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Abstract The purpose of this paper is to employ an analytical approach to a two-dimensional vis-

cous flow with a shrinking sheet. A comparative study of the variational iteration algorithm-II

(VIM-II) and the Adomian decomposition method (ADM) are discussed. Both approaches have

been applied to obtain the solution of a two-dimensional viscous flow due to a shrinking sheet. This

study outlines the significant features of the two methods. Comparison is made with the ADM to

highlight the significant features of the VIM-II and its capability of handling completely integrable

equations. Through careful investigation of the iteration formulas of the earlier variational iteration

algorithm (VIM), we find unnecessary repeated calculations in each iteration. To overcome this

shortcoming, we suggest the VIM-II, which has advantages over other iteration formulas, such

as the VIM, and the ADM. Further iterations can produce more accurate results and decrease

the error.
ª 2010 King Saud University. All rights reserved.
1. Introduction

This paper presents a reliable comparison between two re-
cently developed, popular iteration methods, the variational
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iteration algorithm-II (VIM-II) developed by He et al. (2009)

and the Adomian decomposition method (ADM) introduced
by Adomian (1988). The use of both methods is common in
the literature. The most extensive work carried out on the var-

iational iteration algorithm (VIM) generally is that of He
(2000, 2004, 2007, 2008) and He and Lee (2009). Although
many researchers have compared the VIM with the ADM,
to the best of the authors’ knowledge, no comparison of the

VIM-II and the ADM has appeared in the literature thus
far. The objectives of this paper are threefold: first, to intro-
duce the advantages of the VIM-II, which primarily lie in its

ability to avoid the unnecessary calculations of other iteration
methods, namely, the VIM and ADM; second, to illustrate
through this comparison that, unlike the widely used ADM,

the VIM-II does not require the calculation of Adomian poly-
nomials (Adomian, 1988) for the nonlinear terms that appear
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in differential equations, as a solution can be obtained without

the incorporation of these polynomials; and third, to apply the
VIM-II to a fluid mechanics problem, namely, a viscous flow
for a shrinking sheet (Fang et al., 2009). An analytical ap-
proach is followed to find the numerical value of f00(0), which

Wazwaz (2007) has calculated to solve the Blasius equation.
This goal is achieved by employing the reliable VIM-II devel-
oped by He (2007) and the ADM (Adomian, 1988). For

numerical approximation, the resulting series is best manipu-
lated by Padé approximants (Baker, 1975).

2. Padé approximants

Padé approximants constitute the best approximation of a

function by a rational function of a given order. Developed
by Henri Padé, Padé approximants often provide better
approximation of a function than does truncating its Taylor

Series, and they may still work in cases in which the Taylor ser-
ies does not converge. For these reasons, Padé approximants
are used extensively in computer calculations, and it is now
well known that these approximants have the advantage of

being able to manipulate polynomial approximation into the
rational functions of polynomials. Through such manipula-
tion, we can gain more information about the mathematical

behavior of the solution. In addition, power series are not use-
ful for large values of a variable, say g fi1, which can be
attributed to the possibility of the radius of convergence not

being sufficiently large to contain the boundaries of the do-
main. To provide an effective tool that can handle boundary
value problems on an infinite or semi-infinite domain, it is
therefore essential to combine the series solution, which is ob-

tained by the iteration method or any other series solution
method, with the Padé approximants.

3. Formulation

In this paper, we consider the two basic equations of fluid

mechanics in Cartesian coordinates. The continuity equation
and momentum equations for viscous flow are
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where t ¼ l
q
is the kinematic viscosity.

The boundary conditions applicable to the present flow are

u ¼ �ax; v ¼ �aðm� 1Þy; w ¼ �W at y ¼ 0;

u! 0 as y!1:
ð5Þ

For shrinking phenomena, a> 0, a is a shrinking constant,

and W is the suction velocity. m = 1 when the sheet shrinks in
the x-direction alone, and m= 2 when it shrinks axisymmetri-
cally. We introduce the following similarity transformations.
u ¼ axf0ðgÞ; v ¼ aðm� 1Þyf0ðgÞ; g ¼
ffiffiffi
a

t

r
z: ð6Þ

Eq. (1) is identically satisfied, and Eq. (4) can be integrated to
give

p

q
¼ t
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� w2
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Eqs. (2), (3), and (5) are reduced to the boundary value

problem,

f000 � ðf0Þ2 þmff00 ¼ 0; ð8Þ

and the corresponding boundary conditions take the form

f ¼ s; f0 ¼ �1 at g ¼ 0;

f0 ! 0 as g!1;
ð9Þ

where s ¼W=m
ffiffiffiffiffi
at
p

.

4. Methods

4.1. He’s variational method

To illustrate the basic concept of He’s VIM, we consider the

following general differential equation

LfþNf ¼ gðxÞ;

where L is a linear operator, N is a nonlinear operator, and
g(x) is the source term. According to the VIM, we can con-

struct a correction functional as follows

fnþ1ðxÞ ¼ fnðxÞ þ
Z x

0

kðLfnðsÞ þN~fðsÞ � gðsÞÞds; ð10Þ

where k is a Lagrange multiplier that can be identified through
a variational iteration method. The subscript n denotes the nth
approximation, and ~fn is considered to be a restricted varia-

tion, i.e., d~fn ¼ 0. The solution of linear problems can be
achieved in a single iteration step due to the exact identifica-
tion of the Lagrange multiplier. This method requires that
the Lagrange multiplier k is first determined optimally. The

successive approximation, fnþ1; n P 0, of the solution f can
then be readily obtained by using the Lagrange multiplier
determined and any selective function f0; consequently, the

solution is given by f ¼ lim
n!1

fn. According to the variational
iteration method, we can construct a correction functional of
Eq. (8) as follows

fnþ1ðgÞ ¼ fnðgÞ þ
Z g

0
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with k ¼ � ðn�gÞ2
2

, and the initial approximation is f0 ¼ s� gþ
ag2

2
, where f00(0) = a, m= 2, s = 2.
However, according to the VIM-II, the general form of the

algorithm takes the following form
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consequently, the following approximants are obtained.
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It is quite clear that only three iterations are needed to obtain

approximation f3(g). Other methods require many more itera-
tions to obtain this result. Fewer calculations are also involved
with the VIM-II.

4.2. Adomian decomposition method

A detailed description of the ADM is given in Adomian

(1988). Here, we provide only the basic steps as a reminder.
Writing Eq. (8) in operator form, we have

LfðgÞ þ RfðgÞ þNfðgÞ ¼ 0; ð18Þ

where L is the linear operator, i.e., Lf ¼ d3f
dg3, which is the high-

est order derivative; R= 0; and

Nf ¼ df
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The linear operator is also the inverse operator, i.e.,
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The ADM defines the unknown function, f(g), by an infinite

series:

fðgÞ ¼
X1
g¼0

fnðgÞ; ð21Þ

where the components fn(g) are usually determined recurrently.
The nonlinear operator, G(f), can be decomposed into infinite
polynomials given by
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1
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where An are the so-called Adomian polynomials of
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or, equivalently,
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It is now well known that these polynomials can be generated
for all classes of nonlinearity according to specific algorithms.

Write the general algorithm of Eq. (8) with the initial
approximation mentioned in Eq. (14)
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After successive iterations, we obtain the following results
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Figure 2 Graphical presentation of Adomian solution.
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and so on. In this manner, the remainder of the terms in the
decomposition series (21) can be calculated.

The series solution is given by

f ¼ f0 þ f1 þ f2 þ f3 þ f4 þ . . . ; ð33Þ

Substituting Eqs. (27)–(32) into Eq. (33), we obtain the follow-
ing series solution
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Table 1 The numerical values for f00(0) = a using Padé

approximation.

Padé approximation f00(0) = a for ADM f00(0) = a for AVIM

[1/1] 0.292893 0.224748

[2/2] Complex number Complex number

[3/3] Complex number 0.294748

[4/4] 0.247723 0.308086

[5/5] 0.24893 0.249556
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Figure 1 Graphical presentation of VIM solution.
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Figure 3 Comparison of the VIM solution and the Adomian

solution.
Software packages such as Mathematica or Maple can be used
to solve the polynomial f0(g) to calculate the value of a with the
help of boundary condition f0(g) fi 0 for g fi1. By using the

table above, we can choose the value of a = f0(g) fi 0 =
0.249243 for both solutions, which is an average value of [5/
5] Padé approximation (Table 1).

The result of VIM and ADM solutions are depicted in Figs.
1 and 2. Fig. 3 compares the two solutions.

5. Conclusion

This paper presents a variational iteration method, the VIM-

II, that can be employed to solve nonlinear differential equa-
tions. The method is applied here in a direct manner without
the use of linearization, transformation, discretization, pertur-
bation, or restrictive assumptions. The proposed algorithm’s
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ability to solve nonlinear problems without the use of Adomi-

an polynomials is evidence of its clear advantage over the
decomposition method. This study has considered only an axi-
symmetrically shrinking sheet by taking m = 2.
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