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In this work, we are concerned with existence of solutions for a nonlinear second-order distributional dif-
ferential equation, which contains measure differential equations and stochastic differential equations as
special cases. The proof is based on the Leray-Schauder nonlinear alternative and Kurzweil-Henstock-
Stieltjes integrals. Meanwhile, examples are worked out to demonstrate that the main results are sharp.
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1. Introduction

The first-order distributional differential equation (DDE) in the
form

Dx = f(t,x) + g(t,x)Du, (1.1)

where Dx and Du stand, respectively, for the distributional deriva-
tive of function x and u in the sense of Schwartz, has been studied
as a perturbed system of the ordinary differential equation (ODE)

X = f(t,X) <’ = %)
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The DDE (1.1) provides a good model for many physical pro-
cesses, biological neural nets, pulse frequency modulation systems
and automatic control problems (Das and Sharma, 1971, 1972;
Leela, 1974). Particularly, when u is an absolute continuous func-
tion, then (1.1) reduces to an ODE. However, in physical systems,
one cannot always expect the perturbations to be well-behaved.
For example, if u is a function of boundary variation, Du can be
identified with a Stieltjes measure and will have the effect of sud-
denly changing the state of the system at the points of discontinu-
ity of u, that is, the system could be controlled by some impulsive
force. In this case, (1.1) is also called a measure differential equa-
tion (MDE), see Das and Sharma (1971, 1972), Dhage and Bellale
(2009), Federson and Mesquita (2013), Federson et al. (2012),
Leela (1974), Antunes Monteiro and Slavik (2016), Satco (2014),
Slavik (2013), Slavik (2015). Results concerning existence, unique-
ness, and stability of solutions, were obtained in those papers.
However, this situation is not the worst, because it is well-
known that the solutions of a MDE, if exist, are still functions of
bounded variation. The case when u is a continuous function has
also been considered in Liu et al. (2012) and Zhou et al. (2015).
The integral there is understood as a Kurzweil-Henstock integral
(Krejci, 2006; Kurzweil, 1957; Lee, 1989; Pelant and Tvrdy, 1993;
Schwabik and Ye, 2005; Talvila, 2008; Tvrdy, 1994; Tvrdy, 2002;
Ye and Liu, 2016) (or Kurzweil-Henstock-Stieltjes integral, or dis-
tributional Kurzweil-Henstock integral), which is a generalization

1018-3647/© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2017.04.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksus.2017.04.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liuw626@hhu.edu.cn
mailto:yegj@hhu.edu.cn
mailto:dafangzhao@163.com
mailto:delfim@ua.pt
mailto:delfim@aims-cameroon.org
http://dx.doi.org/10.1016/j.jksus.2017.04.009
http://www.sciencedirect.com/science/journal/10183647
http://www.sciencedirect.com

528 W. Liu et al./Journal of King Saud University - Science 30 (2018) 527-530

of the Lebesgue integral. Especially, if u denotes a Wiener process
(or Brownian motion), then (1.1) becomes a stochastic differential
equation (SDE), see, for example, Boon and Lam (2011) and Mao
(2008). In this case, u is continuous but pointwise differentiable
nowhere, and the It6 integral plays an important role there. As
for the relationship between the Kurzweil-Henstock integral and
the It6 integral, we refer the interested readers to Boon and Lam
(2011), Chew et al. (2001) and Toh and Chew (2012) and references
therein.

It is well-known that regulated functions (that is, a function
whose one-side limits exist at every point of its domain) contain
continuous functions and functions of bounded variation as special
cases (Frankova, 1991). Therefore, it is natural to consider the sit-
uation when u is a regulated function, see Pelant and Tvrdy (1993)
and Tvrdy (1994). Denote by G[0, 1] the space of all real regulated
functions on [0, 1], endowed with the supremum norm | - ||. Since
the DDE allows both the inputs and outputs of the systems to be
discontinuous, most conventional methods for ODEs are inapplica-
ble, and thus the study of DDEs becomes very interesting and
important.

The purpose of our paper is to apply the Leray-Schauder nonlin-
ear alternative and Kurzweil-Henstock-Stieltjes integrals to estab-
lish existence of a solution to the second order DDE of type

—D* = f(t,x) + g(t,x)Du, te[0,1], (1.2)

subject to the three-point boundary condition (cf. Sun and Zhao
(2015))

x(0) = pDx(0),

where D?x stands for the second order distributional derivative of
the real function x e G[0,1], u € G[0,1], B is a constant, and
n € [0,1]. This approach is well-motivated since this topic has not
yet been addressed in the literature, and by the fact that the Kurz
weil-Henstock-Stieltjes integral is a powerful tool for the study
of DDEs. We assume that f and g satisfy the following assumptions:

Dx(1) + Dx(1)) = 0, (1.3)

(H1) f(t,x) is Kurzweil-Henstock integrable with respect to t for
all x € G[0, 1];

(H2) f(t,x) is continuous with respect to x for all t € [0,1];

(H3) there exist nonnegative Kurzweil-Henstock integrable func-
tions k and h such that

—h<f(,x) <k|x| +h VxeB,

where B, = {x € G[0,1] : ||x|| <}, r>0;
(H4) g(t,x) is a function with bounded variation on [0,1] and
£(0,x) = 0 for all x € G[0, 1];
(Hs) g(t,x) is continuous with respect to x for all ¢t € [0,1];
(Hg) there exists M > 0 such that

—kilx|

supvarg < M,
xeBI,)[O 1]g

where
varg = sup »_1g(sn,X(sn) — 8(tn, X(tn),
' n

the supremum taken over every sequence {(t,,s,)} of disjoint inter-
vals in [0, 1], is called the total variation of g on [0, 1].

Now, we state our main result.

Theorem 1.1. [Existence of a solution to problem (1.2) and (1.3)]
Suppose assumptions (H1)-(Hg) hold. If

<1,

t
k(s)d
f[]/c(s)s

then problem (1.2) and (1.3) has at least one solution.

(18] + 2)max

If k(t) = 0 on [0, 1], then (H3) can be reduced to.

(H3) there exists a nonnegative Kurzweil-Henstock function h
such that

~h<f(,x)<h VxeB,.
Thus, the following result holds as a direct consequence.

Corollary 1.2. Assume that (
fulfilled. Then, problem (1.2) and (1.3) has at least one solution.

Hy), (Hy), (Hy) and (Hs)-(Hg) are

It is worth to mention that condition (H}), together with (H;)
and (H,), was firstly proposed by Chew and Flordeliza (1991), to
deal with first-order Cauchy problems.

The paper is organized as follows. In Section 2, we give two use-
ful lemmas: we prove that under our hypotheses problem (1.2) and
(1.3) can be rewritten in an equivalent integral form (Lemma 2.1)
and we recall the Leray-Schauder theorem (Lemma 2.2). Then, in
Section 3, we prove our existence result (Theorem 1.1). We end
with Section 4, providing two illustrative examples. Along all the
manuscript, and unless stated otherwise, we always assume that

x,u € G[0, 1]. Moreover, we use the symbol .[;]b to mean [, .

2. Auxiliary Lemmas

By (Hy) and (H,4), we define

F(t,x) /fsx
amm:Agmmmmm,
for all t € [0,1].

Lemma 2.1. Under the assumptions (Hy)-(Hg
(1.3) is equivalent to the integral equation

t+ﬁ

), problem (1.2) and

X(t) = —— (F(1,%) + F(n,%) + Gu(1,%) + Gu(1, %))

/stds—/Gl,sx

on [0, 1], where F and G, are given in (2.1), u € G[0, 1], and $ and n are
constants with 0 < n < 1.

(22)

Proof. For all t € [0,1], s € [0,1], and x € G[0, 1], we have
/ " sDx(s)ds — / " sd(Dx(s)) = tDx(t) — x(t) + x(0) 2.3)
0 0

by the properties of the distributional derivative. Integrating (1.2)
once over [0, t], we obtain that

Dx(t) = Dx(0) — F(t,x) — Gy(t,x). (2.4)
Combining with the boundary conditions (1.3), one has
Dx(0) = %(F(LX) +F(n,%) + Gu(1,%) + Gu(n, %)) (25)
and
x(0) = g(F(l,x) +F(n,x) + Gu(1,x) + Gy(n,x)). (2.6)
It follows from (2.3) and (2.4) that
X(t) = tDX(0) + X(0) — /0 (£ = $)f (5, X(5))ds
- /Ot(t —5)g(s,x(s))du(s). (2.7)
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Therefore, by (2.5)-(2.7) and the substitution formula (Theo-
rem 2.3.19, Tvrdy, 2002), one has

X(t) = t+ﬁ(F(1 X) + F(n,%) + Gu(1,X) + Gu(n, X))

/stds—/ Gu(s,x)ds, te][0,1].
It is not difficult to calculate that (1.2) and (1.3) holds by taking
the derivative both sides of (2.2). This completes the proof. O
Now, we present the well-known Leray-Schauder nonlinear

alternative theorem.

Lemma 2.2. [See Deimling (1985)] Let E be a Banach space, Q a

bounded open subset of E, 0 Q, and T:Q — E be a completely
continuous operator. Then, either there exists x € 9Q such that
T(x) = /x with /. > 1, or there exists a fixed point x* € Q.

We prove existence of a solution to problem (1.2) and (1.3) with
the help of the preceding two lemmas.

3. Proof of Theorem 1.1

Let
t) = /th(s)ds
/ k(s

t € [0,1]. Then, by (Hs), H and K are continuous functions. According
to (2.1) and (H,), function F is continuous on [0,1], and

/fsx )ds| <

On the other hand, by (Tvrdy, 2002, Proposition 2.3.16) and
(Hs4), Gy is regulated on [0, 1]. Further, from (Hg) and the Hélder
inequality (Tvrdy, 2002, Theorem 2.3.8 ), it follows that

1Gull < <Ig(07X(0))I+ 8(1,x(1))| +\[{)§11]”g>l\ull 2Mju]|.

Let
(81 +2)(IH]| + 2M|ju]))

(3.1)

|F|| = max
te[0,1]

< IKIIXI+ 1]

B EI L 52
For each xeB, and ¢te€(0,1], define the operator
7 : G[0,1] — G[0,1] by
TX(t) :
t+ t+8

(F(1,x) + F(n,x) + Gu(1,x) + Gy(1,X))

/stds—/G (s,x)d

We prove that 7 is completely continuous in three steps. Step 1:
we show that 7 : B, — B,. Indeed, for all x € B;, one has
17X < (18] + 2)(IIF]l + 1Gull)

< (IBI+2)(r[IK[l + [IH]| + 2M|[ul[) = r
by (3.2) and (3.3). Hence, 7 (B;) C B,. Step 2: we show that 7(B;) is
equiregulated (see the definition in Fraikova (1991)). For ¢, € [0,1)
and x € B,, we have
ITx(t) — Tx(to,)]
_ |t —(to+)
n 2

(3.3)

(3.4)

(F(1,%) + F(1,%) + Gu(1,%) + Gu(,%))

t
— [ F(s,x) + Gy(s,x)ds

toy

< 2[t = (o, )[(r|[K][ + [[H]| + 2M][ul[)—0

as t — to,. Similarly, we can prove that

|Tx(to-) — Tx(t)] = 0ast — to_

for each t, € (0,1]. Therefore, 7(B;) is equiregulated on [0,1]. In
view of Steps 1 and 2 and an Ascoli-Arzeld type theorem
(Frankova, 1991, Corollary 2.4), we conclude that 7(B,) is relatively
compact. Step 3: we prove that 7 is a continuous mapping. Let
x € B, and {x,},., be a sequence in B, with x, — x as n — cc. By
(H2) and (Hy), one has

fCxn) = f(x) and  g(Xn) — g(-X)

as n — oo. According to the assumption (Hs) and the convergence
Theorem 4.3 of Lee (1989), we have

lim fsx,, dsf/fsx ds, te][0,1].

n—oo

Moreover, (Hs), together with the convergence Theorem 1.7 of
Krejci (2006), yields that

tim [ gs.x,(s)duts) = [ ats.x(s)dus)
€ [07 1]. Hence,

Txn(t) — Tx(t) = bt

2
—(F(1,x) + F(n,x) +

/st,1

Therefore, lim, .. 7x,(-) = 7x(-), and thus 7 is a completely
continuous operator. Finally, let

Q={xe(G[0,1]:

and assume that x € 9Q such that 7x = ix for 1 > 1. Then, by (3.4),
one has

r=2x|| =

[(F(],Xn) +F('/van) +
+ Gu(1,%) + Gu(1,X))]

Gu(1,%n) + Gu(1,Xn))

F(s,x(s ds—/G S,Xn) — Gu(s,x)ds, te]0,1].

(X[l <1}

I7x|| <1

which implies that A < 1. This is a contradiction. Therefore, by
Lemma 2.2, there exists a fixed point of 7, which is a solution of
problem (1.2) and (1.3). The proof of Theorem 1.1 is complete.

4. Illustrative examples

We now give two examples to illustrate Theorem 1.1 and Corol-

lary 1.2, respectively. Let g*(t,x(t)) = 0 if t = 0 and g* (¢, x(t)) = 1 if

€ (0,1] for all x € B,. Then, it is easy to see that g* satisfies
hypotheses (H4)-(Hs) with M = 1.

Example 4.1. Consider the boundary value problem

2
D =
x(0) = 4Dx(0),

+g'(t,x)DH(t-1), te]0,1], 1)
Dx(1) + Dx(%) = 0,

where H is the Heaviside function, i.e., H(t) = 0if t < 0 and H(t) = 1
if t > 0. It is easy to see that 7 is of bounded variation, but not con-

tinuous. Let f(t, x)f’;s“—\/jl(_i‘g, g(t,x) =g (t,x), and u(t)=H(t-1).
Then, (H,), (H2), and (H

) (He) hold. Moreover, there exist HK inte-
grable functions k(t) = 52— and h(t) = 1 such that
-h<f(,%) <

i.e., (Hs) holds. Further, by (3.1),
2
IK| =5 (VB=V5). IHI =1, [ul = 7] = 1.

Let f=4and n =

—K]|x| kx| +h VxeGo,1],

1. From (3.2), we have
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r:(\ﬁ|+2)(|IHI|+2M\|UI|): 18 .
1 —4(\/6— \/5)

T— (11 +2)IK]|
Therefore, by Theorem 1.1, problem (4.1) has at least one solu-
tion x* with

wl<— 18
1 —4(\/6— \@)

Example 4.2. Consider the boundary value problem

~D*x = sin(x) + 2tsin(t ) — 2 cos(t ?)
+g*(t,x)DW, tel0,1], (4.2)
x(0) = —1Dx(0), Dx(1)+Dx(3) =0,

where W is the Weierstrass function
> sin 7"t
W(t) = ——i—

in Hardy (1916). It is well-known that W(t) is continuous but point-
wise differentiable nowhere on [0, 1], so W(t) is not of bounded vari-
ation. Let
. Lo 2 )
f(t,x) =sin(x) + 2tsin(t™*) — r cos(t™?),
g(t7 X) =g (t7 X)a
u=w.
Then, (Hy), (H>) and (H4)-(Hs) hold. Moreover, let

k(t)=0, h(t)=1+2tsin(t™?) - % cos(t2).

Obviously, the highly oscillating function h(t) is Kurzweil-Hen-
stock integrable but not Lebesgue integrable, and

b [ wss - {Lo0SED e 0
Moreover, we have
-h<f(,x) <h V¥xeG[0,1],
that is, (Hs) holds. Let = —} and # = 2. Since
1

O< ull = W< oa=1,
n=1

o7 =1 [Hl =1+sin(1),

we have by (3.2) that

3.9899 z%(sin(l) +1)

(181 + 2)([H]| + 2M][uf])
T = (1Bl + 2)IIK]|.

<—(sin(1) + 3)
~8.3232.

<r=
E
6

Therefore, by Corollary 1.2, problem (4.2) has at least one solu-
tion x* with

13 .
1x*[| < 5~ (sin(1) +3).
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