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This paper adopts an efficient meshless approach for approximating the nonlinear fractional fourth-order
diffusion model described in the Riemann–Liouville sense. A second-order difference technique is applied
to discretize temporal derivatives, while the radial basis function meshless generated the finite difference
scheme approximates the spatial derivatives. One key advantage of the local collocation method is the
approximation of the derivatives via the finite difference formulation, for each local-support domain,
by deriving the basis functions expansion. Another advantage of this method is that it can be applied
in problems with non-regular geometrical domains. For the proposed time discretization, the uncondi-
tional stability is examined and an error bound is obtained. Numerical results illustrate the applicability
and validity of the scheme and confirm the theoretical formulation.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fractional calculus (FC) generalizes integrals and derivatives
leads to non-integer orders. Many problems in physical science,
including general transport theory, electrochemistry, diffusion,
and electromagnetism, have a more comprehensive description
when adopting the viewpoint of FC (Oldham and Spanier, 1974;
Podlubny, 1998). In fact, the FC makes use of nonlocal operators,
describing more clearly the behavior of physical systems with long
range memory effects. Fractional order equations became popular
in the modeling of phenomena in fields as diverse as wave propa-
gation, anomalous diffusion, chemistry, mechanics, physics,
continuous-time random walk (CTRW), control, and engineering
applications, see (Singh, 2017; Singh et al., 2020; Singh and
Srivastava, 2020; Singh et al., 2019; Zaky et al., 2020; Zaky and
Machado, 2020; Zaky, 2018; Zaky and Machado, 2017; Zaky, 2018).
Hereafter, we focus on an efficient meshless numerical method
for seeking accurate solutions of the nonlinear time fractional
fourth-order diffusion problem (NTF4DP)

@v x; tð Þ
@t

� @bDv x; tð Þ
@tb

� Dv x; tð Þ þ D2v x; tð Þ

¼ f x; tð Þ þ G vð Þ; x 2 X � R2; 0 < t 6 T; ð1Þ
The initial condition is considered as

v x;0ð Þ ¼ g xð Þ; x 2 X; ð2Þ
together with the boundary conditions

v x; tð Þ ¼ Dv x; tð Þ ¼ 0; x 2 @X; t > 0; ð3Þ
where 0 < b < 1; x ¼ x; yð Þ stands for space variable, @X is the
closed curve bounding the region, X ¼ X [ @X represents the space
domain, f x; tð Þ is the forcing term with sufficient smoothness and
g xð Þ is a given continuous function. The symbols D and D2 denote
the Laplacian and double Laplacian operators corresponding to
the space directions, respectively. The fractional diffusion term
@bDv x;tð Þ

@tb
reflects the anomalous subdiffusion behavior of diffusion

processes. The nonlinear source term G vð Þ fulfills the assumed con-
ditions: G vð Þ is the polynomial of u or j G vð Þ j6 C j v j and
j G0 vð Þ j6 C, where C is a positive constant. The fractional operator
@bz x; tð Þ=@tb represents the Riemann–Liouville (R-L) fractional
derivative with respect to time variable t, given by
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@bz x; tð Þ
@tb

¼ 1
C 1� bð Þ

@

@t

Z t

0

z x; sð Þ
t � sð Þb ds;
where C �ð Þ is the Gamma function. To the author’s best knowledge,
only a few numerical schemes have been proposed to approximate
the NTF4DP. Du et al. (2017) developed proposed a local discontin-
uous Galerkin scheme. Liu et al. (2014) formulated a finite element
(FE) technique. Liu et al. (2015) presented a two-grid mixed finite
element method. Liu et al. (2015) applied also finite difference
(FD) and FE schemes in the temporal and space directions, respec-
tively. Liu et al. (2018) adopted the mixed FE Galerkin technique
in combination with a time second-order discrete approach.

Partial differential equations (PDEs) are commonly solved using
numerical techniques, such as the finite element, finite difference,
pseudo spectral, and finite volume algorithms (FE, FD, PS, and FV
algorithms, respectively); but, the majority of them are based on
pre-defined meshes/grid. This means that the mesh generation is
often required in the computations, posing a high load and repre-
senting a time consuming process. In addition, these approaches
reveal a lower accuracy in complex domains and non-smooth since
the solution is available only at the nodes. In order to solve these
issues meshless techniques were developed. In general, meshless
techniques have two advantages (Liu and Gu, 2005) because they:
(i) do not require a prior knowledge of the relationship between
the nodes in order to interpolate or approximate the unknown
functions of the field variable when solving a PDE, (ii) can handle
arbitrary high dimensional geometries without the need for a
mesh.

A mesh-free technique, based on radial basis functions (RBF),
capable of solving these challenging problems was proposed.
Unlike mesh generating methods, the RBF does not reveal difficul-
ties for calculating inter-nodal distances in case of an increase in
the number of dimensions. In other words, the RBF technique
can readily be applied to high-dimensional problems since it poses
a limited computational burden. Hardy (1971) first introduced the
RBF methodology as a result of research on a topological applica-
tion on quadric surfaces. He also proposed the multiquadric (MQ)
approximation technique. Franke (1982) not only applied the mod-
ified Maude and the Foley’s methods, but also considered other
techniques such as the global basis function type, finite element,
inverse distance weighted, and rectangle-based blending to scat-
tered data interpolation. Franke (1987) evaluated these methods
based on various parameters such as storage memory, accuracy,
and required computational time, leading to the conclusion that
the MQ RBF was the best approach. Micchelli (1984) developed
the RBF further and provided the proof that it is always possible
to solve the MQ surface interpolation. Kansa (1990) addressed
the MQ RBF and introduced the so-called the Kansa method, a
globally supported interpolant that can be used for solving a
PDE. Buhmann et al. (1992) and Chui et al., 1996 shown that the
RBF are related to the prewavelets. The attainable error and the
condition number of the interpolation cannot be both kept small
(Schaback, 1995). This inverse relationship is widely known as
the trade off (uncertainty) principle (Schaback, 1995). Buhmann
(2003) and Madych and Nelson (1990) shown the exponential con-
vergence property of the MQ interpolation. The RBF interpolation
in terms of convergence and existence, uniqueness properties
was investigated in (Franke and Schaback, 1998; Micchelli, 1984;
Madych and Nelson, 1990). In the present paper, we assume that
for the problem (1)-(3) we have a unique solution that has suffi-
ciently smooth properties according to v x; tð Þ 2 X� 0; T½ �. We can
determine the solvability of the method using the Leray–Schauder
fixed point theorem (Vong and Wang, 2015). Furthermore, we
assume that v x;0ð Þ and f x; tð Þ are sufficiently smooth for the cur-

rent theoretical analysis and that @2v
@t2

is continuous on X� 0; T½ �.

2

This article proposes a local approach based on the RBF to
obtain the approximate solution of the NTF4DP. Stemming from
these ideas, the article is organized as follows. Section 2 describes
a time-discrete scheme for the approximate solution of NTF4DP.
Moreover, the unconditionally stability analysis and the error esti-
mation of the time-discrete formulation are provided. Section 3
presents the LRBF-FD for discretizing the spatial derivative terms.
Section 4 shows the ability of LRBF-FD technique on the solution
of two problems involving regular and irregular points. Finally,
Section 5 reviews the conclusions and remarks.

2. Time-discrete formulation

For formulating the numerical scheme in the time variable, let
us define s ¼ T=M as a uniform time step size with grid points
tk ¼ ks;0 6 k 6 M.

We now introduce the necessary notations and lemmas about
the integer and fractional derivatives in time (Gao et al., 2015;
Wang et al., 2016; Tian et al., 2015).

Lemma 1. Following Gao et al. (2015), for approximating @v x;tð Þ
@t , we

have the discrete formula

@v x; tk�b
2

� �
@t

¼ Pb
t vk�b

2 þ O s2
� �

; k P 2;
Ptv1 þ O sð Þ; k ¼ 1;

(
ð4Þ

where Pb
t vk�b

2 ¼ 3�bð Þvk� 4�2bð Þvk�1þ 1�bð Þvk�2

s and Ptv1 ¼ v1�v0

s �
Lemma 2. Considering the Tian et al. (2015), Gao et al. (2015) and
Liu et al. (2018), the R-L fractional derivative can be approximated by

@bDv x; tk�b
2

� �
@tb

¼ s�b
Xk
j¼0

xb
j Dv

k�j þ O s2
� �

¼ s�b
Xk
j¼0

xb
j Dv

k�j�b
2 þ O s2

� �
; ð5Þ

where x bð Þ
0 ¼ 1 and x bð Þ

j ¼ 1� bþ1
j

� �
x bð Þ

j�1; j P 1.
Lemma 3. Following Gao et al. (2015) and Wang et al. (2016), we
obtain two equalities at time tk�b

2
, namely

f x; tk�b
2

� �
¼ 1� b

2

� �
f k þ b

2 f
k�1 þ O s2

� �
;

G v x; tk�b
2

� �� �
¼ 2� b

2

� �
G vk�1
� �� 1� b

2

� �
G vk�2
� �þ O s2

� �
:

Based on the above notations, the semi-discrete formulation at
time tk�b

2
will be derived as:

@v x; tð Þ
@t

jt¼t
k�b

2

� @bDu
@tb

jt¼t
k�b

2

� Dv x; tð Þjt¼t
k�b

2

þ D2v x; tð Þjt¼t
k�b

2

¼ f x; tð Þjt¼t
k�b

2

þ G v x; tð Þð Þjt¼t
k�b

2

; ð6Þ

so that vk ¼ v x; y; tkð Þ stands for the solution at the kth time level.

Ptv1 � s�b
X1
j¼0

kjDv1�j�b
2 � Dv1�b

2 þ D2v1�b
2 ¼ f 1�

b
2 þ G v0

� �þ R1�b
2; k ¼ 1;

Pb
t vk�b

2 � s�b
Xk
j¼0

kjDvk�j�b
2 � Dvk�b

2 þ D2vk�b
2 ¼ f k�

b
2 þ G vk�b

2

� �
þ Rk�b

2; k P 2;

8>>>>><
>>>>>:

ð7Þ

in which R1�b
2 ¼ O sð Þ and Rk�b

2 ¼ O s2
� �

represent the truncation
errors.
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By neglecting the truncation error terms of the above equation,
the semi-discrete scheme is formulated by:

PtV
1 � s�b

X1
j¼0

kjDV
1�j�b

2 � DV1�b
2 þ D2V1�b

2 ¼ f 1�
b
2 þ G V0

� �
; k ¼ 1;

Pb
t V

k�b
2 � s�b

Xk
j¼0

kjDV
k�j�b

2 � DVk�b
2 þ D2Vk�b

2 ¼ f k�
b
2 þ G Vk�b

2

� �
; k P 2:

8>>>>><
>>>>>:

ð8Þ

where Vk ¼ V x; tkð Þ is approximation solution of vk ¼ v x; tkð Þ.

Remark 1. The study of high-order approximation methods as
applied to fractional derivatives is key relevance. This research
attempts to obtain high-order convergence along the temporal
direction following the WSGD operator concept (Tian et al., 2015;
Gao et al., 2015; Liu et al., 2018), subject to certain conditions, for
approximating the R-L fractional derivatives. To use the WSGD
operator for approximating the Caputo time-fractional derivative
provided that 0 < b < 1 (Liu et al., 2015; Liu et al., 2015), one needs
to take into account the relationship between Caputo and R-L
derivatives based on some regularity assumptions. Moreover, an
initial value of zero, i.e., v x;0ð Þ ¼ 0, must be assumed (Li and Cai,
2019) [page 72]. Otherwise, one needs only to perform the change
of variable u x; tð Þ ¼ v x; tð Þ � v x;0ð Þ. Further information about a
comprehensive analysis of the role of b (0 < b < 1) in using the
WSGD operator concept to approximate the Caputo time-fractional
derivative can be found in (Liu et al., 2015; Liu et al., 2015).
Remark 2. In practical computations, we need only to take into
account the value at t1, rather than that at t1�b

2
in order to deter-

mine the approximate solution V1.
2.1. Error estimation

Let us consider three following functional spaces that are
equipped with the standard norm for the theoretical analysis of
the semi-discrete formulation:

H1 Xð Þ ¼ v 2 L2 Xð Þ; dvdx 2 L2 Xð Þ
n o

;

H1
0 Xð Þ ¼ v 2 H1 Xð Þ; v j@X ¼ 0

n o
;

Hm Xð Þ ¼ v 2 L2 Xð Þ; Dbv 2 L2 Xð Þ; for all jbj 6 m
n o

;

where L2 Xð Þ represents the space of measurable functions in the
bounded and open domain X and b ¼ b1; . . . ;bdð Þ with

jbj ¼Pd
i¼1bi. Moreover, let us define the operator

Dbv ¼ @jbjv
@xb1@x

b
2 . . . @x

b
d

�

The symbol Hm Xð Þ is Hilbert space with norm

kvkHm Xð Þ ¼
X
jbj6m

kDbvk2L2 Xð Þ

 !1
2

:

In what follows, we introduce some useful notations concerning
the stability and convergence of the numerical procedure.

Definition 1. (Liu et al., 2012) A finite difference algorithm is
called to be stable for the norm �k k, if there exist two constants
C1 > 0 and C2 > 0, independent of dt, such that when dt
approaches zero:

Vk
��� ��� 6 C1 V0

��� ���þ C2 fk k; ð9Þ
3

where f and V0 represent the source term and the initial data,
respectively.
Lemma 4. (Gao et al., 2015.) For the sequence Vk
n o

(n P 2) and

Vk 2 L2 Xð Þ, the following inequality holds:

F Vk
� �

¼ 3� bð ÞkVkk2 � 1� bð ÞkVk�1k2 þ 2� b
2

� �
1� bð ÞkVk � Vk�1k2 P 2

2�b kVkk2; k P 2;

PtV
k�b

2 ;Vk�b
2

D E
P 1

4s F Vk
� �

� F Vk�1
� �� �

:

Lemma 5. (Gao et al., 2015). If kj
� �1

j¼0 is introduced in the approxi-

mation (5), for any mesh series Vj
n oM

j¼0
, then we have

XM
k¼0

Xk
j¼0

kj Vk�j;Vk
D E

P 0: ð10Þ
Theorem 1. For Vk 2 H1
0 Xð Þ, we have

kVkk2 6 C kV0k2 þ Tmax
06j6k

kf jk2
	 


;

where C 2 Rþ.
Proof. Taking the inner product of Eq. (8) by m on domain X, the
variational weak formulation can be represented as:

Pb
t V

k�b
2; m

D E
� s�b

Xk
j¼0

kj DVk�j�b
2; m

D E
� DVk�b

2; m
D E

þ D2Vk�b
2; m

D E

¼ f k�
b
2; m

D E
þ G Vk�b

2

� �
; m

D E
�

ð11Þ

Using the divergence theorem, the aforesaid relation can be
rewritten as follows:

Pb
t V

k�b
2; m

D E
þ s�b

Xk
j¼0

kk rVk�j�b
2;rm

D E
þ rVk�b

2;rm
D E

þ DVk�b
2;Dm

D E

¼ f k�
b
2; m

D E
þ G Vk�b

2

� �
; m

D E
�

ð12Þ

Choosing m ¼ sVk�b
2 in Eq. (12), we get

s Pb
t V

k�b
2;Vk�b

2

D E
þ s�bþ1

Xk
j¼0

kj rVk�j�b
2;rVk�b

2

D E
þ s rVk�b

2;rVk�b
2

D E

þ s DVk�b
2;DVk�b

2

D E
¼ s f k�

b
2;Vk�b

2

D E
þ s G Vk�b

2

� �
;Vk�b

2

D E
� ð13Þ

Summing relation (13) from k ¼ 0 to M yields

s
XM
k¼0

Pb
t V

k�b
2;Vk�b

2

D E
þ s�bþ1

XM
k¼0

Xk
j¼0

kj rVk�j�b
2;rVk�b

2

D E
þ s
XM
k¼0

rVk�b
2;rVk�b

2

D E

þs
XM
k¼0

DVk�b
2;DVk�b

2

D E
¼ s

XM
k¼0

f k�
b
2;Vk�b

2

D E
þ s
XM
k¼0

G Vk�b
2

� �
;Vk�b

2

D E
�

ð14Þ

Applying Lemma 4, the relation (14) can be rewritten as
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1
4

kVMk2 � kV0k2
h i

þ s�bþ1
XM
k¼0

Xk
j¼0

kj rVk�j�b
2;rVk�b

2

D E

þ s
XM
k¼0

krVk�b
2k2 þ s

XM
k¼0

kDVk�b
2k2 ¼ s

XM
k¼0

f k�
b
2;Vk�b

2

D E
þ s
XM
k¼0

G Vk�b
2

� �
;Vk�b

2

D E
�

ð15Þ

Meanwhile, by applying Lemma 5, we know that

s�bþ1
XM
k¼0

Xk
j¼0

kj rVk�j�b
2;rVk�b

2

D E
P 0�

The use of both Schwarz and Yang inequalities on the right hand
side of Eq. (15) yields the following relation

s
XM
k¼0

f k�
b
2;Vk�b

2

D E
þ s
XM
k¼0

Gk�b
2;Vk�b

2

D E
6 s

XM
k¼0

kG Vk�b
2

� �
kkVk�b

2k

þ s
XM
k¼0

kf k�b
2kkVk�b

2k

6 Cs
XM
k¼2

kVk�1k2 þ kVk�2k2
� �

þ
XM
k¼2

kf k þ f k�1k2
� �" #

� ð17Þ

Substituting inequality (17) into Eq. (15), considering the dis-
crete Gronwall inequality, and dropping the nonnegative terms
on the left hand side of Eq. (15), we arrive at

kVMk2 6 C kV0k2 þ s
XM
k¼0

kf kk2
 !

;

that switching notation from M to k gives

kVkk2 6 C kV0k2 þ s
Xk
j¼0

kf jk2
 !

6 C kV0k2 þ ksmax
06j6k

kf jk2
	 


6 C kV0k2 þ Tmax
06j6k

kf jk2
	 


:

The proof is completed.

The next theorem concludes the convergence.

Theorem 2. Assume that vk 2 H1
0 Xð Þ and Vk 2 H1

0 Xð Þ represent the
analytic and approximate solutions of (7) and (8), respectively. Then
time-discrete formulation (8) is convergent as the convergence rate is
O s2
� �

.

Proof. Let us set qk ¼ vk � Vk at t ¼ tk; k ¼ 0;1; . . . ;M. Then, we
can obtain the following weak formulation correspond to Eqs. (7)
and (8) by:

Pb
t vk�b

2; m
D E

� s�b
Xk
j¼0

kj Dvk�j�b
2; m

D E
� Dvk�b

2; m
D E

þ D2vk�b
2; m

D E
¼ f k�

b
2; m

D E

þ G vk�b
2

� �
; m

D E
þ Rk�b

2; m
D E ð18Þ

and

Pb
t V

k�b
2; m

D E
� s�b

Xk
j¼0

kj DVk�j�b
2; m

D E
� DVk�b

2; m
D E

þ D2Vk�b
2; m

D E
¼ f k�

b
2; m

D E

þ G Vk�b
2

� �
; m

D E
:

ð19Þ

Subtracting relation (18) from (19) yields
4

Pb
tqk�b

2; m
D E

� s�b
Xk
j¼0

kj Dqk�j�b
2; m

D E
� Dqk�b

2; m
D E

þ D2qk�b
2; m

D E

¼ G vk�b
2

� �
� G Vk�b

2

� �
; m

D E
þ Rk�b

2; m
D E

:

If we set m ¼ sqk�1
2, then

s Pb
tqk�b

2; sqk�1
2

D E
� s�bþ1

Xk
j¼0

kj Dqk�j�b
2; sqk�1

2

D E
� s Dqk�b

2; sqk�1
2

D E

þs D2qk�b
2; sqk�1

2

D E
¼ s G vk�b

2

� �
� G Vk�b

2

� �
; sqk�1

2

D E
þ s Rk�b

2; sqk�1
2

D E
:

ð20Þ

In virtue of Theorem 1 and Eq. (20), and noticing that q0 ¼ 0, we
obtain

kqkk2 6 Cs
XM
k¼0

kRk�b
2k2 ¼ CTkRk�b

2k2:

Therefore, we have

kqkk 6 Cs2: ð21Þ
This finishes the proof.
3. The LRBF-FD methodology

By considering a distribution of N centers
XC ¼ xc

1; . . . ;x
c
N

� �
#Rd, the approximation solution of the unknown

function v xð Þ using a combination basis functions can be repre-
sented as:

v xð Þ ’ S xð Þ ¼
XN
j¼1

aj/j x; eð Þ; ð22Þ

where e denotes shape parameter and /j x; eð Þ ¼ / kx� xc
j k2; e

� �
;

j ¼ 1; . . . ;N, is a RBF corresponding the jth center. The unknown lin-

ear combination coefficients aj
� �N

j¼1, can be specified by exerting

the interpolation conditions S xc
i

� � ¼ uc
i ; i ¼ 1; . . . ;N. For special

choices of radial basis function, it has been proved that the corre-
sponding interpolation matrix / is always nonsingular (Buhmann,
2003).

For approximating Lv xð Þ in a center node xi, Kansa (1990)
adopted the linear partial differential operator on (22), so that

Lv xið Þ ’
XN
j¼1

ajL/j xi; eð Þ: ð23Þ

The relation (23) implements a global RBF (GRBF) approxima-
tion since one needs all the domain points in order to approximate
L at one of the points. A local version of the technique was intro-
duced more recently using the FD method. A disadvantage of the
GRBF meshfree technique is the resulting ill-conditioned and dense
matrices where each corresponds to a collocation point. In fact, the
adoption of the GRBF is unfeasible because the corresponding
matrices are dense for large problems. To solve this issue, several
researchers proposed a novel technique named the LRBF-FD
(Tolstykh and Shirobokov, 2003; Shu et al., 2003; Wright and
Fornberg, 2006). The LRBF-FD is constructed by combining the
RBF and FD methods. The LRBF-FD consists of a local meshfree
approach, where the domain is discretized by computing a set of
local differentiation matrices and joining them into a sparse sys-
tem instead of inverting a full matrix. One considers only the
neighbor nodes to obtain the differentiation matrix at each node.
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For this purpose, it is required to solve a small system of linear
algebraic equation in each stencil with conditionally positive defi-
nite coefficient matrix.

We presume that N ¼ x1; . . . ;xNf g#Rd be a set of arbitrary
points (centers) in the computational domain X and the subset

SI ¼ x ið Þ
1 ; . . . ; x ið Þ

NI

n o
#N be local-support domain involving NI � 1

nearest neighboring centers, and define it as a stencil for every
point x ið Þ. One must specify the index corresponding to the NI near-
est neighbors for every point to determine the weighting coeffi-
cients needed to approximate an operator L. The operator L is
evaluated at a center xi by using a weighted combination of the

function values v x ið Þ
j

� �
at all points within stencil of xi:

Lv xið Þ ’
XNI

j¼1

w ið Þ
j v x ið Þ

j

� �
: ð24Þ

The LRBF-FD weights, w ið Þ
j

n oNI

j¼1
, is obtained by enforcing the lin-

ear constraint (24) and the RBF /j x; eð Þ� �
j¼1

NI , centered at the sten-
Fig. 1. The used computationa

5

cil point locations SI (Tolstykh and Shirobokov, 2003; Shu et al.,
2003; Wright and Fornberg, 2006), resulting

L/k xi; eð Þ ¼
XNI

j¼1

w ið Þ
j /j xk; eð Þ; k ¼ 1; . . . ;NI: ð25Þ

This concludes to a the NI � NI linear system in the matrix form:

UwI ¼ LU½ �I; ð26Þ

where /kj ¼ /j xk; eð Þ; k; j ¼ 1; . . . ;NI , are the entries of the coeffi-

cient matrix U, the coefficients wI
NI�1 ¼ w ið Þ

j

n oNI

j¼1
denotes the

LRBF-FD stencil weights, and LU½ �INI�1 has the entries

L/k xi; eð Þ; k ¼ 1; . . . ;NI. The LRBF-FD weights wI at each stencil
are determined as

wI ¼ U�1 LU½ �I: ð27Þ
l regions X1;X2;X3;X4f g.
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The concept of the LRBF-FD technique is similar to the one for
the classical FD approximation. Nevertheless, one can employ the
LRBF-FD technique for scattered points in more than one space

dimensions. One calculates the FD weights w ið Þ
j

n oNI

j¼1
by polynomial

basis functions, while in the LRBF-FD, one obtains the weights by
applying an RBF interpolant to NI local support nodes for the neigh-
bor of xi. Generally, the kd-tree can be achieved using the
knnsearch function of the MATLAB. The calculation of the differ-
ential weight and the search of nearest-neighbor are the other two
pre-processing operations required by the LRBF-FD.

4. Numerical illustration

This section implements the LRBF-FD in two prototype prob-
lems and examines the influence of several numerical values of
the temporal and spatial steps. The temporal order of convergence
Cs is computed with the help of the following formula

Cs ¼ log2
kL1 2s;hð Þk
kL1 s; hð Þk

	 

;

Table 1
Numerical convergence orders in time variable by letting N ¼ 256 on X1 :

s b ¼ 0:6

L1 Cs

1=5 4:2354e� 02 –
1=10 1:3224e� 02 1:6793
1=20 3:8415e� 03 1:7834
1=40 1:1014e� 04 1:8023
1=80 3:1040e� 04 1:8271
1=160 8:1963e� 05 1:9211
1=320 2:1125e� 05 1:9560
1=640 5:3548e� 06 1:9800

Table 2
The error L1 by choosing N ¼ 225; NI ¼ 71 and s ¼ 1=200 on the considered domains.

b T X2

0:55
0:25 1:6446e� 04
0:50 2:5958e� 04
0:75 3:5230e� 04
1:00 4:4692e� 04

0:45
0:25 1:2212e� 04
0:50 1:6936e� 04
0:75 1:7577e� 04
1:00 1:9101e� 04

Table 3
Comparison between the error values L2 for scheme (Liu et al., 2015) and the LRBF-FD wi

b h Liu et al. (2015)

0:01
1=10 5:4985e� 06
1=16 2:0573e� 06
1=20 1:3019e� 06

0:3
1=10 8:1459e� 06
1=16 3:1715e� 06
1=20 2:0283e� 06

0:99
1=10 3:6315e� 05
1=16 1:6353e� 05
1=20 1:1427e� 05

6

in which L1 ¼ max
16j6N�1

jv xj; T
� �� v xj; T

� �j is the absolute error norm.

The technique developed using Sarra (2012) is employed to calcu-
late an optimal shape parameter.

The computational regions containing the uniform and Halton
distribution (Fasshauer, 2007) displayed in Fig. 1 are considered

in the follow-up. The domain X1 ¼ 0;1½ �2 represents the rectangu-
lar domain with uniform nodes. The circumference of the domains

X2 and X3 is formulated via r hð Þ ¼ 1þ 1:2 cos hð Þ sin2 hð Þ and
r hð Þ ¼ 1

10 8þ sin 6hð Þ þ sin 3hð Þð Þð Þ;0 6 h 6 2p, with uniform and
Halton nodes, respectively. The inner and outer boundaries of the
domain X4 are r hð Þ ¼ 1

4 and r hð Þ ¼ 1
2 including Halton nodes,

respectively.

Example 1. We consider the following NTF4DP (Liu et al., 2015):

@v x;y;tð Þ
@t � @bDv x;y;tð Þ

@tb
� Dv x; y; tð Þ þ D2v x; y; tð Þ ¼ �v2 x; y; tð Þ þ 2t þ 8p2t2 þ 64p4t2

�
þ 16p2 t2

C 3�bð Þ

i
sin 2pxð Þ sin 2pyð Þ þ t4 sin2 2pxð Þ sin2 2pyð Þ; 0 < t 6 T x; yð Þ 2 X;

ð28Þ
that has exact solution v x; y; tð Þ ¼ t2 sin 2pxð Þ sin 2pyð Þ. The bound-
ary and initial conditions can be achieved from it.
b ¼ 0:3

L1 Cs CPU (seconds)

1:3711e� 02 – 0:1817
4:2069e� 03 1:7797 0:2764
1:1791e� 03 1:8418 0:3210
3:3160e� 04 1:8479 0:4639
9:1232e� 05 1:9181 0:4705
2:5165e� 05 1:9288 0:7378
6:4638e� 06 1:9004 1:8255
1:6513e� 06 1:9422 3:5196

X3 X4

2:1025e� 04 5:6209e� 03
4:2075e� 04 1:3459e� 02
6:8986e� 04 2:5360e� 02
8:0193e� 04 4:0560e� 02

1:6237e� 04 3:3032e� 03
3:1939e� 04 1:0038e� 02
5:0395e� 04 2:0519e� 02
7:1760e� 04 3:4685e� 02

th M ¼ 2000 at T ¼ 0:1 on X1:

LRBF-FD CPU (seconds)

5:6147e� 06 10:1668
4:2664e� 06 19:1081
1:3970e� 06 27:8290

9:4420e� 06 10:1668
3:7221e� 06 19:1081
2:8510e� 06 27:8290

3:9164e� 05 10:1668
1:6504e� 05 19:1081
1:8008e� 05 27:8290
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The results are summarized in Tables 1–3 and Figs. 2–5 for dif-
ferent values of s; b and h on the regular and irregular domains.
Table 1 illustrates the rate of convergence in the temporal direction
and computational time (in seconds) at T ¼ 1 on X1, and coincides
with the outcome of Theorem 2. Table 2 shows the computational
errors achieved using the proposed method on the considered
domains with s ¼ 1=200 at various final times. Table 3 compares
the errors L2 of the proposed method with those obtained for other
methods. These results confirm that the proposed method is in
Fig. 2. The numerical solutions of (

7

agreement with the method proposed in (Liu et al., 2015). Fig. 2
portraits the numerical solutions and computational errors consid-
ering s ¼ 1=100; N ¼ 256and NI ¼ 81 when T 2 1;3f g on X1. Fig. 3
plots numerical solutions and computational errors by choosing
N ¼ 325;NI ¼ 57 and s ¼ 1=400 for b 2 0:25;0:95f g when T ¼ 1
on X2. Fig. 4 depicts the numerical solutions and computational
errors by considering s ¼ 1=400 and N ¼ 381;NI ¼ 63 for
b 2 0:45;0:85f g, when T ¼ 1 on X3. Finally, Fig. 5 plots numerical
solutions and computational errors by taking b ¼ 0:95; s ¼ 1=500
28) and resulting errors on X1.



Fig. 3. The numerical solutions of (28) and the resulting errors on X2.
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and N ¼ 401;NI ¼ 97 when T 2 1;3f g on X4. From Figs. 3-5, we see
clearly that the LRBF-FD is efficient in the case of irregular domains
with uniform and non-uniform nodes.

Example 2. We consider the following NTF4DP:

@v x; y; tð Þ
@t

� @bDv x; y; tð Þ
@tb

� Dv x; y; tð Þ þ D2v x; y; tð Þ � sin uð Þ ¼ 0;

ð29Þ
8

with the initial and boundary conditions

v x; y;0ð Þ ¼ 0; x; yð Þ 2 X; ð30Þ
v x; y; tð Þ ¼ Dv x; y; tð Þ ¼ 0; x; yð Þ 2 @X; t > 0; ð31Þ

We do not know the exact solution of (29). Hence, we use the
relation proposed by (Tatari et al., 2011) for the convergence crite-
rion of the solution:



Fig. 4. The numerical solutions of (28) and the resulting errors on X3.
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Ek
V ¼ kVkþ1 � Vkk

kVkþ1k
� ð32Þ

Here, we evaluate the error at s as the difference between the
solutions Vs and V2s at time steps s and 2s, which expressed by
Es ¼ kVs � V2sk. The predictor–corrector procedure is used to
determine the error in the spatial variable

Eh1 ;h2 ¼ kVh1 � Vh2k; ð33Þ
9

where Vh1 and Vh2 are the approximate solutions corresponding to
h1 and h2, respectively. We calculate the spatial convergence rate as
follows:

Ch ¼ log2
Eh;h=2

Eh=2;h=4

	 

; ð34Þ

with Eh;h=2 and Eh=2;h=4 representing the absolute errors between the
solutions with the size of mesh h; h=2f g and h=2; h=4f g, respec-
tively. Table 4 lists the error of Ek

V , the time convergence order
and the computational time (in seconds). Table 5 shows the error



Fig. 5. The numerical solutions of (28) and the resulting errors on X4.

Table 4
Numerical errors Ek

V and time convergence order Cs by letting h ¼ 1=15 on X1 at T ¼ 1:

s b ¼ 0:85 b ¼ 0:15

EkV Cs EkV Cs CPU (seconds)

1=10 5:1849e� 01 – 1:7713e� 01 – 0.4022
1=20 1:4048e� 01 1:3059 7:9959e� 02 1:1475 0.8435
1=40 3:5152e� 02 1:3854 2:8839e� 03 1:4712 1.0435
1=80 8:1838e� 03 1:4575 1:0589e� 03 1:4455 1.5236
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Table 5
Numerical errors Eh1 ;h2 and spatial convergence order Ch with s ¼ 1=50 on X1 at T ¼ 1:

h b ¼ 0:75 b ¼ 0:25

Eh1 ;h2 Ch Eh1 ;h2 Ch CPU (seconds)

2=4; 2=8 2:0543e� 01 – 1:2121e� 01 – 1.1217
2=8; 2=16 8:5635e� 02 1:2624 6:0682e� 02 0:9982 1.9749
2=16; 2=32 2:6329e� 02 1:7015 2:1378e� 02 1:5051 3.1690
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of Eh1 ;h2 , the computational time (in seconds) and the spatial conver-
gence order by the predictor–corrector procedure.

5. Conclusion

This paper considered a local meshless RBF to obtain the
approximate solution of the NTF4DP. Some computational
approaches have an high-order numerical accuracy, but they can-
not be implemented on complex domains. For handling that case,
one can use a number of these approaches for complex domains,
but they do not have good accuracy. Given these facts, we present
a local meshfree technique based on LRBF-FD. This technique has
good accuracy and can be adopted in the case of domains with
complex shapes. The new approach includes of two phases. First,
a weighted discrete algorithm implementing a second-order for-
mulation is applied to approximate the temporal derivative terms.
Second, the LRBF-FD discretization is applied to discrete space. The
time-discrete scheme is unconditionally stable and convergent.
The numerical results illustrate the good performance of the
LRBF-FD proving to be consistent with the theoretical formulation.
In the future, the approximation solution for the nonlinear modi-
fied time-factional fourth-order diffusion equation will be devel-
oped and analyzed.
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