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A B S T R A C T   

The article proposes a parallel computing oriented method for solving the global minimum finding problems, in 
which continuous objective functions satisfy the Hölder condition, and the control parameters domain limited by 
continuous functions is characterized by a positive Lebesgue measure. A typical example of such a task is the 
discrepancy minimizing problem between the left and right parts of some large system of equilibrium equations 
(this is a usual situation when describing real process using Markov chain). The method is based on simple 
statistical tests, thanks to which, at each iteration, growing sets of potential global minima and sets of decrements 
necessary for estimating the values of the Hölder constants are formed. The article theoretically substantiates and 
empirically proves the guaranteed convergence of the authors’ method to the real global minimum, which occurs 
at an exponential rate. For the continuous iterations number, analytical upper estimates of the spacing between 
the potential global minima and real global minima are formalized, as well as an estimate of the probability of 
overcoming this spacing is formalized. The decrements sequence approximation, estimation of a priori unknown 
Hölder constants, estimation of the average number of iterations of the method and probabilistic characteristics 
of the final solution are analytically justified. In addition to the theoretical proof, the adequacy of the authors’ 
method has been confirmed empirically. It turned out that both the quality characteristics of the initial results 
calculated by the authors’ method and the time to obtain them are practically independent of the size of the 
search area. This expected result is a significant advantage of the authors’ method over analogues.   

1. Introduction 

Optimization is the process of finding the point of the extreme value 
of a certain (target) function (Stracquadanio and Pardalos, 2019; 
McNaughton, 2023). It is one of the biggest cornerstones of applied 
mathematics, physics, engineering, economics, and industry. The scope 
of its application is vast and includes, for example, minimization of 
physical quantities at micro and macro levels, maximization of profit or 
efficiency of logistics chains, etc. Machine learning is also focused on 
optimization (Huang et al., 2022; Alexiadis, 2023): various regressions 
and neural networks try to minimize the discrepancy between predicted 
and real data. 

Optimization is an active and relevant sector of scientific research. 
This sector includes a huge number of thematic fields and their extreme 

variations. The number of optimization problem statements and their 
solution methods has been growing like mushrooms after the rain for 
decades. For example, there is a huge field of Mixed-Integer Program
ming (Alfant et al., 2023; Zhang et al., 2023), which deals with discrete 
scenarios. Nondeterministic optimization (Zhang et al., 2022; Yang 
et al., 2019), based on stochastic principles, is known. There is robust 
optimization (Fransen and Langelaar, 2023; Castelli et al., 2023), in 
which fixed parameters are taken into account. The optimization of 
dynamic systems evolving in time (Yang et al., 2023; Xie et al., 2022) is 
known. There are various meta-heuristic methods (Marulanda-Durango 
and Zuluaga-Ríos, 2023; Hirsching et al., 2022): simulated annealing 
method, genetic algorithms, and swarm evolution methods. There are 
well-known approaches to optimization using fuzzy logic (Pei et al., 
2023). 

Let’s focus on the global optimization problem of continuously 
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differentiable functions (this will allow us to narrow the area of interest 
at least a little). The analysis involves evaluating the applicants in a 
certain quality criteria metric. In this context, first of all, we will 
mention such criteria as: 

- global convergence (global convergence in optimization refers to 
the ability of an optimization algorithm to guarantee convergence to the 
global minimum or maximum of the objective function, regardless of the 
initial conditions. It ensures that the algorithm approximates the 
optimal solution across the entire search space, not just a local minimum 
or maximum. This property is crucial to avoid getting stuck in subop
timal solutions, ensuring the discovery of the best solution in the general 
case of the optimization problem); 

- speed of local convergence (the speed of local convergence in 
optimization refers to the rate at which an optimization algorithm ap
proaches the local minimum or maximum of the objective function near 
the convergence point. This characteristic determines how quickly the 
algorithm converges to the optimal solution in the vicinity of the current 
point, assessing the rate of decrease in the function value. A high speed 
of local convergence implies rapid approximation to the local optimum, 
which can be crucial for efficiently solving optimization problems); 

- the dimension of the optimization problem, the solution of which is 
aimed at the method; 

- the need to store matrices in the computer memory during the so
lution process (yes or no); 

- use of the Hesse’s matrises in the solution process (yes or no); 
- the need for scaling (yes or no) (scaling in optimization refers to the 

process of transforming variables or parameters in an optimization 
problem in such a way that they have a similar scale. This is important 
because different variables may have different orders of magnitude, 
which can hinder the convergence of optimization algorithms. Scaling 
helps balance the contribution of each variable, thereby facilitating the 
optimization process and enhancing the efficiency of converging to the 
optimal solution). 

The first two criteria are analytical, the others characterize the as
pects of the directly applied implementation of a particular method. 

Let us pay closer attention to the first two of the mentioned criteria. 
An optimization method is said to have the property of global conver
gence if its iterations converge to a local minimizer regardless of the 
initial position. The speed of local convergence shows how quickly the 
method will find the minimizer after getting into the vicinity of the 
latter. Note that these two criteria are potentially competing. The so- 
called hybrid methods (Xu et al., 2023; Wu et al., 2023) are an actual 
answer to the conflict that manifests itself in an attempt to achieve 
simultaneous compliance with both the first and second criteria. 

Now, having mentioned the main optimization method’s qualitative 
criteria, we can go directly to the methods as such (at least, to the most 
used of them). Let’s recall the most used methods of smooth uncondi
tional optimization (Ali et al., 2021; Smith and Nair, 2005): the lines 
method, the fastest descent method, the Newton method, quasi-Newton 
methods (incl, DFP, SR1, BFGS (Broyden, Fletcher, Goldfarb, Shanno) 
and its modifications: muffled, with limited memory, etc.), the nonlinear 
conjugate gradients method, the truncated Newton method. Note that 
from this list, only the fastest descent method and the truncated Newton 
method can claim (with limitations) to pass the first criterion (global 
convergence). 

Of course, there are methods for which compliance with the first 
criterion was the dominant requirement at the creation time. We will 
distinguish three classes of such methods. The methods we refer to in the 
first class are focused on the configuration of the objective function and 
the admissible solutions domain. The most striking representative of this 
class is the DC functions minimizing method (Fang et al., 2012; Montano 
et al., 2022). In the method, both the objective function and the 
constraint functions for the admissible solutions domain are represented 
as the differences between two convex functions. A complete view of the 
evolution of this class of global optimization methods can be made by 
reading the works (Fang et al., 2012; Montano et al., 2022; Shilaja et al., 
2022). Methods of the second class are focused on solving global opti
mization problems with simple configurations of admissible solutions 
regions (which have, for example, the shape of a parallelepiped) and 
objective functions characterized a priori by known Hölder constants 

Nomenclature 

q is the dimension of the vector z 
Ni is the volume of the set of stochastic vectors at the i-th iteration (Ni = Mi)

Zi =
{
z(1),…, z(Ni)

}
is a set of stochastic, uniformly distributed Zn

+, vectors z 

Yi =

{

y(1),…, y

(
Ñi

) }

is a set of admissible stochastic vectors belonging to the admissible set L (see (4)), Ñi⩽Ni 

Ñi is the volume of the set Yi 
F∗

i = min
y∈Yi

F(y) is the minimum of the objective function F on the admissible set Yi 

F(i) =
{
F∗

0, F∗
1,…, F∗

i
}

is the cumulative set of potentially global minima 
δk =

⃒
⃒F∗

k − F∗
k− 1
⃒
⃒ is the decrement of the set F(i), k = 1, i 

Δ(i) = {δ1,…, δi} is the cumulative set of decrements; wk = logδk, k = 1, i 
W(i) = {w1,…,wi} is the accumulated set of logarithms of decrements 

W̃(i)(ρ) =

{

w̃i− ρ, w̃i− ρ+1,…, w̃i

}

is the accumulated set of logarithms of decrements of smaller logγ; nk = logÑk, k = 0, i 

N(i) = {n0, n1,…, ni} is the accumulated set of logarithms of the volumes of sets 
γ is the maximum acceptable error for calculating the values of decrements 
ρ is the applied number of elements of the accumulated sequence W̃(i)(ρ)
Ĉ(i), ŝ(i) are estimates of the values of the Hölder constants (see expression (24)) 
ξj is a situation when wj⩽logγ 
r+ϕ is the upper estimate of the spacing from the current potentially optimal minimum F∗

i , obtained on the i = ϕ-th iteration of the 
method, to the real minimum F∗ (see expression (33)) 

P∗
r+ϕ 

is the lower probability estimate (34)  
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(Chen and Zheng, 2021; Sovrasov, 2016). The same class can also 
include methods focused on reducing a multidimensional optimization 
problem to a one-dimensional one using Peano curves (Sovrasov, 2016). 
However, if the Hölder constants are unknown, the application of 
second-class methods is accompanied by considerable uncertainty. 
Finally, methods belonging to the third class focus on random search and 
the formalization of intellectualized heuristics to interpret its results 
(Gorawski et al., 2021). 

We would like to separately mention Sub-gradient methods for non- 
smooth optimization (Tymchenko et al., 2019; Zaiats et al., 2019). Sub- 
gradient methods for non-smooth optimization are optimization tech
niques specifically designed to address problems where the objective 
function is not everywhere differentiable. Unlike traditional gradient 
methods applicable to smooth functions, sub-gradient methods use sub- 
gradients, a generalization of gradients, to navigate through optimiza
tion landscapes containing non-differentiable components. These 
methods are particularly useful in convex optimization scenarios 
involving functions with nonsmooth elements, such as those encoun
tered in support vector machines and lasso regression. Sub-gradient 
methods iteratively adjust the solution in the direction of the sub- 
gradient, aiming to converge to a point where the sub-gradient ap
proaches zero, indicating a potential solution to the non-smooth opti
mization problem. While they may exhibit slower convergence rates 
compared to methods for smooth optimization, sub-gradient methods 
are essential for effectively tackling problems with inherent 
nonsmoothness. 

One of the essential problems accompanying the use of stochastic 
tests in the context of solving optimization problems is the generation of 
uniformly distributed random vectors in a certain region of the search 
space. Scientists are looking for ways to effectively apply this problem 
(Bisikalo and Kharchenko, 2023; Izonin et al., 2022). In this context, we 
note Hit-and-Run-like methods, Markov chains using methods, and 
methods that take into account relative entropy. However, a universal 
method has not yet been found. 

Taking into account the strengths and weaknesses of the mentioned 
analogue methods, we will formulate the necessary attributes of scien
tific research. 

Research object is a process of solving the global minimum finding 
problems, which continuous objective functions satisfy the Hölder 
condition, and the control parameters domain limited by continuous 
functions is characterized by a positive Lebesgue measure and is limited 
by multidimensional parallelepipeds. 

Research subject includes functional analysis theory, probability 
theory and mathematical statistics, experiment planning theory, and 
computational methods. 

Research aim is to formalize the process of guaranteed solutions to 
the optimization problems outlined by the research object in the form of 
a parallel computing oriented method. 

Research objectives are: 
- formalize the parallel computing oriented method of the guaran

teed finding of the global solution of the optimization problem with the 
objective function and restrictions imposed by algorithmically calcu
lated continuous functions that satisfy the Hölder condition (with a 
priori unknown values of the corresponding constants); 

- formalize the process of generating sets of potentially global 
extrema as the results of simple statistical tests (as a basic element of 
each iteration of the method); 

- formalize the probabilistic characteristics of the approximate so
lution, which is the result of the implementation of a finite number of 
iterations of the authors’ method; 

- justify the adequacy of the proposed mathematical apparatus and 
demonstrate its functionality with an example. 

Main contribution. The article proposes a parallel computing ori
ented method for solving the global minimum finding problems, in 
which continuous objective functions satisfy the Hölder condition, and 
the control parameters domain limited by continuous functions is 

characterized by a positive Lebesgue measure and is limited by multi
dimensional parallelepipeds. A typical example of such a task is the 
discrepancy minimizing problem between the left and right parts of 
some system of equilibrium equations. The method is based on simple 
statistical tests, thanks to which, at each iteration, growing sets of po
tential global minima and sets of decrements necessary for estimating 
the values of the Hölder constants are formed. The article theoretically 
substantiates and empirically proves the guaranteed convergence of the 
authors’ method to the real global minimum, which occurs at an expo
nential rate. For the continuous iterations number, analytical upper 
estimates of the spacing between the potential global minima and real 
global minima are formalized, as well as an estimate of the probability of 
overcoming this spacing is formalized. The decrements sequence 
approximation, estimation of a priori unknown Hölder constants, esti
mation of the average number of iterations of the method and proba
bilistic characteristics of the final solution are analytically justified. 

- Statement of the research, which introduces general definitions and 
clarifies the purpose and objective of the research; 

- Formalization of the parallel computing oriented method of the 
guaranteed finding of global extremum with simple statistical tests 
selection; 

- Specific aspects of the applied application of the presented method; 
- Sections devoted to demonstration and analysis of the results of the 

intended use of the proposed method. 

2. Materials and methods 

2.1. Statement of the research 

The problem of finding the extremum of a function is to determine its 
largest (maximum) or smallest (minimum) value in a certain range of 
values of its arguments. The task of the boundaries of this area (as well as 
the rest of the additional conditions) is implemented in the form of a 
system of equations and (or) inequalities. In this case, we talk about the 
conditional problem of finding the extremum of a function or the 
problem of finding a local extremum. If the range of admissible values of 
the arguments is not limited, then we are dealing with the problem of 
finding the global extremum of the function or the optimization prob
lem. Next, we will investigate the problem of finding the global 
extremum of the function f(x): 

globminf (x) (1)  

for x ∈ Hx, Hx = {x : h(x)⩽0, x ∈ Rq }, h ∈ Rr, r < q, functions h(x) are 
continuous. Function (1) satisfies the Hölder condition with constant 
G > 0, v > 0, i.e. υ(t) = max

(w̃,ỹ)∈Rq : ‖w̃− ỹ‖⩽t
|f(w̃) − f(ỹ) |⩽Gtv. 

We formalize the canonical form of the optimization problem (1): 

globminF(z) (2)  

for z ∈ Lz, Lz = Hz ∩ Zq
+, Zq

+ = {z : 0⩽z⩽1}⊂Rq, Hz =
{
z : v(z)⩽0, z ∈ Zq

+

}
, v ∈ Rr, r < q. 

The functional relationship between the optimization problems (1) 
and (2) can be expressed through the continuously differentiable and 
mutually unique transformation 

z = T(x)x = 1/T(z) (3) 

A functional instance of (3) is, for example, the transformation z =

1/(1 + exp̅→( − c ⊗ x) ), x = ( − 1/c)⊗ ln
→
((1 − z)/z ), where 

exp̅→( − • ⊗ •) and ln
→
( • ) - n-dimensional vectors are formed by the 

components exp(◦i ⊗ ◦
i ) and ln( − ◦

i ), respectively. 
In the problems of applied design, the area of determination of 

controlled parameters x is not the entire space Rq, but its area is limited 
by the q-dimensional parallelepiped Px. Let’s redefine the optimization 
problem (1) taking into account this restriction: 
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minxf (x) (4)  

for x ∈ Px ∩ Hx: Px = {x : c⩽x⩽d}, c = {ci}, d = {di}, i = 1, n x ∈ Rq; 
Hx =

{
x : h(x) =

{
hj(x), j = 1, r

}
⩽0, x ∈ Rq }, h ∈ Rr, r < q, where the 

generalized functions h(x) are continuous. In the context of the opti
mization problem (4), the transformation (3) is significantly simplified: 
z = (x − c)⊗ (1/(d − c) ). 

Let the objective function F(z) of the optimization problem (4) ac
quire a global minimum at the values of the argument z∗ ∈ Z∗: F(z∗) =

F∗. Taking into account the continuity of the transformation (3), we can 
state that the function F(z) is bounded from below by Lz, that is, there is 
a constant a for which the inequality F∗⩾a = const holds. 

In the general case, a is unknown, but a→0 in the context of specific 
optimization problems (for example, where the function F(z) charac
terizes the discrepancy between the left and right parts of some system of 
equilibrium equations). At the same time, the function F(z) also satisfies 
the Hölder condition, but with constants K and s, that is: 

υ(g) = max
(w,y)∈Lx : ‖w− y‖⩽g

|F(w) − F(y) |⩽Kgs (5) 

Therefore, the aim of our investigation is to create a parallel 
computing oriented method that will allow us to geting the global 
extreme z∗ ∈ Z∗ of the objective function F(z) on the set Lz. The subject of 
our research will be the simple statistical tests method. 

2.2. Formalization of the parallel computing oriented method of the 
guaranteed finding of global extremum with simple statistical tests selection 

The basic element of the authors’ method is the elementary positive 
cube Zn

+ mentioned in the formulation of the optimization problem (4). 
Each i-th iteration (i = 0, 1,2,…) of the method begins with the gener
ation of a set Zi, which contains Ni uniformly distributed and indepen
dent Zn

+ stochastic vectors 
{
z(1),…, z(Ni)

}
. Next, among the calculated 

for the i-th set of the function F
(
z(j)
)

values, j = 1,Ni, the minimum 
value F∗

i and the corresponding value of the argument z∗i are determined 
and fixed. Considering that the generation of the set Zi is carried out by 
the statistical tests method, the determined optimal value F∗

i is sto
chastic. The transition to the (i+1)-th iteration is accompanied by a 
regulated increase in the number of stochastic vectors in the set Zi+1: 
Ni+1 > Ni. The result of execution of the (i+1)-th iteration is the set 
{
F∗

i+1, z∗i+1
}
. The course of the iterative process is accompanied by the 

growth of accumulated sets F∗ =
{
F∗

i
}

and Δ =
{

δi+1, δi+1 = F∗
i − F∗

i+1
}
, 

i = 0,1,2,…. The iterative process is completed if during ρ iterations the 
dynamics of changes in the values in the set Δ does not exceed the 
certain threshold γ: 

ϕ = min{i : maxi− ρ⩽s⩽iδs⩽γ} (6) 

The output result of the method described above is the set S =
{

F∗
ϕ, z∗ϕ, r+ϕ ,P

(
ξr+ϕ

)}
, where F∗

ϕ is the found approximate value of the 

global extremum of the objective function (4), z∗ϕ is the found approxi
mate value of the argument of the objective function (4) for F∗

ϕ, r+ϕ is an 
estimate of the spacing between the approximate and actual values of 

the global extremum of the objective function (4), P
(

ξr+ϕ

)
is an estimate 

of the event ξr+ϕ
=
{

F∗
ϕ − F∗⩽r∗ϕ

}
probability. 

The set Zi is formed from a matrix of independent stochastic values of 
dimension (q × Mi), the elements of which are uniformly distributed 
over the segment [0, 1]. The source of this matrix for the i-th iteration is a 
random number generator. This matrix is the basis for the formation of 
Ni independent and uniformly distributed positive elementary parallel
epiped stochastic vectors Zi =

{
z(j)
}
, j = 1,Ni. Let’s examine the 

probabilistic characteristics of the set Zi. 

Let’s form the desired set Zi from the existing stochastic matrix of 
dimension (q × Mi) in the following way: Ni = Mq

i or Ni = Mi, where the 
parameter Ni characterizes the number of stochastic vectors in the set Zi, 
and the parameter Mi characterizes the coordinates of z(i)j the vector z(i). 
Taking this Ni = Mi, we formulate the rule for the formation of the set 
Zi+1 (taking into account the declared iterative increase in the volume of 
the latter: Ni+1 > Ni): 

Ni+1 = αNiMi+1 = αMiα > 1i = 0, 1, 2,… (7) 

Let us divide the q-dimensional parallelepiped Zq
+ mentioned in (4) 

into unit cubes in each of the dimensions using a lattice with a uniform 
step 

μi = M− q
i 0 < φ⩽o⩽β < 1 (8)  

where the parameter o characterizes the volume of the unit cube and the 
values of the boundary parameters φ, β should be chosen taking into 
account the results of the analysis of probabilistic characteristics of the 
set of global minima F∗ and the set of their corresponding arguments Z∗. 

We characterize as P(Ni, q, o) the probability of such an situation that 
there is an cube that does not contain any of the Ni vectors generated on 
the i-th iteration: 

P(Ni, q, o) =
((

1 + No
i

)(
1 − N − o

i

)Ni
)q

= Q(i, q, o) (9) 

For i→∞, expression (9) will take the form 

Q(i, q, o) ∼ Q(i, q, o) = Nqo
i exp

(
− qN1− o

i

)
(10) 

Let’s justify analytically the correctness of expressions (9), (10) in 
the context of the optimization problem (4). Let us characterize by the 
probability P(Ak) the situation Ak when none of the Mi generated inde
pendent and uniformly distributed [0,1] stochastic values falls into the 
interval μi for the k-th dimension: 

P(Ak)⩽R(i, q, o) =
(
1 + M− o

i

)(
1 − M− o

i

)Mi  

where 
(
1 + M− o

i
)

is the upper limit of the number of segments formed as 
a result of dividing the interval [0,1] by a grid with a step M− q

k . 

Considering that lim
x→∞

(1− x− o)x

exp(− x1− o)
= 1, the expression (10) can be trans

formed into the form P(Ak)⩽R(i, q, o) ∼
i→∞

Mo
i exp

(
− M1− o

i
)
. 

Let us characterize B the situation when an o-dimensional elemen
tary parallelepiped is found that does not contain any of the Ni generated 
vectors, i.e.: B =

⋂o
k=1 Ak. Since an independent set of stochastic values 

Mi is generated for each i-th dimension, then for i→∞ we get 

P(B) = P(Ni, q, o) = (P(Ai) )
o⩽
( (

1 + No
i

)(
1 − N − o

i

) )o (11) 

Expression (11) is identical to the left side of expression (9). There
fore, with a sufficiently large number of iterations i, at least one of the 
stochastic vectors Ni from the set Zi generated on the i-th iteration of the 
method falls into each unit cube with a side M− o

i with a probability not 
less than (1 − Q(i, q, o) ). 

We established that for optimization problem (4), both the set of 
global minima v and the set of Z∗ =

{
z∗0,…, z∗i ,…

}
(their corresponding 

arguments) are not empty. Let us focus attention on the set of global 
minima F∗ and investigate its probabilistic characteristics. 

Suppose, Z∗ be the set of arguments of the global estrema points of 
the function F on the unit cube. Let’s define the spacing l from a suffi
ciently compact set Z∗ to an arbitrary point z as 

l(z,Z∗) = min
y∈Z∗

‖z − y‖ (12) 

Suppose that the point ẑ ∈ Zi is the closest to the Z∗ in the context of 
the spacing (12). As we proved earlier, with probability (1 − Q(i, q, o) )
at least one of the points of the set Zi falls into the unit cube with side μi. 
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Taking into account this fact, we redefine the expression (12) for the 
point ẑ: ‖z∗ − ẑ‖⩽μi

̅̅̅q√
/2 = gi. This expression characterizes the situa

tion when the point z∗ is located in the center of the unit cube, and the 
point ẑ is located at one of its vertices. Accordingly: |F∗ − F(ẑ) |⩽υ(gi), 
where υ(gi) is the modulus of continuity of the function F(z) character
ized by expression (5). On the other hand: F∗ = F(z∗) =

min
z∈Zq

+

F(z)⩽min
1⩽s⩽i

F∗
s < F(ẑ). Let’s generalize the last two expressions and get 

− υ(gi)⩽F∗ − F(ẑ)⩽min
z∈Zq

+

F(z) − min
1⩽s⩽i

F(zs)⩽0 or 

⃒
⃒
⃒
⃒min

z∈Zq
+

F(z) − min
1⩽s⩽i

F(zs)

⃒
⃒
⃒
⃒ =

⃒
⃒F∗ − F∗

i

⃒
⃒⩽υ(gi) (13) 

Inequality (13) is fulfilled with a probability not less than 
(1 − Q(i, q, o) ). Relying on inequality (13), it can be asserted that for the 
function of the form (5) there are such positive constants K, s that the 
estimate 

ri(o) = K
( ̅̅̅

q
√ /

2
)pN − op

i ⩾
⃒
⃒F∗ − F∗

i

⃒
⃒ (14)  

is reliable with a probability not less than (1 − Q(i, q, o) ). The estimate 
(14) depends on the values of the parameters o and φ, β entered in (8). 

Operating with probabilistic characteristics (10), (14) it is possible to 
substantiate the convergence of the parallel computing oriented method 
proposed at the beginning of Section 2.2. Let’s take a sufficiently small 
positive number ξ and find the value of the parameter L(ξ) = min{i : ri⩽ 
ξ} (the value of the estimate ri is determined according to (14)). For 
i < L(ξ), the situation 

{⃒
⃒F∗ − F∗

i
⃒
⃒ > ξ

}
⊂
{⃒
⃒F∗ − F∗

i
⃒
⃒ > ri

}
is relevant. The 

probability of realization of this situation in the context of expressions 
(9), (14) is characterized by the expression 

P
{⃒
⃒F∗ − F∗

i

⃒
⃒ > ξ

}
⩽Q(i, q, o) (15) 

Based on expression (7), α > 1, i = 1,2,… we write 

Mi = αiM0 (16) 

We present the estimate of the probability characteristic (9) as 

Q(i, n, o) =
(
αqoiMqo

0
)
exp
(
− (q/2)α(1− o)iM1− o

0

)
exp
(
− (i(1 − o)/2 )M1− o

0

)

(17) 

Considering (16), we note that in expression (17) the third multiplier 
is greater than the second in terms of value. Taking this into account, as 
well as x = αiM0, we present the expression (17) in a compact form: 
Q(i, q, o)⩽Q̃

(
− (i(1 − o)/2 )M1− o

0
)
, where Q̃ = max

x⩾0
xqoexp( − qx1− o/2). 

The result allows for i > L(ξ) to estimate the probability (15) as 

P
{⃒
⃒F∗ − F∗

i

⃒
⃒ > ξ

}
⩽Q̃exp( − Ai) (18)  

where A = (1 − o)M1− o/2. Analyzing expression (18) i > L(ξ/2), we 
write 

P
{

sup
s⩾i

⃒
⃒F∗

i − F∗
s+i

⃒
⃒ > ξ

}

⩽2P
{

sup
s⩾i

⃒
⃒F∗ − F∗

s

⃒
⃒ >

ξ
2

}

⩽2Q
∑∞

s=i
exp( − As)

(19) 

Examining the limiting values of (19) for sufficiently small positives 
ξ, we obtain 

lim
i→∞

P
{

sup
s⩾0

⃒
⃒F∗

i − F∗
i+s

⃒
⃒⩾ξ

}

= 0 (20) 

Expression (20) can be interpreted as a necessary and sufficient 
condition for the convergence of the set F∗ =

{
F∗

i
}
, i = 0, 1, 2, …. 

Expression (19) allows us to state that the speed of this convergence is 
exponential. 

Based on the proven conclusion regarding the convergence of the F∗

to the global extrema of the optimization problem (4) value, it can be 

predicted that the set of arguments z∗i is guaranteed to converge to the 
set Z∗ in the spacing metric (12). Suppose that there is a subset 

{
z∗k
}

that 
converges to the z⌣ ∕∈ Z∗ point with non-zero probability. This (consid
ering the continuity of the F function) means that the lim

i→∞
F
(
z∗i
)
= F(z⌣) >

F∗ inequality holds with nonzero probability. But, relying on (20), we 
can write: lim

i→∞
F
(
z∗i
)
= lim

i→∞
F∗

i = F∗ = F(z⌣). In the resulting contradiction, 

it is the second construction that is analytically justified (see the 
sequence of obtaining expression (20)). Therefore, the hypothesis that 
the set of arguments z∗i is guaranteed to coincide with the set Z∗ in the 
spacing metric (12) can be considered proven. Analyzing expression 
(20), we can conclude that the set of decrements Δ introduced at the 
beginning of Section 2.2 converges to zero. 

2.3. Specific points of applied use of the authors’ method 

The iterative process of solving the optimization problem (4) by the 
authors’ method is accompanied by both the calculation of the elements 
of the set of decrements Δ and the determination of the constants K and s 
(to comply with the Hölder condition (5)). Let us approximate the 
sequence of decrements Δ and formalize the process of estimating the 
values of the constants K, s. 

We adapt condition (14) for functions that satisfy the Hölder con
dition. For the i-th iteration, we get 
⃒
⃒F∗

i − F∗
⃒
⃒ ≈ K

( ̅̅̅
q

√ /
2No

i

)s
= ri(o) (21)  

and for the i+1-th iteration, we get 
⃒
⃒F∗

i+1 − F∗
⃒
⃒ ≈ K

( ̅̅̅
q

√ /
2No

i+1

)s (22) 

Subtract expression (22) from expression (21) taking into account 
rule (7) and that α− os << 1: δi ≈ K

( ̅̅̅q√
/2No

i
)
(1 − α− op) ∼ K

( ̅̅̅q√
/2No

i
)
=

δ̃i∂. 
After differentiating the obtained expression, we write 

wi = logδ̃i = logK − s
(
ologNi − log

( ̅̅̅
q

√ /
2
) )

(23) 

Denoting C(i) = logK, ni = logNi, ̃ni(o) = oni − log
( ̅̅̅q√

/2
)
, we present 

the expression (23) as 

wi = C(i) − s(i)ñi(o)+ψi (24)  

where ψ i is a set of stochastic values with zero mathematical expectation 
and variance V, and ni is considered sufficiently large. 

The constants K, s are related to the parameters C(i), s(i) using 
expression (24). Estimates Ĉ(i) ŝ(i) can be determined by the “Least 
Squares” method based on the current values of the elements of sets 
{wi}, {ni}. At the same time, we take into account K̂(i)(o) = cC(i) , where c 
is the base of the logarithm. Considering the determined estimates of the 
constants K, s, we present expression (21) as 

ri(o) = K̂ (i)(o)
( ̅̅̅

q
√ /

2No
i

)ŝ(i)(o) (25) 

Expression (25) allows us to estimate the spacing ri to the exact 
global extrema value, taking into account the unit cube volume o, 
characteristic of the i-th iteration of the parallel computing oriented 
method. 

Now let’s analytically estimate the average number of iterations until 
the realization of the situation ξ when condition (6) is fulfilled. Suppose 
that this situation is realized on the ϕ-th iteration. Let’s introduce a 
positive integer variable T for which ξ = {ϕ > T}. For the situation ξ, we 
can write ξ⊂

⋃T
s=T− ρ {ws > γ}, based on which we will get 

P(ξ)⩽
∑T

s=T− ρ
P{ws > logγ}⩽(ρ + 1) max

T − ρ⩽s⩽T
P{ws > logγ} (26) 
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Let us present expression (24) in the context of the Bienaime 
inequality: 

P{ws > logγ} = P
{

ψs > logγ − Ĉ(T) + ŝ(T)s
}

⩽V̂ (T)
/(

logγ − Ĉ(T) + ŝ(T)s
)2

(27) 

Substitute expression (27) into expression (26) and get 

P(ξ) = (ρ + 1) max
T − ρ⩽s⩽T

V̂ (T)
/(

logγ − Ĉ(T) + ŝ(T)s
)2⩽

⩽(ρ + 1)V̂ (T)
/(

logγ − Ĉ(T) + ŝ(T)(T − ρ)
)2

= I
(
1
/

T2),
(28)  

where V̂ (T) is an estimate of the variance V of the stochastic set ψ i. 
Based on the terminology used, we express the average number of 

iterations of the parallel computing oriented method before the event ξ 
occurs as 

E{ϕ} =
∑∞

m=1
mP{ϕ = m} (29) 

Let’s open the expression (29) for T > 2: 

∑T

m=1
mP{ϕ = m} =

∑T

m=2
m(P{ϕ > m − 1} − P{ϕ > m} ) =

=
∑T

m=2
(m − 1)P{ϕ > m − 1} −

∑T

m=2
mP{ϕ > m}+

+
∑T

m=2
P{ϕ > m − 1} =

∑T− 1

m=1
P{ϕ > m} − TP{ϕ > T}.

(30) 

Taking expression (28) into account, we write: 

lim
T→∞

TP{ϕ > T}⩽ lim
T→∞

TI
(
1
/

T2) = 0 (31) 

Consider inequality (31) when passing to the limiting form of 
expression (30) for T→∞: 

E{ϕ} =
∑∞

T=1
P{ϕ > T}⩽I

(
∑∞

T=1
1
/

T2

)

(32) 

Expression (32) is an estimate of the average number of iterations of 
the method before it stops at the ϕ-th iteration. Assume that condition 
(32) is fulfilled. Based on expressions (14), (18), we can conclude that 
with a sufficiently large i, probability that at least one of the values of 
F∗

ϕ− ρ, F∗
ϕ− ρ+1, …, F∗

ϕ is not in the vicinity of the exact global minimum of 
the optimization problem (4) tends to zero when the situation ξ arises. 

When the situation ξ occurs on the ϕ-th iteration, it is possible to 
calculate the estimates K̂(ϕ)(o), s(ϕ)(o) using expression (25). In turn, 
these estimates can be used to estimate the spacing of the found global 
minimum F∗

ϕ from the exact value F∗. Taking into account expressions 
(14), (25), we write: 
⃒
⃒
⃒F∗

ϕ − F∗

⃒
⃒
⃒⩽r+ϕ (33)  

r+ϕ = max
0<φ⩽o⩽β<1

rϕ(o)

Taking this into account, we characterize the lower limit of the 
probability of occurrence of the situation ξr+ϕ 

from expression (6) as 

P∗
r+ϕ

= min
0<φ⩽o⩽β<1

(
1 − Nqo

ϕ exp
(
− qN1− o

ϕ

))
(34)  

3. Results 

The authors’ method is focused on finding the global minimum of the 
optimization problem (4), which is an adaptation of the canonical form 
of the optimization problem (2). We algorithmically implement the 
method as a composition of two functions. The function MinGen() im
plements the generation of a set of local minima Z∗

i and a set of 

decrements δi, as well as checking the fulfilment of the stop condition 
(6). The function MinEst() implements the quality check of the found 
extrema using the probabilistic characteristic (34), which allows for 
determining the global minimum. The search for the extremum is 
implemented iteratively, and at each i-th iteration, s computational 
operations are performed. For the convenience of readers, all variables 
used below are presented in the Nomenclature at the end of the article. 

At each i-th iteration of the application of the function MinGen(), the 
following actions are performed: 

1. Using the stochastic tests method a pool of stochastic vectors Zi =
{
z(1),…, zNi

}
, Ni = αNi− 1 is formed; 

2. From the pool Zi, stochastic vectors belonging to the admissible set 
L are selected. As a result, a set Yi with capacity Ñi is formed; 

3. The values of the objective function (4) on the set of admissible 

points y(i) ∈ Y are calculated: F
(
y(k)

)
, k = 1, Ñi; 

4. From the values F
(
y(k)

)
calculated at stage 3, the smallest one is 

chosen: min
1⩽k⩽Ñi

F
(
y(k)

)
; 

5. The decrement δi =
⃒
⃒F∗

i − F∗
i− 1
⃒
⃒ and derived parameters wi = logδi, 

ni = logNi are calculated. 
Stages 1–5 are repeated for ρ iterations (as long as the condition wi <

γ is fulfilled). After performing ρ iterations, the function MinGen()
completes its work. The output parameter of the function is a tuple of 
storage sets 〈F,Δ,W,N〉 of capacity ρ each. Next, the function MinEst()
comes into action, which for the input tuple 〈F,Δ,W,N〉 implements the 
following structured calculation procedure: 

1. Estimates Ĉ(i)π, ̂s(i) are calculated for sets N, W by the least squares 
method (see expression (24)); 

2. Such quality indicators of the found solution as the spacing r+ϕ (see 
expression (33)) and the probability characteristic P∗

r+ϕ 
(see expression 

(34)) are calculated. 
The algorithmic constructions described above were implemented in 

the Python programming environment with a focus on supporting GPU 
Programming with Python and CUDA parallel computing technologies, the 
description of which is freely available at the link https://github.co 
m/PacktPublishing/Hands-On-GPU-Programming-with-Python-and- 
CUDA. The created software was based on a software platform consist
ing of Windows, Python 2.7, Anaconda 5, CUDA 10 (incl. cuBLAS, 
cuSolver), PyCUDA, Scikit-CUDA. The hardware configuration of the 
test bench included a 64-bit Intel CPU, 32 Gigabytes of RAM, NVIDIA 
GPU RTX 3070. 

The plan of experiments is designed to empirically confirm the ad
equacy of the presented method, as well as to obtain data for evaluating 
its effectiveness. 

Empirical confirmation of the adequacy of the authors’ method was 
carried out based on the content of the Optimization Test Problems section 
of the specialized resource Virtual Library of Simulation Experiments: Test 
Functions and Datasets, freely available at the link https://www.sfu.ca/ 
~ssurjano/optimization.html. 

Among the instances available in the Optimization Test Problems 
section, we selected ten optimization problems, the of admissible solu
tions domains of which are limited by Px-shaped parallelograms. Here is 
a list of selected problems with the values of the corresponding 
controlled parameters and the output results x∗, f∗ in the context of the 
terminology used in the article: 

T1: f(x) =
∑k

i=11/
(

ai +
∑q

j=1
(
xj − cji

)2
)

. For k = 5, q = 4, A =

(0,1; 0,2; 0,2; 0,4; 0, 4), C =

⎛

⎜
⎜
⎝

4 1 6 8 3
4 1 6 8 7
4 1 6 8 3
4 1 6 8 7

⎞

⎟
⎟
⎠we have: x∗ = 4,000, 

f∗ = − 10,153; 
T2: f(x) =

( ∑q
i=1x4

i − 16x2
i + 5xi

)
/2. For q = 4 we have: x∗ = 2,904, 

f∗ = − 156,664; 
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T3: f(x) =
∑q

i=1

(
(xi − 1)2

+ 100(xi+1 − xi)
2
)

. For q = 2 we have: 

x∗ = 1,000, f∗ = 0,000; 
T4: f(x) =

(
2, 625 − x1 + x1x3

2
)2 

+
(
2,250 − x1 + x1x2

2
)2

+(1,500−
x1 + x1x2)

2
. We have: x∗ = {3,000;0,500}, f∗ = 0,000; 

T5: f(x) =
(

1 + (x1 + x2 + 1)2( 19 − 14x1 − 14x2 + 6x1x2 + 3x2
1 +

3x2
2
) )(

30 + (2x1 + 3x2)
2( 18 − 32x1 + 48x2 − 36x1x2 + 12x2

1 +

27x2
2
) )

.

We have: x∗ = {0,000; − 1,000}, f∗ = 3,000; 

T6: f(x) = − exp(0, 5(cos2πx1 + cos2πx2) ) − 20exp
(
− 0, 2 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0,5
(
x2

1 + x2
2
)√ )

+20+e. We have: x∗ = 0,000, f∗ = 0,000; 

T7: f(x) = − x1sin
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|x1 − x2 − 47|

√
− (x2 + 47)sin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|x1/2 + x2 + 47|

√
. 

We have: x∗ = {512,404;2319,000}, f∗ = − 959,641; 

T8: f(x) =
∑k

i=11/
(

ai +
∑q

j=1
(
xj − cji

)2
)

. For A = (0, 1; 0,2; 0,2; 0,

4; 0, 4;0, 6;0, 3;0, 7; 0,5; 0,5), C=

(
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3,6

)

, k= 10, 

q=2 we have: x∗ = 4, 000, f∗ = − 11, 030; 

T9: f(x) = 1/
(

0,002 +
∑k

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

j +
∑q

i=1
(
xi − cji

)6
√ )

. For k = 25, 

q = 2, cj1 = ( − 32; − 16;0;16;32; − 32; − 16;0;16;32; − 32; −
16;0; 16;32; − 32; − 16;0;16;32; − 32; − 16;0; 16;32)T

,cj2 = ( − 32; −
32; − 32; − 32; − 32; − 16; − 16; − 16; − 16; − 16; 0; 0; 0;0; 0;16;16;16;
16;16;32;36;32;36;32), we have: x∗ = − 32,000, f∗ = 0,998; 

T10: f(x) =
∑q

i=1
(
5xi − 16x2

i + x4
i
)
/2. For q = 2 we have: x∗ = 2,

904, f∗ = − 39,166. 
Test problems T1-T10 were solved using the authors’ method with 

the following initial data: N0 = 10, α = 10, γ = 10− 3, ρ = 3, ϕ = 9, 

δϕ =

⃒
⃒
⃒f∗ − f∗ϕ

⃒
⃒
⃒. The obtained empirical solutions are presented below in 

graphical and tabular form in Figs. 1-4. The results of the calculations 

are presented in the metric 
{

Px, f∗ϕ, x∗
ϕ, δϕ, rϕ,T

}
, where f∗ϕ is the optimal 

value of the corresponding optimization problem found on the ϕ-th 
iteration; x∗

ϕ - the value of the argument, which corresponds to the value 

of f∗ϕ; rϕ - quality assessment (21); T is the time spent searching for the 
value of f∗ϕ. 

Let’s finish the experimental part by checking the adequacy of the 
model embodied in the expression (24). Fig. 5 presents the results of a 
computational experiment to identify the functional dependence of 
logδi = log

(
F∗

i − F∗
)
= f(log(i) ) at F∗ = 0. 

According to the results presented in Fig. 5, the parameters and the 
root mean square deviation of the approximation (21) were determined 
by the least squares method. Note that the calculated root mean square 
deviation turned out to be smaller 12%, which allows us to consider 
model (24) as adequate. Fig. 1. Results of solving test problems T1, T2 by the authors’ method.  

Fig. 2. Results of solving test problems T3, T4, T5 by the authors’ method.  

Fig. 3. Results of solving test problems T6, T7 by the authors’ method.  
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4. Discussion 

Let’s start the discussion by stating the empirically proven fact of the 
adequacy of the proposed method for solving the global optimization 
problems, in which continuous objective functions satisfy the Hölder 
condition, and the control parameters domain limited by continuous 
functions is characterized by a positive Lebesgue measure and is limited 
by multidimensional parallelepipeds. This fact is confirmed by the re
sults of comparing the solutions obtained using the authors’ method 
with etalon solutions of optimization problems selected from the Opti
mization Test Problems section of the specialized resource Virtual Library 
of Simulation Experiments: Test Functions and Datasets. Figs. 1-4 shows 
that for all optimization test problems T1-T10, approximate values of the 
global minimum with an error in the range of 

[
10− 9, 10− 2] were found. 

Moreover, for test problems, T1-T7, adequate values of the upper esti
mates of the spacing to the exact global minimum (metric rϕ) with a 
probability close to one were obtained. Separately, we note that both the 
quality characteristics of the initial results calculated according to the 
authors’ method and the time to obtain them turned out to be practically 
independent of the size of the search area. This expected result (provided 
by a selection of simple statistical tests performed on iterations of the 
method) is a significant advantage of the authors’ method over 
analogues. 

We will also note several theoretically grounded remarks concerning 
the authors’ method. In particular, the values of estimate (14) depend on 
the value of the established parameter o, which is associated with the 
selected value of the unit cube (see (8)). The fact that the set F∗

i is 
guaranteed to converge with an exponential rate is theoretically 
confirmed by the guaranteed convergence of the strictly monotonic set 
F∗ =

{
F∗

0 > F∗
1 > …

}
to the value of the exact global extrema with an 

exponential rate. Recall that the cumulative set F∗ grows with each 
transition from the i-th to the i+1-th iteration of the authors’ method 
(see the beginning of Section 2.2). Finally, if the admissible set is part of 
a unit cube (4), then when evaluating the probabilistic characteristics 
mentioned in Section 2.3, only the number of unit cubes in the partition 
of the admissible set will change. Accordingly, the estimates of the 
probabilistic characteristics from Section 2.3 (as well as the statements 
regarding the convergence of the authors’ method) are valid under the 
condition of compactness (4), which is characterized by the positivity of 
the Lebesgue measure. With this in mind, when implementing the au
thors’ method, at each iteration, you should check whether each sto
chastic point belongs to an admissible set. 

5. Conclusion and future directions 

The article proposes a parallel computing oriented method for 
solving the global minimum finding problems, in which continuous 
objective functions satisfy the Hölder condition, and the control pa
rameters domain limited by continuous functions is characterized by a 
positive Lebesgue measure and is limited by multidimensional paral
lelepipeds. A typical example of such a task is the discrepancy mini
mizing problem between the left and right parts of some system of 
equilibrium equations. The method is based on simple statistical tests, 
thanks to which, at each iteration, growing sets of potential global 
minima and sets of decrements necessary for estimating the values of the 
Hölder constants are formed. The article theoretically substantiates and 
empirically proves the guaranteed convergence of the authors’ method 
to the real global minimum, which occurs at an exponential rate. For the 
continuous iterations number, analytical upper estimates of the spacing 
between the potential global minima and real global minima are 
formalized, as well as an estimate of the probability of overcoming this 
spacing is formalized. The decrements sequence approximation, esti
mation of a priori unknown Hölder constants, estimation of the average 
number of iterations of the method and probabilistic characteristics of 
the final solution are analytically justified. In addition to the theoretical 
proof, the adequacy of the authors’ method has been confirmed 
empirically. It turned out that both the quality characteristics of the 
initial results calculated by the authors’ method and the time to obtain 
them are practically independent of the size of the search area. This 
expected result is a significant advantage of the authors’ method over 
analogues. 

Further research is planned to be devoted to the applied use of the 
proposed method, in particular, in the field of analysis of small sto
chastic data. The theoretical basis for these studies are articles such as 
(Kovtun et al., 2024; Kovtun et al., 2023). 
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Fig. 4. Results of solving test problems T8, T9, T10 by the authors’ method.  

Fig. 5. Real and simulated functional dependence of logδi = f(log(i) ) at F∗ =

0. 
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Montano, J., Garzón, O.D., Rosales Muñoz, A.A., et al., 2022. Application of the 
arithmetic optimization algorithm to solve the optimal power flow problem in direct 
current networks. Results Eng. 16, 100654 https://doi.org/10.1016/j. 
rineng.2022.100654. 

Pei, P., Quek, S.T., Peng, Y., 2023. Enriched global-local multi-objective optimization 
scheme for fuzzy logic controller-driven magnetorheological damper-based 
structural system. Mech. Syst. Sig. Process. 193, 110267 https://doi.org/10.1016/j. 
ymssp.2023.110267. 

Shilaja, C., Kiran, S.R., Murali, M., et al., 2022. Design and analysis of global 
optimization methods for proton exchange membrane fuel cell powered electric 
vehicle system with single switch DC-DC converter. Mater. Today:. Proc. 52, 
2057–2064. https://doi.org/10.1016/j.matpr.2021.12.204. 

Smith, J.E., Nair, R., 2005. Dynamic binary optimization. Virtual Mach. 147–219 
https://doi.org/10.1016/b978-155860910-5/50005-7. 

Sovrasov, V.V., 2016. Local tuning in peano curves-based global optimization scheme. 
Procedia Comput. Sci. 101, 27–34. https://doi.org/10.1016/j.procs.2016.11.005. 

Stracquadanio, G., Pardalos, P.M., 2019. Stochastic methods for global optimization and 
problem solving. Encyclopedia Bioinformat. Computat. Biol. 321–327 https://doi. 
org/10.1016/b978-0-12-809633-8.20329-4. 

Tymchenko, O., Havrysh, B., Khamula, O., et al., 2019. Methods of converting weight 
sequences in digital subtraction filtration. In: 2019 IEEE 14th International 
Conference on Computer Sciences and Information Technologies (CSIT). https://doi. 
org/10.1109/stc-csit.2019.8929750. 

Wu, H., Niu, W., Zhang, Y., et al., 2023. A hybrid polynomial-based optimization method 
for underwater gliders with parameter uncertainty. Appl. Ocean Res. 133, 103486 
https://doi.org/10.1016/j.apor.2023.103486. 

Xie, W., Tang, W., Kuang, Y., 2022. A new hybrid optimizer for stochastic optimization 
acceleration of deep neural networks: dynamical system perspective. 
Neurocomputing 514, 341–350. https://doi.org/10.1016/j.neucom.2022.09.147. 

Xu, A., Li, S., Fu, J., et al., 2023. A hybrid method for optimization of frame structures 
with good constructability. Eng. Struct. 276, 115338 https://doi.org/10.1016/j. 
engstruct.2022.115338. 

Yang, Z., Kang, R., Luo, X., et al., 2019. Rigorous modelling and deterministic multi- 
objective optimization of a super-critical CO2 power system based on equation of 
state and non-linear programming. Energ. Conver. Manage. 198, 111798 https:// 
doi.org/10.1016/j.enconman.2019.111798. 

Yang, C., Zhu, Y., Zhou, J., et al., 2023. Dynamic flexibility optimization of integrated 
energy system based on two-timescale model predictive control. Energy 276, 
127501. https://doi.org/10.1016/j.energy.2023.127501. 

Zaiats, V.M., Rybytska, O.M., Zaiats, M.M., 2019. An approach to assessment of the value 
and quantity of information in queueing systems based on pattern recognition and 
fuzzy sets theories. Cybern. Syst. Anal. 638–648 https://doi.org/10.1007/s10559- 
019-00172-1. 

Zhang, X., Huang, G., Xie, Y., et al., 2022. A coupled non-deterministic optimization and 
mixed-level factorial analysis model for power generation expansion planning – a 
case study of Jing-Jin-Ji metropolitan region, China. Appl. Energy 311, 118621. 
https://doi.org/10.1016/j.apenergy.2022.118621. 

Zhang, J., Liu, C., Li, X., et al., 2023. A survey for solving mixed integer programming via 
machine learning. Neurocomputing 519, 205–217. https://doi.org/10.1016/j. 
neucom.2022.11.024. 

V. Kovtun et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.jcp.2022.111750
https://doi.org/10.1016/j.jcp.2022.111750
https://doi.org/10.1016/j.orl.2023.05.004
https://doi.org/10.1016/j.orl.2023.05.004
https://doi.org/10.3390/e25020184
https://doi.org/10.1016/j.ijepes.2023.109190
https://doi.org/10.1016/j.autcon.2021.103840
https://doi.org/10.1016/j.na.2012.01.023
https://doi.org/10.3390/s21051768
https://doi.org/10.1016/j.epsr.2022.108371
https://doi.org/10.1016/j.eml.2022.101887
https://doi.org/10.3390/math10111942
https://doi.org/10.1038/s41598-023-49007-2
http://refhub.elsevier.com/S1018-3647(24)00077-6/h0075
http://refhub.elsevier.com/S1018-3647(24)00077-6/h0075
https://doi.org/10.1016/j.rineng.2022.100850
https://doi.org/10.1016/j.rineng.2022.100654
https://doi.org/10.1016/j.rineng.2022.100654
https://doi.org/10.1016/j.ymssp.2023.110267
https://doi.org/10.1016/j.ymssp.2023.110267
https://doi.org/10.1016/j.matpr.2021.12.204
https://doi.org/10.1016/b978-155860910-5/50005-7
https://doi.org/10.1016/j.procs.2016.11.005
https://doi.org/10.1016/b978-0-12-809633-8.20329-4
https://doi.org/10.1016/b978-0-12-809633-8.20329-4
https://doi.org/10.1109/stc-csit.2019.8929750
https://doi.org/10.1109/stc-csit.2019.8929750
https://doi.org/10.1016/j.apor.2023.103486
https://doi.org/10.1016/j.neucom.2022.09.147
https://doi.org/10.1016/j.engstruct.2022.115338
https://doi.org/10.1016/j.engstruct.2022.115338
https://doi.org/10.1016/j.enconman.2019.111798
https://doi.org/10.1016/j.enconman.2019.111798
https://doi.org/10.1016/j.energy.2023.127501
https://doi.org/10.1007/s10559-019-00172-1
https://doi.org/10.1007/s10559-019-00172-1
https://doi.org/10.1016/j.apenergy.2022.118621
https://doi.org/10.1016/j.neucom.2022.11.024
https://doi.org/10.1016/j.neucom.2022.11.024

	Simple statistical tests selection based parallel computating method ensures the guaranteed global extremum identification
	1 Introduction
	2 Materials and methods
	2.1 Statement of the research
	2.2 Formalization of the parallel computing oriented method of the guaranteed finding of global extremum with simple statis ...
	2.3 Specific points of applied use of the authors’ method

	3 Results
	4 Discussion
	5 Conclusion and future directions
	Acknowledgments
	References


