comprised of 361 nodes (278 up- 
regulated and 83 downregulated genes) and 4081 edges (Fig. 5). To
pological analysis of this FI network revealed an average node count of 
22.609, a network diameter of 14, a characteristic path length of 3.958, 
a clustering coefficient of 0.481, and an average network density of 
0.0653 neighbors. Pathway enrichment and Gene Ontology biological 
process analyses were conducted using the inbuilt network function 
plugin in ReactomeFIViz. This analysis highlighted terms predominantly 
related to the cell cycle, such as mitotic cell cycle, cell division, chro
mosome segregation, cell cycle checkpoint, mitotic prometaphase and 
G1/S transition (Supplementary II-7).

Similar to the PPI network, the top 20 hub nodes (genes) for each 
category in the FI network were identified using four topological anal
ysis methods and two centralities. These hub nodes are detailed in 
Table 2. Genes appearing in at least three of the categories are consid
ered significant and they are CDK1, CCNA2, AURKA, CDCA5, NDC80, 
CDCA8, CENPE, ZWINT, CCNB2, SPC25, BUB1, BUB1B, PLK1, EXO1, 
FOXM1, NEK2, TPX2, KIF2C and BIRC5.

3.6. Prospective genetic markers of SLE pathology

A total of 29 hub genes were identified from the analysis of PPI and FI 
networks, (Supplementary II-8). All these hub genes were found to be 
up-regulated. Among these, 10 genes − CDK1, TPX2, BIRC5, CCNA2, 
BUB1, BUB1B, AURKA, KIF2C, PLK1 and CDCA8 were found to be hub 
genes in both networks and are thus considered to be prospective genetic 
markers of SLE pathology. GO biological process and pathway 

enrichment analyses implicated these genes in several cell-cycle related 
processes (Supplementary II-9).

CDK1, a serine-threonine kinase and part of the M phase-promoting 
factor, plays a pivotal role in the cell cycle, particularly at the G1-S and 
G2-M checkpoints. It is instrumental in the IFN type I induced phos
phorylation of STAT-1 and elevating ISG expression, a process central to 
SLE prognosis and inflammation (Wu, 2016). Inhibition of CDK1 has 
been linked to reduced expression of pro-inflammatory genes (Mehl, 
2022). TPX2, a key protein in mitotic spindle development and function, 
is associated with increased expression of pro-inflammatory cytokines. 
Studies in CRS-affected mice suggest that silencing TPX2 diminishes 
inflammation, indicated by changes in GSK3β, IL-10, TNF-α, IL-6, and IL- 
8 levels (Gu et al., 2020). BIRC5 which encodes the protein survivin, 
significant for immune system maintenance, shows enrichment in leu
kocytes accumulated in inflamed tissues, a common feature in autoim
mune disorders. It particularly affects the activity threshold of cytotoxic 
T lymphocytes against other survivin-expressing cells (Pahlavan, 2019). 
In rheumatoid arthritis, BUB1 is associated with abnormal cell prolif
eration, migration, invasion, PI3K/Akt pathway disruption, and pro- 
inflammatory cytokine release (He, 2023). AURKA, found in psoriasis 
patients, promotes inflammation by impeding autophagy-mediated 
AIM2 inflammasome suppression and activating the Akt/mTOR 
pathway. It has also been linked to increased TNF- α expression in gastric 
mucosa of mice with gastrointestinal cancer (Tang, 2021). KIF2C, cod
ing for Mitotic centromere-associated kinesin, influences cell motility 
and migration by affecting the actin-MT cytoskeleton and FA turnover 
(Moon, 2021). BUB1B, linked to exhausted T-cell signature and in
flammatory CD8+ cells, has been shown to reduce invasion and prolif
eration in RCC cell lines upon knockdown (Sekino, 2021). PLK1, 
increases the activity of the NLRP3 inflammasome, a critical component 
in SLE pathophysiology. It affects the microtubule-organizing centre 
architecture and activation of NLRP3 causes cell damage and death in 
lupus nephritis (Baldrighi, 2023). CDCA8, essential for mitosis and 
chromosome segregation, has shown a significant correlation with 
tumor purity and immune cell infiltration levels in a study (Wan, 2022). 
CDCA5, AURKB, CCNB1, and FOXM1, enriched in the transcriptomes of 
SLE patients, correlate with autoantibody titers (Mikhail, 2022). NDC80 
and its constituent SPC25, were linked to increased levels of pro- 
inflammatory cytokines and chemokines in RA and are involved in 
regulating cell proliferation through the PK/AKT/Notch1 signaling 
pathway (Luo, 2023). CENPE, an autoantigen in systemic sclerosis, has 
been found to trigger the formation of specific autoantibodies (Rattner, 
1996). ZWINT, significant for kinetochore and mitotic checkpoint 
function, is implicated in enhanced CD8+ T cell infiltration (wang, s., 
et al., ZWINT is a cancer prognosis and immune infiltration-related 
biomarker from pan-cancer analysis., et al., 2023). NEK2 over
expression affects IL-22 mediated inflammation and cytokine produc
tion in psoriasis patients (Peng, 2023). KIF20A and DLGAP5, correlated 
with elevated pro-inflammatory cytokines in RA, along with CDC20, a 
hub gene in the disease, are integral to inflammatory processes (Luo, 
2023). CCNB2, positively correlated with various immune cells, plays a 
role in immune infiltration (Zou, 2020). NUSAP1, causing aberrant 
mitosis, is positively correlated with inflammatory gene expression (Mo, 
2023). UBE2C is associated with regulating the expression of several 
immunological checkpoints including chemokines (Yu, 2022). CENPF 
expression is closely tied with CD8+ T cell immunological infiltration 
(Li, 2022). Exo1, KIF11, and TOP2A, enriched in SLE and other auto
immune conditions, are critical in the disease’s pathology (Sun, 2015).

Since most of the hub genes were associated with cell-cycle func
tions, a single-sample Gene Set Enrichment Analysis (ssGSEA) of 16 gene 
sets related to cell-cycle processes and diseases (Supplementary II-10) 
obtained from the GSEA-MSigDB webserver was conducted on the 
samples using the GSVA v1.52.3 and GSEABase v1.66.0 Bioconductor 
packages. The ssGSEA heatmap (Fig. 6) revealed that these 16 gene sets 
are up-regulated in SLE-active patients compared to healthy controls. 
This upregulation of cell-cycle-related gene sets suggests that the hub 

Table 2 
Top 20 hub genes determined using various topological methods and centrality 
measures with in the Reactome’s functional interaction network.

Topological Algorithms Centralities

MCC MNC DMNC DEGREE BETWEENESS CLOSENESS

ZWINTγ CDK1α SGO1δ CDK1α STAT1δ CDK1α

CDK1α CCNA2β SPC24 CCNA2β BRCA1δ CCNA2β

CCNB2γ PLK1γ KNL1 PLK1γ FCGR1A PLK1γ

SKA1 CDCA8β CDCA3 CDCA8β BIRC5γ AURKAβ

SPC25γ EXO1γ CENPN EXO1γ TEAD3 EXO1γ

NDC80β CCNB2γ IGHV2-26 AURKAβ GLIS1 FOXM1γ

SKA3δ AURKAβ IGHV1-24 CCNB2γ HLA-DRA NEK2γ

CCNA2β FOXM1γ IGHV1-69D FOXM1γ GLIS2 STAT1δ

AURKAβ NEK2γ IGHV3-43 NEK2γ KIT CDCA8β

BUB1γ NDC80β IGHV5-51 NDC80β E2F1 CENPEβ

BUB1Bγ ZWINTγ IGHV6-1 ZWINTγ CHEK1 NDC80β

CDCA5β CDCA5β OIP5 CDCA5β PLCB1 BRCA1δ

CCNB1δ CENPEβ IGKV1-27 CENPEβ CDK1α CDCA5β

CDC20δ BUB1Bγ IGKV1-8 BUB1Bγ CTBP2 KIF11
SGO1δ SPC25γ IGKV1-6 SPC25γ CDKN1A KIF2Cγ

AURKB TPX2γ CENPM TPX2γ CCR5 CENPF
CDC25C KIF2Cγ CKS2 KIF2Cγ MET CCNB1
CENPEβ BUB1γ PTTG1 BUB1γ VEGFA TPX2γ

CDCA8β CENPAδ SKA3δ CENPAδ EGF CDC20δ

The symbol code designates the presence of the highlighted genes in more than 
two columns— α indicates presence in five columns, β indicates presence in four 
columns, γ indicates presence in three columns, and δ indicates presence in two 
columns.
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genes involved in cell-cycle functions likely play a significant role in SLE 
pathology. Therefore, these hub genes are proposed as potential bio
markers and therapeutic targets for further investigation in SLE.

4. Discussion

Our study identified 931 genes with differential expression between 
control and diseased samples, including 577 upregulated and 354 
downregulated genes (Supplementary I). To elucidate the biological 
significance of these DEGs, we utilized the ToppGene Suite server. The 
analysis revealed that the upregulated genes predominantly belong to 
immune-related gene families, such as immunoglobulins, C-type lectin 
domain family, and kinesins, among others (Supplementary II-1). These 
genes are crucial in various immune responses, including toll-like re
ceptor binding and cytokine production, as indicated by Gene Ontology 
(GO) enrichment analysis (Fig. 2). Pathway enrichment analysis further 
underscored their involvement in pathways such as FCGR3A-mediated 
IL-10 synthesis, B cell receptor activation, and several cell cycle- 
related pathways (Supplementary II-3). Conversely, the down
regulated genes are associated with gene families including keratins, 
type II collagens, fibronectin type III domain-containing proteins, re
ceptor tyrosine kinases, FERM domain-containing proteins, low-density 
lipoprotein receptors, and fibulins (Supplementary II-1). These down
regulated genes are linked to signaling pathways such as G protein- 
coupled receptors and Wnt signaling (Fig. 4). Pathways related to the 
matrisome, basement membrane, and collagen were particularly 
enriched for the downregulated genes in pathway enrichment analysis 
(Supplementary II-3).

Our investigation also identified several motifs in the promoter re
gions of both downregulated and upregulated genes. Downregulated 
genes exhibited motifs for transcription factors involved in T- cell acti
vation (MyoG), T-cell differentiation (LRF, GATA1), regulation of T-cell 
development (ASCL1), transcriptional activation, TNF signalling and 
maturation of immune cells (EGR1), B and T-cell development (E2A) 
and cell cytotoxicity (NFAT). Notably, GATA1 is linked to 

transcriptional regulation of dendritic cell development and lineage 
separation of dendritic cells and macrophages (Gutiérrez, 2007). In 
contrast, upregulated genes had motifs for IRF1, IRF3, and IRF4 (im
mune regulatory transcription factors), as well as T1ISRE and ISRE. 
These motifs are associated with increased type 1 interferon production 
and expression. The binding of IRFs to ISRE motifs in the promoter re
gions of cytokine genes results in heightened type 1 interferon produc
tion and continuous exposure to IFNα in SLE patients. This may lead to 
alterations in mitochondrial metabolism of CD8+ T cells, contributing to 
their apoptosis (Buang, 2021).

The analyses of two biological networks namely the String PPI and 
Reactome FI networks, identified 29 important genes. Among these, 10 
genes—CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA, KIF2C, 
PLK1, and CDCA8—were found to be enriched in both networks. These 
common hub genes play significant roles in the abnormalities observed 
in CD8+ T cells in SLE.

CDK1 facilitates the phosphorylation of STAT-1, upregulates ISG 
expression and enhances type 1 IFN signalling, which has been linked to 
accelerated disease activity in SLE patients (Wu, 2016). TPX2 was 
associated with increased production of pro-inflammatory cytokines and 
could thus be contributing to the exaggerated inflammation seen in SLE 
patients (Gu et al., 2020). BIRC5 was associated with CD8+ T cell pro
duction, innate and adaptive immune responses and increased accu
mulation of defective CD8+ T cells in tissues. Moreover, cytotoxic T 
lymphocytes expressing this gene were found to have a lowered activity 
threshold against survivin expressing cells, implying that these cytotoxic 
T cells became increasingly active and attacked healthy cells expressing 
survivin, leading to autoimmune-like conditions (Pahlavan, 2019).

Pathways such as E2F targets, interferon alpha response, G2M 
checkpoint, IL6-JAK-STAT signalling, interferon gamma response, and 
inflammatory response were all regulated by CCNA2, which also in
creases CD8+ T cell invasiveness (Jiang, 2022). BUB1 facilitates cyto
kine release, regulates the PI3K/Akt signaling pathway associated with 
autoimmune development, and enhances tissue infiltration (He, 2023). 
AURKA promotes inflammation, activates the Akt/mTOR and is 

Fig. 6. Single sample gene set enrichment analysis (ssgsea) of cell cycle related gene sets on the samples.
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associated with increased TNF-α expression which may have an impact 
on inflammation, CD8+ T cell apoptosis, and the production of auto
antigens (Tang, 2021). KIF2C enrichment suggests a potential dysregu
lation of motility and migratory functions of the CD8+ T cells (Moon, 
2021). BUB1B is linked to exhausted T cell signature, inflammatory 
CD8+ and IFN-gamma signature, cell proliferation and invasion (Sekino, 
2021). The activation of the NLRP3 inflammasome is crucial in auto
immune development by triggering the production of pro-inflammatory 
cytokines and inducing pyroptosis through GSMD. PLK1 enriched in our 
study is a major player in NLRP3 inflammasome activation suggesting a 
central role of this gene in SLE pathogenesis (Baldrighi, 2023). Finally, 
CDCA8 may be involved in determining the immunological environment 
linked to SLE pathology because of the positive correlation found be
tween CDCA8 expression and immune cell infiltration in SLE, including 
B cells, CD8+ T cells, CD4+ T cells, and macrophages (Wan, 2022).

Our study aligns with the previously established role of CD8+ T cell 
in the clinical manifestation of SLE which indicated that these cells 
exhibit improper cytotoxic activity, increased infiltration in the sites of 
tissue damage and increased cytokine production (Chen and Tsokos, 
2021). Although this aspect of the disease had been previously explored, 
the specific genes responsible for these abnormalities were not well 
understood. In this study, we utilised computational methods to inves
tigate the genes underlying these aberrations by analysing the RNA 
transcriptome from SLE patients. We identified genes such as CDK1, 
TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA, KIF2C, PLK1 and CDCA8 
as biomarkers of dysfunctional CD8+ T cells in SLE patients. These genes 
may serve as potential therapeutic targets and warrant further investi
gation to elucidate their roles more comprehensively.

5. Conclusion

SLE represents a highly complex multigenic disorder characterized 
by its multifaceted nature and the diverse array of factors influencing its 
symptomatology. Despite extensive research, the precise mechanisms 
underlying its pathophysiology remain elusive. Our study leveraged 
bioinformatics tools to pinpoint genes potentially instrumental in the 
aberrant functioning of CD8+ T cells in SLE patients. We identified ten 
key genes − CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA, 
KIF2C, and PLK1, along with CDCA8 − as critical in this context. 
Although these genes are primarily recognized for their roles in cell 
cycle regulation, our analysis suggests they may also have a broader 
impact. Their dysregulation could influence immune responses, poten
tially contributing to the autoimmune-like conditions observed in SLE 
and similar disorders. Importantly, some of these genes have been 
implicated in other autoimmune diseases, indicating their potential as 
biomarkers for SLE. However, to fully understand their relevance and 
mechanism in SLE pathology, further targeted studies are necessary. 
This research represents a significant step toward unraveling the genetic 
underpinnings of SLE, and could guide future diagnostic and therapeutic 
strategies.
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