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ABSTRACT

Solar power has quickly become one of the most effective forms of renewable energy today as it provides
a clean solution to the growing demand for energy. Most solar panels in the market are rigid as they are
made up of metals; therefore, organic polymers provide a flexible alternative. Nanotechnology provides
the synthesis of nanoparticles by simple approaches suitable for applications in various fields.
Nanoparticles of titanium dioxide (TiO2) were synthesized and characterized in this paper (NPs), which
were further incorporated in the construction of a novel, organic polymer solar panel (OPSC) that is flex-
ible and portable; it is made from thylakoid (chloroplast) extract of chard (B. vulgaris subsp. cicla) com-
bined with polystyrene polymer matrix. Insertion of TiO, NPs in the OPSC improved the current
generation compared to the reference devices (OPSC) without TiO, NPs. Therefore possible uses for the
constructed solar panel were suggested. The prepared films were tested for the current generation.
Under illumination, the solar panels generated a current of —140 pAp, and —213 pAp without and within
TiO2 NPs, respectively. This study opens windows for manufacturing flexible, efficient, and stable organic
polymer solar panels.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

New technologies are being pushed forward by the increasing
need for resources and the availability of renewable energy that
uses photovoltaic energy conversion. Recently, polymer solar pan-
els have become attractive and gained much interest as sustainable
solar energy converters because they are cheap, light in weight,
and have potential applications in vast areas of flexible devices
(Jin et al., 2021; Riede et al., 2021; Liu et al., 2021). The present
method for constructing polymer solar cell systems is based on
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the bulk heterojunction structure idea, where the polymer donor
is the electron-rich active ingredient. At the same time, an
electron-poor fullerene is an acceptor (Song et al., 2010). However,
in addition to the merits of classical polymers, organic solar cells
(OSCs) have the distinction of being non-toxic raw materials
(Hou et al., 2008; Yang et al., 2021).

Inserting an inorganic buffer layer between the electrode and
active layer is one of the methods for improving the efficiency of
power conversion and the lifetime of OSCs. Such a buffer layer
could lead to modifications in the interface of organic/electrode
and changes in the interface’s chemical nature (Turak, 2013;
Zhou et al., 2013; Wang et al., 2021). Moreover, it could prevent
electrode atoms, oxygen, and water from penetrating the device’s
active layer (Williams et al., 2013). Various inorganic and n-type
inorganic salts and semiconductors have been used as buffer layers
to improve the efficiency of power conversion and the OSC lifetime.
These materials include LiF, CsCO3, and ZnO (Turak, 2013; Yang
et al,, 2010; Hau et al., 2008).

Oxides of transition metals have attractive semiconductor prop-
erties as they offer optically and electronically excellent charge
transporters. They can be tuned by introducing dopants in various
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ways to generate nanostructures or modify their surfaces. Thus,
these metal oxides serve different roles in a 'hybrid’ inorganic/or-
ganic photovoltaic device (Gershon, 2011).

The binary metal oxide titanium dioxide (TiO2) is one of the
Earth’s most common elements. It often exists in the rutile and
anatase phases and is known as a photocatalyst that is chemically
stable and non-toxic (Radzuan et al., 2017; Xu, 2019). Photosensi-
tizers comprise compounds that can absorb light in a photochem-
ical reaction and transfer energy to the reactant (Ahmad et al,,
2021). TiO, can also act as a photosensitizer (Glass et al., 2018).
However, photocatalysis is the most attractive property of TiO,
nanoparticles (TiO, NPS) reported applications. But, the co-
sensitization of TiO, NPs was proposed for improving the photo-
voltaic performance of solar panels by increasing the wavelength
of harvested light; they can harvest unlimited energy of visible
light and UV parts of the sunlight (Balasingam et al., 2013; Luo
et al., 2019).

As a semiconductor, TiO, has been used in polymer solar cells as
a buffer layer in previous studies (Yoon et al., 2008; Lee et al., 2007;
Cho et al., 2021). TiO, can also serve as an efficient electron trans-
porter, optical spacer, hole-blocking layer, and scavenging and
shielding layer, improving polymer solar cell devices’ power con-
version efficiency and blocking oxygen and moisture from pene-
trating the active layer (Zhong et al., 2019).

In the present study, we report a framework for developing a
facile method to construct organic polymer solar panels by incor-
porating chloroplasts extracted from chard (B. vulgaris subsp. cicla)
which is a green leafy vegetable that has very rich thylakoids and
the synthesis and characterization of TiO, NPs, which were
inserted in OPSC. The performance of the constructed organic poly-
mer solar panel to generate current was then determined.

2. Materials and methods
2.1. Synthesis of titanium dioxide nanoparticles (TiO> NPs)

Titanium dioxide nanoparticles were synthesized by mixing
titanium (IV) isopropoxide (TTIP) and distilled water at a ratio of
2:1 under continuous stirring for 5 h at room temperature until a
milky paste solution was formed. The answer was heating at
80 °C for 2 h in a hot plate. The paste was dried at 60 °C in the oven,
pulverized, and then calcinated in a muffle furnace at 400 °C. The
resulting white powder contained TiO, nanoparticles.

2.2. Characterization of titanium dioxide nanoparticles (TiO, NPs)

Several techniques were used to characterize the powder sam-
ple, as follows:

X-ray diffraction (XRD) analysis. This was accomplished utiliz-
ing a 40 KV, 40 MA, nickel-filtered Cu radiation (k = 1.54056)
X-ray diffractometer manufactured by Bruker (Company, City,
Country).

Dynamic light scattering(DLS). Particle size distribution of pro-
duced TiO2 NPs was analyzed using dynamic light scattering.
This was achieved by completely dissolving the pulverized
TiO2 NPs in distilled water. Then, ultrasonication (Bransonic-
M3800-E, 50 - 60 Hz, 130 W., Mexico) was applied to ensure
that the NPs were uniformly distributed in the solution; in this
solution, particle size distribution was determined using Mal-
vern Instruments (Zetasizer Nano Series HT laser, UK).
Transmission electron microscope (TEM). The size, shape, and
distribution of the produced TiO2 NPs were analyzed by TEM
(JEOL (JEM 1400 Plus, USA).
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Energy-dispersive spectrometer (EDS). To identify the composi-
tion of the synthesized TiO, NPs, an X-ray Energy Dispersive
Spectrometer (EDS) was as used as described previously
(Awad and Hendi, 2021) JEM-2100F, JEOL Ltd., USA)

2.3. Extraction of chloroplast thylakoids

A green extract of B. vulgaris subsp. cicla was made in the same
way it had been reported earlier, and it proved to be an effective
thylakoid stabilizer (CT) for making chloroplasts(Deshmukh and
Deshmukh, (July. 2015)). This was accomplished by washing and
mixing half a conventional-sized bag of B. vulgaris subsp. cicla
leaves in around 200 mL of water for 3 to 5 min and then centrifu-
gation at 6,000 rpm for 15 s to get rid of crude cell debris and
nuclei, dense organelles. Then, the supernatant was centrifuged
for 20 min. After centrifuging the pellet for 20 min, it was reassem-
bled in water.

2.3.1. Fabrication and construction of the solar panel

The polymer matrix solar panel was fabricated and constructed
as previously described (Deshmukh and Deshmukh, 2015; De Rossi
et al., 2015). To create the flexible solar panel, 4 g of polystyrene
(PS) was dissolved in 30 to 60 mL of toluene with vigorous stirring
at 60 °C to generate a first solution. Then 30 to 50 mg of CT was
added to the mixture and stirred until it was uniform (Fig. 1).
The solar panels’ ability to generate electricity was measured using
a microvolt digital multimeter (Keithley 177 Apv DMM) after
being exposed to light from a 12-volt bulb (producing a mean
intensity of 700 1x) (Awad and Hendi, 2021).

3. Results and discussion

The phase formation and crystallinity of TiO2 NPs may be deter-
mined using the X-ray diffraction (XRD) method. Fig. 2 depicts the
XRD pattern of TiO2 NPs. Using diffraction angles, the sample
showed a high degree of crystallinity (2 theta) of 25.61° (101),
37.88° (004), 47.85° (200), 54.64° (105) (211), 62.76°(204),
69.39° (116) and 75.77° (215), This demonstrates that the tita-
nium is highly crystalline and contains anatase phase. The
obtained raw data were evident with the standard JCPDS card
(COD 2300113). The pure and crystalline nature of the manufac-
tured nanoparticles may be deduced from the strong peaks pro-
duced by diffraction (Kalaiarasi and Jose, 2017). It is well-known
that the anatase phase is the most dynamic for photocatalysis
(Mohammadizadeh et al., 2015). Moreover, anatase phase layers
are typical super hydrophilic surfaces (Mariquit et al., 2015). Due
to its more significant photocatalysis activity, anatase recorded
the highest application score in the industry as the commercial
form that is mainly used (Hasan et al., 2021).

The dynamic light scattering (DLS) method was used to analyze
the particle size distribution of the produced TiO2 NPs. Fig. 3 rep-
resents the DLS plot. TiO, NPs synthesis is indicated by the maxi-
mum intensity recorded for 130.5 nm average particle size.
Mono-dispersed TiO2 NPs also show good dispersion and long-
term stability with a PDI of 0.472. TiO2 NP aggregation was calcu-
lated using PDI values between 0 and 1 (Awad et al., 2021). This
further justified the size distribution of the synthesized TiO, NPs
as determined by the TEM study.

To identify the composition of the synthesized TiO, NPs, an X-
ray Energy Dispersive Spectrometer (EDS) was used. The EDX spec-
trum is shown in Fig. 4. The peaks of titanium (Ti) and oxygen (O)
indicate the purities of the prepared TiO, NPs: oxygen and tita-
nium in the sample are 34.08% and 65.92%.

The size, morphology, and distribution of synthesized TiO, NPs
were determined by the transmission electron microscope (TEM).



M.A. Awad, A.A. Hindi, Khalid M.O. Ortashi et al.

B. vulgaris subsp.
ciclaleaves

Journal of King Saud University — Science 35 (2023) 102690

Polymer
Solar Panel

=

TiO, NPs

TiO, inserted Polymer

Solar Panel

I-V measurement
during illumination
and absence of light

Fig. 1. Schematic diagram showing all steps involved in synthesizing TiO-NPs, fabrication, and construction of the solar panels.
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Fig. 2. X-ray diffraction (XRD) patterns of crystalline titanium dioxide nanoparti-
cles (TiO, NPs).
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Fig. 3. Particle size distribution curve of synthesized titanium dioxide nanoparti-
cles using dynamic light scattering (DLS) technique.

TEM images of the prepared TiO, samples were well uniform and
dispersible, as shown in Fig. 5. Red arrows point to TEM bright field
images of TiO, NPs in the anatase phase. These findings agree with

Full Scale 1939 cts Cursor: 0.000 keV|

Fig. 4. X-ray energy dispersive spectrometry (EDS) pattern of synthesized TiO, NPs.

the XRD results of other investigators (Thamaphat et al., 2008;
Hossain et al., 2021).

The panels were constructed on a transparent sheet (template)
made of a polymer matrix with incorporated thylakoids with and
without synthesized TiO, NPs. After drying, the polymers were
removed from the templates; the result was portable and flexible
films. Then, the films were tested for the current generation. Under
illumination, the solar panels without TiO, NPs generated a current
of —140 pAp. Moreover, the solar panel, which contained TiO2 NPs,
was subjected to testing of current generation under illumination
after exposure to the light. A current of —213 pAp was generated,
thus also exhibiting a noticeable rise in the present age with the
presence of NPs. The output current obtained is in microampere
(1Ap). Prospects research can cover further investigations and
measurements that could be performed, such as shelf life, thermal
stability, conductive stability, and study of solar panel efficiency.

The theoretical base for this experiment lies on the natural phe-
nomenon that occurs in the natural light-harvesting system result-
ing in electron excitement, i.e., a photosystem embedded in the
thylakoid that is accepted finally by nicotinamide adenine dinu-
cleotide phosphate (NADP) out of the thylakoid membrane. To
use this phenomenon, an artificial electron acceptor was used here
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Fig. 5. Transmission electron microscope (TEM) image of synthesized anatase titanium dioxide nanoparticles (TiO, NPs).

to replace the NADP. This way, the electron that flows through
Electron Transport Chains (ETC) will be accepted by this conduct-
ing polymer leading to completing the electrical circuit, thus gen-
erating electrical energy (Koli and Sharma, 2021; Shen et al., 2021).
Many studies have been discussed. The leading critical technolo-
gies for further improvement of PSC of “flexible-ultrathin” organic
SC have been addressed in many studies, and techniques for
improving the mechanical robustness, thermal efficiency, and
overall stability of flexible OPSCs were discussed. Also, other
researches were the target of current achievements in the field of
flexible OPSCs, stressing the principles and concepts behind the
leading technologies and elaborating on future challenges in this
discipline (Fukuda et al., 2020; Pagliaro et al., 2008; Liu et al,
2021).

The advantages of this solar panel are that it can be easily con-
structed and disposed of after being used. Besides its flexibility and
portability, it is cost-effective. Such solar panels can easily be used
everywhere in the future.

The constructed solar panel in the present study represents a
small module in a primary stage. The current output measured in
the microampere was successfully improved by incorporating
TiO, NPs as semiconductors in the light-harvesting system. This
solar panel can be a portable charger for small devices like watches
and mobile phones.

4. Conclusion

The present study outlined a simple and successful method for
synthesis and further physical/chemical characterization of TiO,
NPs. XRD spectrum proves that the synthesized TiO, nanoparticles
are pure crystalline anatase phase. Furthermore, the successful
construction of a solar panel using a biological system as a princi-
pal component was achieved by the incorporation of the synthe-
sized TiO, NPs. The produced solar panel can be easily
constructed, maintained, and disposed of; it is portable, flexible,
and cheap, thus suitable for daily use.
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